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Abstract of the Dissertation 

 

Spatial Characteristics of the Low-Latitude Atlantic Multidecadal Variability during the 

Past Millennium and Evaluation of CMIP5 Model Simulations 

by 

Tingyin Xiao 

Doctor of Philosophy 

in 

Marine and Atmospheric Sciences 

Stony Brook University 

2016 

 

Atlantic multidecadal variability (AMV) influences climate of Atlantic coastal continents, 

including the Atlantic hurricanes, European summer rainfall, Sahelian precipitation, and African 

dust. Identifying corresponding climate proxies and integrating them with modern instrumental 

and reanalysis records are important to understand it in the context of future changes caused by 

human activities. In this study, we used the high-resolution and marine-based Globigerina 

bulloides abundance data from Cariaco Basin, the 20th Century reanalysis data, as well as other 

paleoclimate records to investigate the spatial pattern and coherence of the AMV. We then 

evaluated the ability of climate models in simulating the AMV. 

 

From the analysis of modern instrument record, the variability of G. bulloides sediment 

abundance is found to have significant correlation with large-scale atmospheric and oceanic 
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conditions in the North Atlantic during the past century. Enhanced abundance of Cariaco Basin 

G. bulloides is associated with cooler North Atlantic sea surface temperature (SST), higher 

Azores High pressure, stronger tropical North Atlantic easterly trade winds, and less Intertropical 

Convergence Zone (ITCZ) rainfall in the African Sahel. We propose that the AMV influences 

the variation of zonal wind and G. bulloides abundance through Azores High pressure.  

 

Consistent relationships are found from using different longer-term paleoclimate records 

at the multidecadal frequency. Globigerina bulloides sediment abundance is shown to negatively 

correlate with SST reconstruction at Eastern Tropical Atlantic and Puerto Rico at the same 

timescales, and positively correlate with a proxy of the multidecadal variabilities of the North 

Atlantic Oscillation (NAO). These results support that AMV exists prior to industrialization and 

its spatial pattern and coherence were similar in the pre-industry period to that in the 20th 

century.   

 

The ability of five CMIP5 (Coupled Model Intercomparison Project Phase 5) models in 

simulating the AMV are evaluated from their historical and past millennium simulations. It was 

found that two models can capture the AMV spatial pattern shown in the reanalysis data, and the 

MPI-ESM (Max Planck Institute Earth System Model) performs the best in modeling the North 

Atlantic sea surface temperature (SST) as well as the spatial pattern and coherence of the AMV. 

  



 

v 
 

 

 

 

 

 

 

I dedicate this dissertation to my grandfather, Ling Yi, who inspired me to do science when I was a little girl.  

His integrity, extensive knowledge, and unbelievable life stories will always be in my memories.  



 

vi 
 

Table of Contents 

 

Chapter 1. Introduction ................................................................................................................... 1 

Chapter 2. Description of the proxy, reanalysis, and model data ................................................... 6 

2.1. Paleoclimate data ..................................................................................................................... 6 

2.2. Observation and reanalysis data ............................................................................................. 19 

2.3. Model simulation output ........................................................................................................ 22 

Chapter 3. Relationship of Cariaco Basin Globigerina bulloides Abundance with Atlantic 

Climate Variability in the Past Century ........................................................................................ 24 

3.1. Establishing The Relationship Based on Reanalysis Data ..................................................... 24 

3.2. Seasonal Analysis .................................................................................................................. 35 

3.3. Cross-validation of the results using other reanalysis data .................................................... 41 

3.4. Summary ................................................................................................................................ 52 

Chapter 4. Examine past millennium Atlantic Multidecadal Variabilities by putting Cariaco  

Basin Globigerina bulloides Abundance in the context of other paleoclimate data ..................... 54 

4.1. Characteristics Of The Long-Term Globigerina bulloides Abundance Data ........................ 54 

4.2. Comparison Of Cariaco Basin Globigerina bulloides Abundance with SST Reconstructions

....................................................................................................................................................... 56 

4.3. Compare Globigerina bulloides Abundance with North Atlantic Oscillation Reconstructions

....................................................................................................................................................... 68 

4.4. Discussion of Cariaco Basin Globigerina bulloides abundance variation mechanism at 

longer timescales ........................................................................................................................... 80 

4.5. Summary ................................................................................................................................ 84 

Chapter 5. Evaluation of Atlantic Multidecadal Variability in CMIP5 models ........................... 85 

5.1. Evaluation using the 20th Century Reanalysis Data ............................................................... 87 

5.2. Evaluation based on Proxy Data Comparison ....................................................................... 99 

5.3. Discussion of a model SST projected Globigerina bulloides index .................................... 111 

5.4. Summary .............................................................................................................................. 115 

Chapter 6. Conclusion and Discussion ....................................................................................... 115 

6.1. Conclusions .......................................................................................................................... 116 



 

vii 
 

6.2. Discussion and future work ................................................................................................. 118 

Reference .................................................................................................................................... 119 

  



 

viii 
 

List of Figures 

 

Figure 1 1. 1901-2010 (a) annual mean, (b) JAS mean, and (c) JFM mean SST (ocean color 

shade, °C), precipitation (land color shade, mm/month), mean sea level pressure (contours, hpa), 

and wind vector (vectors, m/s) over 60°S-60°N, 0°-100°W; Cariaco Basin approximate location 

denoted by yellow rectangular in (a). (Data description in Section 2.2., ERA-20C reanalysis SST, 

SLP, near-surface wind, and GPCC precipitation) 

Figure 2-1. Distribution of paleoclimate data. Marine sediment data are shown with color 

diamonds; Luterbatcher et al. [2002] NAO index station and proxy data sites are in the range of 

the blue rectangular. 

Figure 2-2. G. bulloides abundance (# of G. bulloides/gram) during 1165-1990 [Black et al., 

1999]. 

Figure 2-3. Younger 1700 year of SST (°C) reconstruction of Eastern tropical North Atlantic 

based on G. ruber (pink) [Kuhnert et al. 2011] 

Figure 2-4. Annual variations in δ18O (‰, blue) and Sr/Ca (mmol/mol, red) based on a coral 

collected from southwestern Puerto Rico, 1751-2004 [Kilbourne et al., 2008]. 

Figure 2-5. -20-2008 G. bulloides Mg/Ca SST (brown), G. ruber (p) Mg/Ca SST (green) 

[Wurtzel et al., 2013].  

Figure 2-6. (a) 3-5 year NAO index, (b) 20-100 year NAO index (Y-axis reversed), and (c) 

combined NAO index from Bermuda coral Sr/Ca SST reconstruction [Goodkin et al. 2008] 

Figure 2-7. (a) annual NAO index (red for 1500-1658, black for 1659-2000); (b) winter NAO 

index (blue for 1500-1658, brown for 1659-2000) based on seasonal (1500-1658) and monthly 

(1659-2000) NAO reconstructions in [Luterbacher, 2002].  

Figure 2-8. 1110-1735 Cariaco Basin Ti (%) rainfall reconstruction [Haug et al., 2001; Kennett 

et al., 2012b]. 

Figure 3-1. 1900-1990 de-trended annual mean (grey lines) and filtered time series (other color 

lines) of (a) G. bulloides abundance; (b) AMO index; (c) Azores High pressure index; and (d) 

Cariaco Basin surface zonal wind. Y-axes of (b) and (d) are reversed. A 15-point Lanczos low 

pass filter is applied to generate the low-frequency data. Correlation coefficients (r) and p-values 

(p) of G. bulloides abundance data and climate variables in (b), (c), and (d) are shown in the 

figure. Data source: ERA-20C. 

Figure 3-2. 1901-1990 de-trended standardized annual mean precipitation (color shades over 

land), SST (color shades over ocean), Sea level pressure (contours over ocean), and Surface wind 



 

ix 
 

(vectors) regression against de-trended standardized annual mean (a) G. bulloides abundance; (b) 

negative AMO index; (c) negative Cariaco Basin surface zonal wind (easterly wind); and (d) 

Azores High pressure index. Displayed values passed 95% significance level. Vectors are shown 

when regression of U-component passed 95% significance level. Contours with dashed lines. 

Data source: ERA-20C. 

Figure 3-3. The same as Fig. 3-2, except for low-frequency data (filtered by 15-point Lanczos 

low pass filtering). Displayed values passed 95% significance level. Data source: ERA-20C. 

Figure 3-4. 1901-1990 de-trended standardized JAS mean precipitation (color shades over land), 

SST (color shades over ocean), Sea level pressure (contours over ocean), and Surface wind 

(vectors) regression against de-trended standardized annual mean (a) G. bulloides abundance; (b) 

negative AMO index; (c) negative Cariaco Basin surface zonal wind (easterly wind); and (d) 

Azores High pressure index. Displayed values passed 95% significance level. Vectors are shown 

when regression of U-component passed 95% significance level. Contours with dashed lines 

indicate negative values. Line labels on white background are for contours, others are for color 

shades. Data source: ERA-20C. 

Figure 3-5. 1900-1990 seasonal variation of Cariaco Basin (a) mean zonal wind in all years 

(black line), in the years with upper quartile of G. bulloides abundance (red line), and in the 

years with lower quartile of G. bulloides abundance (blue line); (b) zonal wind difference 

between the years with upper quartile and lower quartile of G. bulloides abundance. Data source: 

ERA-20C.          

Figure 3-6. 1901-1990 de-trended standardized (a)JFM mean precipitation (color shades over 

land), SST (color shades over ocean), Sea level pressure (contours over ocean), and Surface wind 

(vectors) regression against de-trended standardized annual mean G. bulloides abundance; (b) the 

same as (a) except using JAS mean precipitation, SST, Sea level pressure, and Surface wind. 

Displayed values passed 95% significance level. Vectors are shown when regression of U-

component passed 95% significance level. Contours with dashed lines indicate negative values. 

Line labels on white background are for contours, others are for color shades. Data source: ERA-

20C. 

Figure 3-7. 1980-1989 section of monthly zonal wind index (black line; see Index Definition 2) 

and number of days in a month that daily zonal wind speed exceeds threshold of one standard 

deviation (Ne) (red line). Data source: ERA-20C. 

Figure 3-8. The same as Fig. 3-4a and 3-4b, except for low-frequency data (filtered by 15-point 

Lanczos low pass filtering). Data source: ERA-20C.  

Figure 3-9. 1871-1990 de-trended annual mean (grey lines) and filtered time series (other color 

lines) of (a) G. bulloides abundance; (b) AMO index; (c) Azores High pressure index; and (d) 

Cariaco Basin surface zonal wind. Y-axes of (b) and (d) are reversed. A 15-point Lanczos low 



 

x 
 

pass filter is applied to generate the low-frequency data. Correlation coefficients (r) and p-values 

(p) of G. bulloides abundance data and climate variables in (b), (c), and (d) are shown in the 

figure. Data source: NOAA 20CRv2. 

Figure 3-10. The same as Fig. 3-2 except for Data source: NOAA 20CRv2. 

Figure 3-11. The same as Fig. 3-3 except for Data source: NOAA 20CRv2. 

Figure 3-12. The same as Fig. 3-6 except for Data source: NOAA 20CRv2.  

Figure 3-13. The same as Fig. 3-4 except for Data source: NOAA 20CRv2. 

Figure 3-14. The same as Fig.3-8 except for Data source: NOAA 20CRv.  

Figure 3-15. 1901-1990 de-trended standardized low-frequency (filtered by 15-point Lanczos 

filter) annual mean precipitation (color shades over land), SST (color shades over ocean), Sea 

level pressure (contours over ocean), and Surface wind (vectors) regression against de-trended 

standardized low-frequency annual mean (a) negative AMO index; (b) negative Cariaco Basin 

surface zonal wind (easterly wind); and (c) Azores High pressure index. Displayed values passed 

95% significance level. Vectors are shown when regression of U-component passed 95% 

significance level. Contours with dashed lines. Data source: JRA-55.2. 

Figure 4-1. 1165-1990 (top) Morlet Wavelet analysis of G. bulloides abundance,(a) wavelet 

spectrum, x-axis is year, y-axis is period, (b) x-axis is wavelet spectrum, y is the same as (a); 

(bottom) year-variance plot of 50-100 year band pass filtered time series. Data are standardized 

before wavelet analyses. 95% significance regions are hatched. 

Figure 4-2. Spectral analysis of annual G. bulloides abundance data during 1165-1990; the green 

dashed line is the “red noise” curve, and the blue and red lines are the lower (p = 0.05) and upper 

(p = 0.95) confidence bounds, respectively. 

Figure 4-3. 1165-1990 original data (gray) and 10 year running averages of interpolated annual 

mean data (other colors) of G. bulloides abundance (red), Eastern Tropical Atlantic G. ruber 

(pink) Mg/Ca SST (black, Y axis reversed, unit °C), and 1856-1990 instrumental AMO index 

(purple, Y axis reversed). 

Figure 4-4. (Left) Spectral analysis of Easter Tropical Atlantic G. ruber (pink) SST during 1165-

1990; the green dashed line is the “red noise” curve, and the blue and red lines are the lower (p = 

0.05) and upper (p = 0.95) confidence bounds, respectively. (Right) The coherence-squared value 

between this SST proxy and G. bulloides abundance data during the same period; the red line 

indicates the critical coherence squared-value corresponding to the 95% significance level.  

Figure 4-5. Same as Fig. 4-1 except using 1165-1947 Easter Tropical Atlantic G. ruber (pink) 

SST 



 

xi 
 

Figure 4-6. Comparison of G. bulloides abundance (red) and Eastern Tropical Atlantic Mg/Ca 

SST (black, Y-axis reversed) with (upper) original time series, (lower) time series filtered by 50-

100 years band pass filter. 

Figure 4-7. Lag-correlation of filtered G. bulloides abundance and Eastern Tropical Atlantic 

Mg/Ca SST (red). Data filtered by 50-100 years band pass filter. Positive value of X-axis 

indicates that G. bulloides abundance leads the SST reconstruction data. Blue lines indicate the 

interval of the 95% significance level. 

Figure 4-8. 1751-1990 original data (gray) and 10 year running averages (other colors) of G. 

bulloides abundance (red), Puerto Rico Sr/Ca SST (black), Puerto Rico δ18O SST-SSS index 

(blue), and 1856-1990 instrumental AMO index (purple, Y axis reversed) 

Figure 4-9. Spectral analysis of G. bulloides abundance data (left), Puerto Rico Sr/Ca SST index 

(center) and the coherence between this SST proxy and G. bulloides abundance data (right) 

during 1755-1985 

Figure 4-10. Spectral analysis of Puerto Rico δ18O SST-SSS index (left) and the coherence 

between this proxy and G. bulloides abundance data (right) during 1755-1985 

Figure 4-11. Comparison of G. bulloides abundance (red) and Puerto Rico Sr/Ca SST index 

(black) with (upper) original time series, (lower) time series filtered by 50-100 years band pass 

filter. 

Figure 4-12. Same as Figure 4-7, except between 50-100 years band pass filtered G. bulloides 

abundance and Puerto Rico Sr/Ca SST index. 

Figure 4-13. Comparison of G. bulloides abundance (red) and Puerto Rico δ18O SST-SSS index 

(black) with (upper) original time series, (lower) time series filtered by 50-100 years band pass 

filter. 

Figure 4-14. Same as Figure 4-7, except between 50-100 years band pass filtered G. bulloides 

abundance and Puerto Rico δ18O SST-SSS index. 

Figure 4-15. Original data (gray) and 10 year running averages (purple and blue) of 1751-1990 

G. bulloides abundance (red), 1856-1990 instrumental AMO index (purple, Y axis reversed), and 

1865-1990 instrumental Hurrell NAO index (blue). Black line is the 20-100 year Bermuda Sr/Ca 

NAO index (flipped sign), overlaid by the combined NAO index (gray) during 1751-1990. 

Figure 4-16. Same as Fig. 4-1 except using 1793-1988 Bermuda Sr/Ca winter SST proxy of 

NAO index 

Figure 4-17. Comparison of G. bulloides abundance (red) and Bermuda Sr/Ca winter SST NAO 

index (black) with (upper) original time series, (lower) time series filtered by 50-100 years band 

pass filter. 



 

xii 
 

Figure 4-18. Same as Figure 4-7, except between 60-80 year band pass filtered G. bulloides 

abundance and Bermuda NAO reconstruction data. 

Figure 4-19. (a) 20 year running averages of 1500-1990 G. bulloides abundance (red) and 1856-

1900 AMO index (purple, Y axis reversed); (b) 20 year running averages of annual NAO (blue) 

and winter NAO reconstruction (brown) in Luterbacher et al. [2002]; (c) 20-100 year NAO 

reconstruction in Goodkin et al. [2008] (black, Y axis reversed) and 20 year running averages of 

1865-1990 Hurrell NAO index (purple) 

Figure 4-20. Comparison of G. bulloides abundance (red) and winter NAO reconstruction (black) 

with (upper) original time series, (lower) time series filtered by 50-100 years band pass filter. 

Figure 4-21. Same as Figure 4-7, except between 60-80 year band pass filtered G. bulloides 

abundance and Luterbacher winter NAO reconstruction. 

Figure 4-22. Original data (gray) and 10 year running averages (other colors) of 1165-1990 G. 

bulloides abundance (red), G. bulloides Mg/Ca SST (brown), G. ruber (p) Mg/Ca SST (green), 

and Cariaco Basin Ti% (blue). 

Figure 4-23. Comparison of G. bulloides abundance (red) and G. ruber(p) SST index (green) 

with (upper) original time series, (lower) time series filtered by 150 year low pass filter. 

Figure 5-1. (Left) Spatial pattern and (Right) Principal components (PC) time series of the three 

leading EOFs of North Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from 1900-

2010 ERA-20C reanalysis data. 

Figure 5-2. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs 

(1850-2005) of model BCC-CSM 1.1. 

Figure 5-3. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs 

(1850-2005) of model FGOALS-s2. 

Figure 5-4. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs 

(1850-2005) of model CCSM4. 

Figure 5-5. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs 

(1850-2005) of model MPI-ESM-MR. 

Figure 5-6. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs 

(1850-2005) of model MRI-CGCM3. 



 

xiii 
 

Figure 5-7. 1901-2010 de-trended standardized (a) annual mean precipitation (color shades over 

land), SST (color shades over ocean), Sea level pressure (contours over ocean), and Surface wind 

(vectors) regression coefficients against de-trended standardized PC1 of North Atlantic SST 

from ERA-20C reanalysis; (b) the same as (a) except using filtered data.  

Figure 5-8. Same as Figure 5-10, except for using CCSM4 historical simulation outputs, 1850-

2005. 

Figure 5-9. The same as Fig. 5-10, except for based on MPI-ESM-P historical simulation, 1850-

2005. 

Figure 5-10. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation 

outputs (850-1850) of model BCC-CSM 1.1. 

Figure 5-11. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation 

outputs (850-1849) of model FGOALS-s2. 

Figure 5-12. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation 

outputs (850-1850) of model CCSM4 

Figure 5-13. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation 

outputs (850-1849) of model MPI-ESM-P. 

Figure 5-14. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North 

Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation 

outputs (850-1850) of model MRI-CGCM3 

Figure 5-15. Same as Fig. 4-1 except using the PC1 of North Atlantic SST from the past 

millennium simulation outputs (850-1850) of model CCSM4 

Figure 5-16. Same as Fig. 4-1 except using the PC1 of North Atlantic SST from the past 

millennium simulation outputs (850-1850) of model MPI-ESM-P 

Figure 5-17. MPI-ESM-P past millennium simulation (850-1849) derived de-trended 

standardized (a) annual mean precipitation (color shades over land), SST (color shades over 

ocean), Sea level pressure (contours over ocean), and Surface wind (vectors) regression 

coefficients against de-trended standardized PC1 of North Atlantic SST; (b) the same as (a) 

except using 50-100 year band pass filtered data. 

Figure 5-18. the same as Figure 5-17 except for using JAS mean data instead of annual mean. 



 

xiv 
 

Figure 5-19. Comparison of G. bulloides abundance data (red) and the index projected from 

MPI-ESM-P historical simulation of SST (blue) during 1900-1990. 

Figure 5-20. Comparison of G. bulloides abundance data (red) and the index projected from 

MPI-ESM-P last millennium simulation of SST (blue) during 1165-1850. 

 

 

 

 

 

   

 

 

 

 

 

 

 

  



 

xv 
 

List of Tables 

 

Table 2-1. CMIP5 models, original resolution, simulations, and attributes. 

Table 3-1. Cross-correlation coefficient between Globigerina bulloides abundance and low-

frequent Atlantic climate variabilities (r: correlation coefficient; p: p-value. Data are annual 

mean data filtered by 15-point Lanczos filter). Data source: ERA-20C. 

Table 3-2. The same as Table. 3-1 except for during 1871-1990, Data source: NOAA 20CRv2. 

Table 3-3. Cross-correlation coefficient between Cariaco Basin Coastal zonal wind and low 

frequent variabilities of annual mean AMO index (1958-2013), and Azores High pressure index 

(1958-2013) (r: correlation coefficient; p: p-value. Data are filtered by 15-point Lanczos filter). 

Data source: JRA-55. 

 

 

  



 

xvi 
 

List of Abbreviations  

 

AMO    Atlantic multidecadal oscillation 

AMOC   Atlantic Meridional Overturning Circulation 

AMS    Accelerator Mass Spectrometry  

AMV     Atlantic Multidecadal Variability 

BCC-CSM 1.1  Beijing Climate Center, Climate System Model, version 1.1 

Ca   Calcium 

CCSM4  Community Climate System Model, version 4 

CMIP5    Coupled Model Intercomparison Project Phase 5 

DJFM   December-January-February-March 

ECMWF  European Centre for Medium-Range Weather Forecasts 

EOF   Empirical Orthogonal Function 

ERA-20C   ECMWF's atmospheric reanalysis of the 20th century 

FGOALS-s2  Flexible Global Ocean-Atmosphere-Land System Model,  

spectral version 2.0 

G. bulloides   Globigerina bulloides 

GPCC   Global Precipitation Climatology Centre  

G. ruber  Globigerinoides ruber 

ITCZ      Intertropical Convergence Zone  

JAS   July-August-September 

JFM   January-February-March 

MSLP    mean sea level pressure 

M. faveolata   Montastraea faveolata 

Mg   Magnesium 



 

xvii 
 

MPI-ESM-MR Max Planck Institute Earth System Model, Mixed-resolution version 

MPI-ESM-P  Max Planck Institute Earth System Model, Paleo version 

MRI-CGCM3  Meteorological Research Institute Coupled Atmosphere–Ocean  

General Circulation Model, version 3 

NAO    North Atlantic Oscillation 

NOAA   National Oceanic and Atmospheric Administration 

NCAR   National Center for Atmospheric Research 

PC   Principal Component  

SLP   Sea Level Pressure 

Sr   Strontium 

SSS    Sea surface salinity 

SST    Sea Surface Temperature  

UCAR   University Corporation for Atmospheric Research 

 



 

xviii 

 

Acknowledgments 

 

 Firstly, I would like to express my greatest gratitude to my advisor Prof. Minghua Zhang, 

who has supported my Ph.D. study continuously and helped me in research, academic planning, 

and career development. I cannot thank him enough for his immense patience in building up my 

ability of independent thinking. Without his knowledge, instructions, or scientific insights, this 

thesis would not have been possible.  

 

Besides my advisor, my sincere thanks also goes to the rest of my thesis committee: Prof. 

David Black, Prof. Edmund Chang, Prof. Hyemi Kim, and Prof. David McGee, for their valuable 

advice which helped enrich my research from many perspectives, and also for the hard questions 

which incented me to think deeper and improve the thesis accordingly.  Their generous help is 

very greatly appreciated. 

 

I would like to thank Prof. Edmund Change again, for his guidance and instructions when 

I was his Teaching Assistant. His highly careful and responsible attitude to the class and students 

is inspiring to me. I am also very grateful to Prof. Daniel Knopf, who taught me how to teach and 

encouraged me to get rid of the stage fright when I was the TA in his class. And my heart-felt 

thanks also goes to Prof. Marvin Geller, for all his encouragement when I was doing Teaching 

Practicum, as well as when I was taking his courses.  

 

Assistance in the supercomputer and academic issues during my Ph.D. study provided by 

Dr. Ping Liu is greatly appreciated. And I would like to thank Dr. Wuyin Lin from Brookhaven 



 

xix 

 

National Laboratory for his precious help when I had difficulties in my research. My deep 

appreciation also goes to Dr. Hao Chen from the Department of Applied Mathematics & 

Statistics for his professional assistance in the statistics methods applied in this thesis. I would 

also like to thank our group: Xin Xie, Jingyi Chen, Haiyang Yu, Xiaoxi Zhu, and Jia Wang, and 

the group members that have graduated: Dr. Jun Huang, Dr. Parama Mukherjee, and Dr. Shuaiqi 

Tang.  

 

My special thanks are given to Carol Dovi for her incredible patience and efforts in 

helping me understand the rules and fulfill the requirements. I also want to thank Christina Fink, 

Steve Otega, and Gina Gartin for their assistance in many aspects. Without the helpful staffs, it 

would have been impossible for me to finish the study smoothly. 

 

I am particularly grateful to Prof. Oleg Smirnov from the Department of Political 

Science, who gave me support and encouragement during all the time that I worked for him in 

the interdisciplinary study. I would like to thank him for his constant trust and understanding, 

and for his selfless help in my job searching process. 

 

Finally, my deepest appreciation goes to my family for their unconditional love and 

support. I want to thank my parents for always having faith on me. And I wish to thank my 

husband and best friend, Ming-Tao Chuan, for his company and help throughout my study. 

 

 



 

xx 
 

Vita  

 

2010-2016  Ph.D. in Atmospheric Sciences, Stony Brook University,  

                                    Stony Brook, NY, USA  

2007-2010  M.S. in Meteorology, Institute of Atmospheric Physics,  

                                    Chinese Academy of Sciences, Beijing, China 

2003-2007  B.S. in Atmospheric Sciences, 

                                    Nanjing University of Information Science and Technology, 

   Nanjing, Jiangsu, China 

    

 

Publications 

 

Oleg Smirnov, Minghua Zhang, Tingyin Xiao, John Orbell, Amy Lobben, Josef Gordon 2016: 

The relative importance of climate change and population growth for exposure to future extreme 

droughts. Climatic Change, 1–13, doi:10.1007/s10584-016-1716-z. 

 

Ridley, Harriet E., Yemane Asmerom, James U.L. Baldini, Sebastian F.M. Breitenbach, Valorie 

V. Aquino, Keith M. Prufer, Brendan J. Culleton, Victor Polyak, Fraziska A. Lechleitner, 

Douglas J. Kennett, Minghua Zhang, Norbert Marwan, Colin G. Macpherson, Lisa M. Baldini, 

Tingyin Xiao, Jaime Awe, and Gerald H. Haug, 2015:  Aerosol forcing of intertropical 

convergence zone position. Nature Geoscience 8: 195-200. 

 

Jiping Liu, Tingyin Xiao, and Liqi Chen, 2011: Intercomparisons of air–sea heat fluxes over the 

southern ocean. J. Climate, 24, 1198–1211. doi: http://dx.doi.org/10.1175/2010JCLI3699.1  

 

 

 

http://dx.doi.org/10.1175/2010JCLI3699.1


 

1 

 

Chapter 1. Introduction 

 

Variations in North Atlantic sea surface temperature (SST), the Intertropical 

Convergence Zone (ITCZ), Azores High, and easterly trade winds all play crucial roles in 

circum-Atlantic weather and climate [Rodwell et al., 1999; Enfield et al., 2001; Zhang and 

Delworth, 2006; Yoon and Zeng, 2010]. The behavior of such variations and their relationships 

with each other in the last several decades is relatively well-known, but modern meteorological 

records are still too short to understand low-frequency climate variability in the region on time 

scales of decades and longer.  

 

The  Atlantic  Multidecadal  Variability  (AMV), also  referred  to  as  the Atlantic 

multidecadal oscillation (AMO), accounts for large variability in the North Atlantic Ocean SST 

[Enfield et al., 2001; Knight et al., 2005]. One of the most concerned questions about the low-

frequency Atlantic climate variabilities is whether the AMO is really oscillatory in the pre-

industrial era. And if yes, what is its spatial structure and what is its mechanism? Answering 

these questions can aid the future prediction of Atlantic coastal climate, including the Atlantic 

hurricanes, European summer rainfall, Sahelian precipitation, and African dust [Sutton and 

Hodson, 2005; Knight et al., 2006; Zhang and Delworth, 2006; Wang et al., 2012]. This study 

will primarily focus on answering the first question and examining the spatial characteristics. 

 

Identifying corresponding climate proxies is important to understand the natural climate 

variability of the Atlantic region in the context of future changes caused by human activities. In 
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the previous studies, various kinds of paleoclimate proxies of North Atlantic climate were 

constructed. However, the paleoclimate data are still sparse in space. Furthermore, some of them 

do not have high enough time resolution, contain too large uncertainties, or do not have signals 

of multidecadal variabilities. There are more SST reconstructions than other variables, but most 

of which are terrestrial based or in the higher latitudes [Delworth and Mann, 2000; Gray et al., 

2004; Miettinen et al., 2012]. High-resolution and marine based proxies in the tropical latitudes 

that envelop multidecadal signals are ideal to form a clearer picture of Atlantic multidecadal 

variability in the past. 

 

The abundance of the planktic foraminifera Globigerina bulloides from sediment cores 

recovered from the Cariaco Basin (Venezuela) is one of the proxies that can provide information 

about North Atlantic paleoclimate variability [Black et al., 1999]. Located at the northern extent 

of the annual mean ITCZ position over the tropical Atlantic, the Cariaco Basin (~10°N, 64°W) is 

an anoxic basin highly sensitive to regional climate variabilities (Fig. 1-1) [Haug et al., 2003; 

Tedesco et al., 2007]. Varved marine sediments with high deposition rates in the basin register 

the impact of meteorological and oceanic conditions that reflect Atlantic climate variability and 

change.  
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Figure 1-1. 1901-2010 (a) annual mean, (b) JAS mean, and (c) JFM mean SST (ocean color shade, °C), 
precipitation (land color shade, mm/month), mean sea level pressure (contours, hpa), and wind vector 
(vectors, m/s) over 60°S-60°N, 0°-100°W; Cariaco Basin approximate location denoted by yellow 
rectangular in (a). (Data description in Section 2.2., ERA-20C reanalysis SST, SLP, near-surface wind, and 
GPCC precipitation) 

 

Previous studies have suggested that the G. bulloides abundance reflects the intensity of 

trade winds and upwelling as well as the movement of ITCZ [Peterson et al., 1991; Black et al., 

1999]. However, due to limited availability of observational data, neither of these studies 

demonstrated the detailed spatial distribution of atmospheric circulation systems that are 

associated with variations in G. bulloides abundance.  

 

In Black et al. [1999], an eight-century long G. bulloides abundance data is constructed 

and used to study the North Atlantic climate. Although the spectral analysis of G. bulloides 

abundance data does not indicate significant multidecadal variability, the comparisons between 

the proxy data and instrumental North Atlantic SST anomalies and interhemispheric SST 
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anomalies show concurrent multiple-decades-long positive and negative phases in the past 100-

150 years, with large G. bulloides abundance corresponds to colder North Atlantic SSTs [Black 

et al., 1999; Fig. 3].  

 

This tropical marine proxy data has near annual time resolution with a tight age model. It 

also has a relatively long overlapping period with available modern observation and reanalysis 

data. These conditions make it ideal to be used together with the better documented modern data, 

which also has better spatial coverage. Using the paleoclimate and modern data together, we can 

find the spatial characteristics of the paleoclimate data associated climate variability in the 

instrumental data period, as well as the past variability of the modern-data-documented spatial 

pattern through the paleoclimate data. If this data is able to reflect multidecadal signals of SSTs, 

its past variation can add valuable information of how Atlantic SST evolved and interacted with 

other climate variables at this timescale in the past centuries. Moreover, establishing a detailed 

relationship between G. bulloides abundance and Atlantic low-frequency climate variability is 

also meaningful to other research fields, such as the ecosystem predictability involving this 

species [Nye et al., 2014]. 

 

The first objective of this thesis research is to extend the results in Black et al. [1999] to 

investigate the spatial pattern and coherence of the AMV. We will first analyze the relationship 

between the G. bulloides sediment abundance data with large-scale atmospheric and oceanic 

climate variations in the North Atlantic by using atmospheric and oceanic observation and 

reanalysis data sets for the last century. We will then use other paleoclimate proxies and 

reconstructions of North Atlantic variables to examine whether available paleoclimate proxy data 



 

5 

 

display the same coherence on a much longer period to infer AMV before industrializations. In 

addition to the G. bulloides data, other proxies include North Atlantic SST proxies in the Eastern 

Atlantic and near Puerto Rico[Kilbourne et al., 2008; Kuhnert and Mulitza, 2011], and two NAO 

(North Atlantic Oscillation) proxies [Luterbacher, 2002; Goodkin et al., 2008a].   

 

The second objective of this study is to evaluate the ability of the CMIP5 (Coupled 

Model Intercomparison Project Phase 5) models to simulate the spatial and temporal variation of 

the AMV. We will first examine the North Atlantic SST patterns and temporal variabilities in the 

past century simulation by using the 20th Century reanalysis data. We then use the proxy records 

to evaluate the AMV and its spatial coherence in the past 1000 year simulations.    

 

The outline of this dissertation is as follows: In Chapter 2, the paleoclimate proxies, 

reanalysis data, and model simulation outputs used in this study are described. Then, the results 

are organized in three chapters. In Chapter 3, relationships between Cariaco Basin G. bulloides 

abundance data and several Atlantic climate variabilities are established based on observation 

and reanalysis data in the past century. These relationships and their spatial pattern serve as a 

basis for the consistency check of the paleoclimate data in Chapter 4. In Chapter 5, simulations 

from CMIP5 models are evaluated to examine whether the models can capture the AMV inferred 

from the 20th Century reanalysis and the paleoclimate data. This chapter also investigates which 

model has the best performance. Finally, the conclusion and discussion are given in Chapter 6. 
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Chapter 2. Description of the proxy, reanalysis, and model data 

 

This chapter describes the proxy data, reanalysis data, and model simulation outputs used 

in this study.  

 

2.1. Paleoclimate data  

 

Paleoclimate proxy and reconstruction data used in the analysis includes Cariaco Basin 

Globigerina bulloides abundance data [Black et al., 1999], an Eastern Tropical North Atlantic 

SST reconstruction [Kuhnert and Mulitza, 2011], Puerto Rico SST index [Kilbourne et al., 

2008], a Bermuda NAO reconstruction [Goodkin et al., 2008a], and a statistical NAO 

reconstruction based on station data and paleoclimate proxies [Luterbacher, 2002]. In addition, 

the Cariaco Basin SST reconstructions [Wurtzel et al., 2013] and Cariaco Basin sediment 

Titanium % rainfall proxy [Haug et al., 2001; Kennett et al., 2012a] are also discussed. The 

locations of data sources of each proxy data are denoted in Fig. 2-1. 

 

These proxies carry information of essential aspects of Atlantic atmospheric and oceanic 

circulation.  Before we apply them in the climate research, the construction methods and the 

uncertainties involved in their age model, measurement, and calculation are described and 

discussed.  
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Figure 2-1. Distribution of paleoclimate data. Marine sediment data are shown with color diamonds; 
Luterbatcher et al. [2002] NAO index station and proxy data sites are in the range of the blue rectangular. 

 

2.1.1. Globigerina bulloides abundance data 

 

Globigerina bulloides is a planktic foraminifera species that lives in the upper part of the 

water column, and while typically a sub-polar species, is also commonly found in tropical and 

subtropical upwelling environments [Peterson et al., 1991]. The abundance of G. bulloides in the 

Cariaco Basin is driven by food availability, which in turn is driven by local trade wind-induced 

upwelling and the fluvial delivery of nutrients [Black et al., 1999; Peterson et al., 2000]. 
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Globigerina bulloides abundance proxy data (unit: number of G. bulloides per gram) is 

available for the interval spanning 1165 to 1990 C.E. [Black et al., 1999; data are archived at the 

World Data Center for Paleoclimatology] (shown in Fig. 2-2). The proxy data is derived from 

sediments of box core PL07-71 BC (10°45.46' N, 64°41.68' W, 395 water depth) collected on the 

gentle northern slope of the eastern Cariaco Basin. The core had an intact and well-defined 

sediment-water interface upon recovery.  

 
Figure 2-2. G. bulloides abundance (# of G. bulloides/gram) during 1165-1990 [Black et al., 1999]. 

 

The sediments were sampled from this box core at continuous 1 mm intervals. Age model 

for core PL07-71 BC combines 210Pb, varve, and accelerator mass spectrometry (AMS) 14C 

chronologies, and is described in detail in Black et al. [1999]. For the upper 12.6 cm of the core 

(1880 to 1990 A.D.), the age model for the samples is based on millimeter-scale faunal 

correlations to a nearby box core whose age model is tightly constrained by a combination of 

varve and 210Pb dating. Temporal resolution of the data is near annual over this interval, and age 

model uncertainty is estimated to be ± 1 year. For the depth between 12.6 and 56.4 cm (1165 to 

1879 A.D.), laminae were not clear to count. The age model of this section is based on twelve 

14C dates dated on monospecific samples of G. bulloides. The sample resolution decreases to one 

sample per 2.5 years at the base, and the errors (1σ) of the lower part of the core could be up to 

60 years.  
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2.1.2 SST proxies and reconstructions 

 

2.1.2.1. Eastern Tropical North Atlantic SST reconstruction 

 

In Kuhnert and Mulitza [2011], a Globigerinoides. ruber (pink) magnesium-to-calcium 

ratio (Mg/Ca) SST data is reconstructed for the past 3 millennia. This G. ruber (pink) Mg/Ca 

SST data is considered bearing summer/fall SST signals, attributed to the enhanced productivity 

of G. ruber (pink) during summer, corresponding to the West African Monsoon season. 

 

The sediment site of this data is located off southern Mauritania at 16°50´N, 16°44´W at 

323 m water depth. The location is characterized by high terrestrial sediment input and 

sedimentation rates [Mulitza et al., 2010]. Both of the smoothed SST proxy and local 

instrumental measurements of SST positively correlate with AMO temperature anomalies 

[Kuhnert and Mulitza, 2011, Figs. 1b and 2b]. 

 

Gravity core GeoB 9501-5 and multicore GeoB 9501-4 were recovered during Meteor 

cruise M65/1. The average internal precision is 0.28% for Mg and 0.22% for Ca concentrations. 

The age model of the cores is based on a combination of 210Pb and 14C ages [Mulitza et al., 

2010]. The errors (±2σ) of the age model are ±11 years for AD 1800, ±44 years for AD 1400, 

and ±170 years for AD 250. From the gravity core, the average temporal resolution of the Mg/Ca 

record is 11 years over the younger 1700 years (Fig. 2-3). In this study we only use the data 
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section younger than AD 1165, which overlaps the time period of G. bulloides abundance data 

and has better time resolution than previous parts. 

 

The calibration for the 250–350 mm fraction of G. ruber (pink) from [Anand et al., 2003] 

is used to calculate SST from Mg/Ca. The overall calibration uncertainty in reconstructed SSTs 

is equivalent to a ±0.3°C uncertainty. The calibration error is systematic. Based on the above 

mentioned sources of uncertainty in reconstructed SST, the progressed overall SST error would 

be ±0.4°C. However, other error sources also exist. Thus, a typical overall SST error of ±1°C is 

assumed [Rohling, 2007].  

 

 
Figure 2-3. Younger 1700 year of SST (°C) reconstruction of Eastern tropical North Atlantic based on G. 
ruber (pink) [Kuhnert et al. 2011] 

 

2.1.2.2. Puerto Rico SST and Sea surface salinity (SSS) index  

 

Annual time series of coral strontium-to-calcium ratio (Sr/Ca) and δ18O were constructed 

to reflect SST and Sea surface salinity (SSS) variations southwest to Puerto Rico in Kilbourne et 

al. [2008] (shown in  Fig. 2-4). Larger values of Sr/Ca indicate lower SST, and larger values 
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(less negative) of δ18O correspond to lower SST and higher SSS. These time series were 

constructed on a 245-cm-long core of Montastraea faveolata, collected at Turrumote Reef 

(17.933°N, 67.001°W) offshore from La Parguera, Puerto Rico in August 2004.  

 
Figure 2-4. Annual variations in δ18O (‰, blue) and Sr/Ca (mmol/mol, red) based on a coral collected 
from southwestern Puerto Rico, 1751-2004 [Kilbourne et al., 2008]. 

 

Along the axis of maximum growth of the coral core, 5-mm-wide slabs were cut. The X-

radiographs of these slabs were used as a guide to ensure that each sample contains one density 

band. Counting annual density bands provided an age model for these samples. An error of ±1 

year was estimated at the bottom of the core. 

 

High-density bands of M. faveolata tend to be laid down in the early summer in 

southwestern Puerto Rico. Thus, the annual samples are approximately centered on January. 

Based on these annual density bands that centered on the winter season, they took annual 

subsamples from the entire length of the core and approximately monthly subsamples from the 

top of the coral. These subsamples were analyzed for Sr/Ca and δ18O. 
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Long-term analytical precision on δ18O analyses is 0.06‰ (1σ). And the precision of the  

Sr/Ca measurements is 0.15% or 0.013 mmol (1σ). Sample heterogeneity may add to the 

analytical error of Sr/Ca. Averages of multiple replicates are used as the reported Sr/Ca ratios. 

They have an error of 0.05 mmol/mol (2σ).  

 

2.1.2.3. Cariaco Basin seasonal SST reconstruction 

 

Two annual time series of Mg/Ca SSTs based on G. ruber (pink) and G. bulloides, 

respectively, were constructed at Cariaco Basin for the past 2000 year [Wurtzel et al., 2013]. The 

G. ruber (p) Mg/Ca can reflect summer/fall SST, while G. bulloides Mg/Ca ratio indicates 

winter/spring SST (Fig. 2-5). They are also considered to reveal water temperature at different 

depth, but this indication will not be discussed in this work. 

 

Age models for these two Mg/Ca SSTs were created primary by faunal correlation to 

nearby core with published age models [Black et al., 1999, 2007]. Based on proxy-instrumental 

correlations, the dating error for the period of overlapping period with instrumental data (1990-

1870 C.E.) is about ± 1 year. The AMS 14C date errors at the base is up to about ± 40-50 years. 

The in-sample estimate of predictive error for the G. bulloides and G. ruber (pink) Mg/Ca SSTs 

are 0.35°C and 0.45°C, respectively [Wurtzel et al., 2013].  
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Figure 2-5. -20-2008 G. bulloides Mg/Ca SST (brown), G. ruber (p) Mg/Ca SST (green) [Wurtzel et al., 
2013]. 

 

2.1.3. North Atlantic Oscillation Mode (NAO) reconstructions  

 

2.1.3.1. Bermuda coral NAO reconstruction 

 

 Winter (December-March) SST and coral Sr/Ca at Bermuda show positive correlation 

with the NAO index on inter-annual frequencies and display negative correlation with it on 

multidecadal frequencies [Eden and Willebrand, 2001; Kuhnert et al., 2005]. Based on this 

relationship, an 218-year long SST-based reconstruction of NAO index with multi-frequency is 

constructed [Goodkin et al., 2008a].  

 

 The reconstruction uses a brain coral (Diploria labyrinthiformis) collected live from the 

sourtheastern edge of the Bermuda platform (64°W, 32°N), at depth of 16m. Along the axis of 

maximum growth of the brain coral, 5-mm-thick slabs were cut. The X-radiographs of these 

slabs reveal well-defined summer–winter seasonal growth bands. Samples were drilled down at 

0.33mm intervals to obtain approximately monthly resolution from 1781 to 1999, using the x-
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radiographs as a guide. Sr and Ca measurement methods are described in detail in their previous 

studies [Goodkin et al., 2005, 2008b].  

 

An annual age model is constructed using density banding from X-rays. The age model is 

refined by maximizing the correlation of monthly averaged SSTs, measured at nearby ocean at 

Hydrostation S, to monthly Sr/Ca. For the earlier period than the instrumental record, they assign 

the months by correlating Sr/Ca to Hydrostation S average seasonal climatology data.  

 

To identify winter months, the coral data are re-sampled at monthly intervals with even 

spaces. Noise in the Sr/Ca record and in the X-radiographs may cause some age model error. The 

coral age model is more likely to bias by skipping years rather than adding years, because of 

little or no growth years of the coral. This bias is possible to reach a maximum when growth 

rates were lowest between 1830 and 1865. Age model bias in the following reconstruction is 

expected to be less than 15 years. 

 

According to [Goodkin et al., 2008a], cross-spectral analysis of negative winter Sr/Ca 

record and instrumental data and other proxy NAO reconstructions show significant coherence 

over periodicities greater than 15 years and between about 3 to 5 years. Also, low frequencies 

(<0.1 cycles per year) are not considered driven by the NAO, but rather by the northern 

hemisphere average surface temperature. Thus, the NAO index at frequencies of 3-5 years per 

cycle and 20-100 years per cycle are generated by applying the Hanning window band-pass 
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filters (Figs 2-5a, 2-5b). Adding the two filtered time-series together, by inverting the 20-100 

year frequency band first, the combined NAO index is formed (Fig 2-5c). 

 

 
Figure 2-6. (a) 3-5 year NAO index, (b) 20-100 year NAO index (Y-axis reversed), and (c) combined NAO 
index from Bermuda coral Sr/Ca SST reconstruction [Goodkin et al. 2008] 

 

2.1.3.2. NAO reconstruction based on station data and paleoclimate proxies  

 

 A reconstruction of NAO index back to 1500 was statistically constructed based on 

available station data and paleoclimate proxies [Luterbacher, 2002]. The data has seasonal 

resolution before AD 1658 and monthly resolution afterwards. Fig. 2-6 shows the annual average 

(Fig. 2-6a) and winter average (Fig. 2-6b) of NAO index based on this data. 

 



 

16 

 

Instrumental data series of pressure, temperature, and precipitation and high resolution 

documentary proxy data (predictors) are used together to form this index. Locations of the data 

sources are within the area of blue rectangular in Fig. 2-1, and specific locations with 

corresponding data types are shown in Fig. 1 of [Luterbacher, 2002]. The description of data 

sources can be found in a previous study [Luterbacher et al., 2002]. 

 

The NAO index is derived from the regression models built upon all of the predictors.  

As the database used in the construction varies with time, 328 regression models were 

developed. The skills of these models are assessed over 1961-1995 (verification period) by the 

reduction of error (RE) statistic. RE is the expected proportion of the variance of the predictand, 

given by the predictor. After the assessments recalibration, the NAO index is formed. The 

detailed method is described in Jones et al. [1999] and Luterbacher et al. [2002]. 

 

Based on the time varying RE for each season, the best model performance was shown 

for winter. As for spring, summer, and autumn, meaningful estimates of NAO start in the 1720s. 

The RE values are generally higher than 0.3 for winter, while the ones for other seasons are 

lower than 0.2 before 1720s.  

 

The results also showed that the quality of the reconstructions of the NAO index 

increases as more predictors with wider spatial coverage are included. For the monthly data, the 

performance increases dramatically when the station pressure data is used since 1821. The time-
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varying ±2 SE of the winter NAO reconstruction was shown In Fig. 3 of [Luterbacher, 2002], 

and the range of the absolute values is about 1 to 1.5. 

 

Although they have limitations, these reconstructions of past NAO were considered the 

best guess estimates by 2002, compared to other NAO proxies [Appenzeller et al., 1998; Cook et 

al., 1998, 2002; Proctor et al., 2000; Cullen et al., 2001; Glueck and Stockton, 2001; Rodrigo et 

al., 2001]. 

 

 
Figure 2-7. (a) annual NAO index (red for 1500-1658, black for 1659-2000); (b) winter NAO index (blue for 
1500-1658, brown for 1659-2000) based on seasonal (1500-1658) and monthly (1659-2000) NAO 
reconstructions in [Luterbacher, 2002].  

 

2.1.4. Cariaco Basin titanium concentration data 

 

As a terrigenous material, titanium (Ti) sediment comes from riverine input. Titanium is 

also not sensitive to redox changes in the environment. Considering Cariaco is an anoxic basin 
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and the alteration between rainy and upwelling season can be recorded by the sediments 

lamination in the basin., sediment Ti concentration at this location can reflect time-varying 

terrigenous input, which are influenced by changes of rainfall and runoff from local watersheds 

[Haug et al., 2001; Haug et al., 2003]. 

 

Titanium concentration (%) data [Haug et al., 2001] is recovered at Ocean Drilling 

Program (ODP) site 1002 locates at 10°42.739N, 65°10.189W, which was drilled at water depth 

of 893m. The top 5.5 m of the whole 170 m sediment covers the last 14 ky and is what reported 

in Haug et al., 2001. Titanium concentration values were measured with a profiling x-ray 

fluorescence scanner at 2 mm intervals in the sediments, which corresponds to sample intervals 

of 4 to 5 years.  

 

Age model of this data was based on a series of ten accelerator mass spectrometry (AMS) 

14C dates of G. bulloides. These dates were transferred to calendar years using the calibration of  

Stuiver et al., 1998. However, the wiggle-matched titanium record with updated age model is 

provided in the Supplementary Material (Table S5-6) in Kennett et al., 2012. Based on the 

conventional 14C ages and depth information for the Holocene Cariaco record in Hughen et al., 

2006, these 14C dates calibrated assuming a local reservoir correction. Then, the Cariaco curve is 

manually adjusted to the YOK-I δ18O record within the error margins of each radiocarbon date 

[Kennett et al., 2012]. The error of the tuned age model is about ± 90yr for the recent 

millennium. 
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The whole tuned time series spans from 9480 B.C. to 1735 C.E. In this study, we will 

only use the section that overlaps the G. bulloides abundance data. The time series of the Ti 

concentration (%) data during 1110- 1735 is shown in Fig. 2-8.  

 
Figure 2-8. 1110-1735 Cariaco Basin Ti (%) rainfall reconstruction [Haug et al., 2001; Kennett et al., 
2012b]. 

 

2.2. Observation and reanalysis data 

 

For the atmospheric data, we used the newly-released European Centre for Medium-

Range Weather Forecasts (ECMWF)’s ERA-20C reanalysis of sub-daily SST, mean sea level 

pressure (MSLP), and near-surface zonal and meridional wind (10 meter U and V wind 

component) from 1900 to 2010  [European Centre for Medium-Range Weather, 2014]. 

Horizontal resolution is spectral truncation T159, approximately 125km. ERA-20C reanalysis 

uses an assimilation methodology of 24-hour 4D-Var analysis, with variational bias correction of 

surface pressure observations. Surface and mean sea level pressures in ISPDv3.2.6 and 

ICOADSv2.5.1, and surface marine winds from ICOADSv2.5.1 are the observations assimilated 

in ERA-20C. 
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To cross-validate the results, we also applied another longer than 100 year data, National 

Oceanic and Atmospheric Administration (NOAA)’s 20th Century Reanalysis (version 2) data 

(NOAA 20CRv2), in the analysis. Variables used in this study are monthly values of mean sea 

level pressure, and near-surface zonal and meridional wind (U and V wind component at sigma 

level 0.995) for 1871-2012 [Compo et al., 2011]. The analysis is performed with the Ensemble 

Kalman Filter (EKF) and generated by assimilating observations of surface pressure and sea 

level pressure from the International Surface Pressure Databank station component version2, 

ICOADS, and the International Best Track Archive for Climatic Stewardship (IBTrACS). The 

model has a horizontal spatial resolution of nearly 200-km on an irregular Gaussian (T62). 

Monthly SST and sea ice concentration fields from the Hadley Centre Sea Ice and Sea Surface 

Temperature data set (HadISST1.1) [Rayner et al., 2003] are used as boundary conditions. The 

monthly values of SST from HadISST1.1 dataset from 1870-present, which has resolution of 1°x 

1°, are also used in this study, together with the variables from NOAA 20CRv2 dataset. The 

NOAA 20CRv2 data is available at NOAA/OAR/ESRL PSD. And the HadISST1.1 dataset can 

be achieved at Met Office Hadley Center website.  

 

The Japanese 55-year Reanalysis (JRA-55) is also used to verify the results based on the 

long data sets due to potentially large uncertainty of wind representation. JRA-55 is the longest 

third-generation reanalysis with improvements such as in assimilation scheme (4D-Var) and 

model resolution (T319L60), and it also uses full observing system compared to the limited 

observation assimilation in the long data products like ERA-20C and NOAA 2-CRv2. Fifty-five 

years of wind and mean sea level pressure from 1958-2013 are used in this study. Its horizontal 
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spatial resolution is 1.25°x 1.25° [Kobayashi et al., 2015]. The JRA-55 data is downloaded from 

NCAR’s Research Data Archive. 

 

Monthly precipitation data spanning 1901 to 2010 from the Global Precipitation 

Climatology Centre (GPCC) is used in this study for proxy-modern data comparisons. The 

precipitation data was constructed from quality-controlled rain gauge measurements at 67,200 

stations world-wide with a 10-year or longer record, and a 0.5°x 0.5° spatial resolution 

[Schneider et al., 2011]. The data is provided by the NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA and can be accessed from http://www.esrl.noaa.gov/psd/. 

 

Comparisons in this study to the Atlantic Multidecadal Oscillation (AMO) Index are 

based on monthly AMO index data spanning 1856 to 2014 from NOAA/OAR/ESRL PSD.   The 

AMO index is calculated by de-trending the time series of area-weighted averaged North 

Atlantic (between 0°-70°N) SST [Enfield et al., 2001].  

 

The instrumental North Atlantic Oscillation (NAO) Index used in this study is the annual 

station-based NAO index covering 1965-2014 [Hurrell, 1995]. It is based on the difference of 

sea level pressure (SLP) between Lisbon, Portugal and Stykkisholmur/Reykjavik, Iceland, after 

normalizing the time series. The data is available at NCAR/UCAR Climate Data Guide. 

 

http://www.esrl.noaa.gov/psd/
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2.3. Model Simulation Output 

 

Model simulations analyzed in this study are from CMIP5 (Coupled Model 

Intercomparison Project Phase 5) models. The historical simulations (1850-2005) and past 

millennium simulations (850-1850) are used in the evaluations in Chapter 5. Due to the 

availability of the past millennium simulation output data, we only include five models in this 

study and select one ensemble member for each model. The models, their original atmospheric 

and oceanic resolution, simulations, and attributes are summarized in Table 2-1. 

 



 

23 

 

Table 2-1. CMIP5 models, original resolution, simulations, and attributes. 

 Models Modeling Center (or Group) Institute 

ID 

Resolution Simulations Reference 

1. Beijing Climate Center, Climate 

System Model, version 1.1 (BCC-

CSM1.1) 

Beijing Climate Center, 

China Meteorological 

Administration, China 

BCC Air: T42/2.8°  

Ocean: tri-polar grid           

(1° lon x 4/3° lat) 

Historical  

Past millennium 

[Wu et al., 2013] 

2. Community Climate System 

Model, version 4 (CCSM4) 

National Center for 

Atmospheric Research 

NCAR Air: 0.94° lat x 1.25° lon  

Ocean: ~1° lon x 0.5° lat 

Historical  

Past millennium 

[Gent et al., 2011] 

3. Flexible Global Ocean-

Atmosphere-Land System 

Model, spectral version 2.0 

(FGOALS-s2) 

LASG, Institute of 

Atmospheric Physics, 

Chinese Academy of 

Sciences  

LASG Air: 1.7° lat x 2.8° lon  

Ocean: 1° lon x 0.5° lat 

Historical  

Past millennium 

[Bao et al., 2013] 

4. Max Planck Institute Earth 

System Model, Mixed-resolution 

version (MPI-ESM-MR) 

Paleo version (MPI-ESM-P) 

Max Planck Institute for 

Meteorology, Germany 

MPI-M Air: T63/1.9°               

Ocean:  tri-polar grid, 0.4°                    

Air: T63/1.9°               

Ocean: bi-polar grid 1.5°     

Historical 

  

Historical 

Past millennium 

[Giorgetta et al., 

2013] 

[Zanchettin et al., 

2013] 

5. Meteorological Research 

Institute Coupled Atmosphere–

Ocean General Circulation Model, 

version 3 (MRI-CGCM3) 

Meteorological Research 

Institute, Japan 

MRI Air: T159/1.125°  

Ocean: 1° lon x 0.5° lat 

Historical  

Past millennium 

[Yukimoto et al., 

2012] 
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Chapter 3. Relationship of Cariaco Basin Globigerina bulloides Abundance with Atlantic 

Climate Variability in the Past Century 

3.1. Establishing the relationship based on reanalysis data 

 

The G. bulloides abundance record (Fig. 3-1a) is characterized by multidecadal 

variability superimposed on a longer, century-scale pattern, with abundance minima occurring in 

1930-40, 1950-60, and after 1985 C. E.  Abundance maxima are observed circa 1920 and 1970-

80 C. E. There is a weak maximum between 1940 and 1950. Based on spectral analysis of the 

long term record of G. bulloides abundance data, we applied a 15-point low pass Lanczos 

filtering on the annual data to form the low frequency time series [Duchon, 1979]. The same 

filtering method will be used throughout this section to generate filtered data. In addition to the 

multidecadal variation, interannual variation at time scales are also observed (Fig. 3-1a).  

 

In this study, we applied the Monte Carlo technique in doing the significance tests of the 

correlation (and regression) coefficients. For the unsmoothed data, we firstly calculate the 

correlation of a pair of the detrended and standardized time series (x and y), and then permutated 

10000 times of one of the two time series. After detrending and standardizing them, we 

computed the correlation for each new pair of data, and find the critical value for 95% 

significance by finding the 95th percentile absolute value of the 10000 correlation values. The p-

value is calculated by finding the percentile absolute value of the 10000 correlation values that 

corresponds to the correlation of the original pair of data (x and y), with p = 0.05 corresponding 

to 95th percentile. 



 

25 

 

 

Similarly, the correlation and p-value calculation of the filtered low frequency data are 

detailed as follows: Firstly, calculate the correlation of the pair of filtered data (detrended and 

standardized) in interest. Secondly, generate 10000 pairs of random time series with same length 

by performing 10000 permutations of one time series of the pair, before filtering. Thirdly, apply 

same time filter to all of these generated random time series, also detrended and standardized. 

Fourthly, compute the correlation between each pair of the filtered random time series. Finally, 

find the p-value by finding the 95th percentile absolute value of the correlation values. The p-

value is also calculated by finding the percentile which corresponds to the original pair of filtered 

data. The same technique will be used throughout this study. 

 

The AMO index describes the variability of detrended SST in the North Atlantic (Fig. 3-

1b).  Low-frequency variability of the negative AMO index is in phase with the G. bulloides 

data. The correlation of the two filtered time series is -0.95, p-value < 0.0001, which strongly 

suggests that low-frequency variation of G. bulloides abundance is caused by climate variability 

at large spatial scales. 

 

To further illustrate the AMO-G. bulloides connection, we show a measure of the large-

scale surface air pressure distribution in North Atlantic by using the Azores High index (Fig. 3-

1c) [Hameed and Riemer, 2012].  The pressure index is defined as a monthly area-weighted 

pressure departure from a threshold value over the domain (I, J): 
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𝐼𝑝 =
∑ (𝑃𝑖𝑗 − 𝑃𝑡) cos ∅𝑖𝑗 (−1)𝑀𝛿𝑖𝑗

𝐼𝐽
𝑖𝑗=1

∑ cos ∅𝑖𝑗 𝛿𝑖𝑗
𝐼𝐽
𝑖𝑗=1

 ,     (3.1) 

 

where 𝑃𝑖𝑗 is the SLP value at grid point (i, j), 𝑃𝑡 is the threshold SLP value (𝑃𝑡 = 1014 ℎ𝑃𝑎 for 

Azores High), and ∅𝑖𝑗 is the latitude of grid point (i, j). M = 0 for the Azores High. 𝛿 = 1 if 

(−1)𝑀(𝑃𝑖𝑗 − 𝑃𝑡) > 0  and 𝛿 = 0  if (−1)𝑀(𝑃𝑖𝑗 − 𝑃𝑡) < 0 . The pressure index measures the 

anomaly of an air mass over the chosen sector (I, J), which is (20°N-50°N, 70°W-10°E) 

[Hameed and Riemer, 2012]. In our study, we also defined another low-latitude Azores High 

index over the domain of (0°-30°N, 0°-80°W) to track the highest North Atlantic pressure south 

to 30°N (based on Fig. 3-2a, which will be discussed immediately). It will be specified when the 

low-latitude index is used. There is good correlation in the Azores High with both the AMO and 

G. bulloides abundance (r = -0.87, p-value = 0.0008 with AMO index and r = 0.92, p-value = 

0.0002 with G. bulloides, using filtered time series; Table 3-1).   
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Figure 3-1. 1900-1990 de-trended annual mean (grey lines) and filtered time series (other color lines) of 
(a) G. bulloides abundance; (b) AMO index; (c) Azores High pressure index; and (d) Cariaco Basin surface 
zonal wind. Y-axes of (b) and (d) are reversed. A 15-point Lanczos low pass filter is applied to generate 
the low-frequency data. Correlation coefficients (r) and p-values (p) of G. bulloides abundance data and 
climate variables in (b), (c), and (d) are shown in the figure. Data source: ERA-20C. 
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Figure 3-2. 1901-1990 de-trended standardized annual mean precipitation (color shades over land), SST 
(color shades over ocean), Sea level pressure (contours over ocean), and Surface wind (vectors) 
regression against de-trended standardized annual mean (a) G. bulloides abundance; (b) negative AMO 
index; (c) negative Cariaco Basin surface zonal wind (easterly wind); and (d) Azores High pressure index. 
Displayed values passed 95% significance level. Vectors are shown when regression of U-component 
passed 95% significance level. Contours with dashed lines. Data source: ERA-20C. 
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Table 3-1. Cross-correlation coefficient between Globigerina bulloides abundance and low-frequent 
Atlantic climate variabilities (r: correlation coefficient; p: p-value. Data are annual mean data filtered by 
15-point Lanczos filter). Data source: ERA-20C. 

  AMO Azores High pressure Zonal wind 

G. bulloides r = -0.95, 

p < 0.0001 

r = 0.92, 

p = 0.0002 

r = -0.77, 

p = 0.01 

AMO   r = -0.87, 

p = 0.0008 

r = 0.88, 

p = 0.0002 

Azores High 
pressure 

    r = -0.66, 

p = 0.03 

 

 

The connection between G. bulloides and large-scale ocean-atmospheric climate 

variability is clearly seen in a regression of SST and sea-level pressure against the G. bulloides 

data (Fig. 3-2a). The distributions of the regression coefficients are spatially coherent with high 

G. bulloides abundance associated with colder SST in the North Atlantic and a stronger Azores 

High. Similar relationship between G. bulloides abundance with North Atlantic SST and Azores 

High is demonstrated in the same regression map derived from filtered time series (Fig. 3-3a).  
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Figure 3-3. The same as Fig. 3-2, except for low-frequency data (filtered by 15-point Lanczos low pass 
filtering). Displayed values passed 95% significance level. Data source: ERA-20C. 
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Colder North Atlantic SSTs are associated with a stronger subtropical high as colder SST 

corresponds to greater atmospheric subsidence [Hastenrath and Greischar, 1993]. This 

association is shown in Fig. 3-2b in which SST and sea level pressure are regressed against an 

inversed AMO index. The inversed index is used to make the regression map have the same 

positive/negative sign as other regressions presented in this study.  As this study revolves around 

G. bulloides abundance, the time series that has negative correlation with G. bulloides abundance 

needs to flip sign (i.e. AMO index and local zonal wind time series). Using these two sign-

flipped time series and regressing all other variables on them, we can get regression maps (Fig. 

3-2b, 3-2c) that easily compare to the other two (Fig. 3-2a, 3-2d). As a result, the spatial pattern 

in Fig. 3-2b is very similar to the one observed in Fig. 3-2a. The same plot with filtered time 

series (Fig. 3-3b) also shows a pattern highly resembling Fig. 3-3a. However, unlike in Fig. 3-2a 

(3-2b), Fig. 3-3a (3-3b) shows that connection between G. bulloides (AMO index) and SLP are 

covering higher latitudes in the eastern North Atlantic.  

 

Why then is G. bulloides concentration related to the large-scale SST and air pressure 

distributions?  In Figs. 3-2a and 3-2b, we included the regression of surface winds against the G. 

bulloides data and the negative AMO index respectively. As expected, a stronger Azores High is 

associated with anomalous anti-cyclonic surface flow, which registers a larger easterly wind 

anomaly in the tropical North Atlantic and in the region of the Cariaco Basin. The regression of 

surface winds on the G. bulloides data (Fig. 3-3a) and the negative AMO index (Fig. 3-3b) with 

filtered time series gives similar relationship. It is evident that the largest correlation between 

low-frequency G. bulloides data and tropical zonal wind are along the southern flank of the large 

correlation zone of G. bulloides data and SLP. 
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We used the averaged zonal winds over the coastal region in (9.5°N-14.5°N, 60°W-

70°W) to represent the along-coast winds in the Cariaco Basin (Fig. 3-1d). There is a weaker but 

still significant correlation between zonal wind in the local coastal region and G. bulloides 

abundance (r = -0.77, p-value = 0.01, using filtered time series). It is consistent with the fact that 

a high easterly wind anomaly induces offshore surface currents in the Cariaco Basin and 

therefore causes upwelling, and increases G. bulloides production. The lower correlation 

between the Cariaco Basin zonal winds and G. bulloides abundance could be due to the large 

synoptic variability of the winds at small scales as compared to smoother large-scale circulation 

measurements like the AMO and Azores High pressure index.  

 

When we regressed the spatially distributed winds, SST and surface pressure against the 

local surface easterly wind over the Cariaco Basin (Fig. 3-2c), we observe very similar patterns 

in these fields in the Atlantic to those regressed against the G. bulloides and the inversed AMO 

index (Figs. 3-2a and 3-2b). The similarity strongly suggests that the variability of the local 

easterly wind over the basin is part of the large-scale climate variability in the North Atlantic, 

which are all correlated with the G. bulloides data. While the same plot with low-frequency data 

(Fig. 3-3c) displays similar patterns as in Fig. 3-2c and its counterparts regressed on G. bulloides 

and the inversed AMO index (Figs. 3-3a and 3-3b). Again, they are all consistent in the 

association between cold North Atlantic SST, intense subtropical high pressure, and large 

easterly wind in the tropical North Atlantic and near Cariaco Basin.  

 

To further confirm the relevant climate variability induced by the Azores High pressure 

anomaly, Fig. 3-2d shows the same regressions against the low-latitude Azores High index based 
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on annual data. Again, the spatial patterns of the variables are consistent with those in the other 

plots (Figs. 3-2a, 3-2b, and 3-2c). In the other hand, Fig. 3-3d gives the same regressions on the 

original Azores High index based on filtered time series. The choice of Azores High pressure 

index is determined by the regression pattern of SLP on G. bulloides, (e.g. Fig. 3-2a for annual 

data and 3-3a for filtered data). In Fig. 3-3d, the regression map of the variables are also quite 

consistent with their counterparts in other plots (Figs. 3-3a, 3-3b, and 3-3c). The relationship 

between these climate variables are also shown as correlation coefficients in Table 3-1. 

 

In addition to local easterly wind-induced upwelling, regional precipitation over land is 

another meteorological factor that can potentially impact G. bulloides abundances in the basin. 

Greater precipitation over northern Venezuela leads to increased fluvial input of nutrients to the 

Cariaco Basin, in turn spurring local primary productivity and increased foraminiferal abundance 

[Peterson et al., 2000]. However, G. bulloides abundance’s correlations with terrestrial 

precipitation (Fig. 3-2a) do not show significant correlation in local precipitation and even 

display a negative correlation in Sahelian precipitation at Africa, especially in the summer-fall 

season (Fig. 3-4a in the next section). Moreover, lower North Atlantic SST (Fig. 3-2b), stronger 

local easterly winds (Fig. 3-2c), and a higher Azores High south to 30°N (Fig. 3-2d) correspond 

to less precipitation over the Cariaco Basin watershed and Sahel region, which indicates an 

association with southward shift of ITCZ (Intertropical Convergence Zone). The potential 

connection between these variables with ITCZ rainfall is not clear based on low-frequency time 

series (Fig. 3-3), except for local zonal wind (Fig. 3-3c). The spatial patterns suggest that 

continental precipitation near the Cariaco Basin is not positively correlated to G. bulloides for 
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the interval of this study. Nevertheless, the precipitation factor may play crucial roles in the G. 

bulloides abundance variation at longer time scales, which will be discussed in Section 3.4.  

 

Other than easterly trade wind and local watershed rainfall, aeolian dust transport can 

also contribute to Cariaco Basin sea surface nutrients variability and thus influence the G. 

bulloides production. Negative phase of AMO is connected to reduced Sahelian rainfall and 

anomalously more dust in the atmosphere, and the tropical Atlantic low-level easterly wind 

anomalies can also contribute to bringing African dust to as far as Carribean seas [Prospero and 

Lamb, 2003; Wang et al., 2012]. Moreover, previous studies have looked at the connections 

between Cariaco Basin nutrients to Sahel dust [Yarincik et al., 2000; Martinez et al., 2007].  

 

In this section, we showed that colder North Atlantic SST and stronger low-latitude 

Azores High anomalies relate to higher local coastal and tropical Atlantic easterly wind, as well 

as to less Sahel rainfall (in the summer-fall season, which will be shown in Fig. 3-4). Stronger 

local easterly wind will enhance the upwelling, reduced summer-fall rainfall at Sahel can induce 

more atmospheric dust, and the stronger cross-Atlantic tropical easterly wind may bring the dust 

to the location of Cariaco Basin. All of these factors can increase the Cariaco Basin surface 

nutrients and G. bulloides production. This may be the reason that the collective effect of the 

large circulation variability of AMO and Azores High pressure can have better relationship with 

Cariaco Basin G. bulloides abundance data. 
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Finally, we have also examined the lag correlations between the de-trended low-

frequency time series of G. bulloides abundance, the AMO index, Cariaco Basin surface zonal 

winds, and the Azores High index, and found that the almost concurrent correlations near zero 

lag have the largest magnitudes. More specifically, when G. bulloides abundance leads for one 

year, its correlations with Cariaco Basin surface zonal winds, and the Azores High index reach 

largest magnitude; and when G. bulloides abundance lags for one year, its correlation with the 

AMO index is the largest. However, this may not be revealing of specific lead-lag mechanism, 

considering the age model uncertainty of G. bulloides abundance data (± 1 year in this interval).  

 

3.2. Seasonal Analysis 

 

Seasonal analysis found that the AMO index, Cariaco Basin surface zonal wind, and the 

Azores High index in the season of July-August-September (JAS) has better relationship with G. 

bulloides abundance with a more similar spatial distribution of corresponding regression 

coefficients based on annual data (Fig. 3-4).  

 

This result is surprising at first, as the JAS season is a non-upwelling season. However, 

based on the analysis of seasonal cycle and monthly extreme of surface zonal wind, we found 

that the most evident relationship between these variables and G. bulloides abundance can occur 

in the weak-upwelling season.  
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Although Cariaco Basin zonal wind peaks in winter/spring (Fig 3-5a, black line) when 

the primary peak of G. bulloides production happens due to high wind driven coastal upwelling, 

similar regression maps applying winter/spring climate variabilities (e.g., Fig. 3-6a) do not show 

resembling patterns as in Fig.. 3-2a, while the ones using summer/fall variables (e.g., Fig. 3-6b) 

show closely similar patterns. 

 

To find out the reason behind this phenomenon, we grouped the years to four quartiles by 

G. bulloides abundance and compared the seasonal cycle of mean zonal wind during the years in 

the upper quartile and in the lower quartile (Fig. 3-5a, red line and blue line, note that stronger 

easterly wind is indicated by larger negative values). The difference of zonal wind between the 

years in the upper quartile and lower quartile turns out to be largest in summer/fall season instead 

of winter/spring (Fig. 3-5b).  
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Figure 3-4. 1901-1990 de-trended standardized JAS mean precipitation (color shades over land), SST 
(color shades over ocean), Sea level pressure (contours over ocean), and Surface wind (vectors) 
regression against de-trended standardized annual mean (a) G. bulloides abundance; (b) negative AMO 
index; (c) negative Cariaco Basin surface zonal wind (easterly wind); and (d) Azores High pressure index. 
Displayed values passed 95% significance level. Vectors are shown when regression of U-component 
passed 95% significance level. Contours with dashed lines indicate negative values. Line labels on white 
background are for contours, others are for color shades. Data source: ERA-20C. 
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Figure 3-5. 1900-1990 seasonal variation of Cariaco Basin (a) mean zonal wind in all years (black line), in 
the years with upper quartile of G. bulloides abundance (red line), and in the years with lower quartile of 
G. bulloides abundance (blue line); (b) zonal wind difference between the years with upper quartile and 
lower quartile of G. bulloides abundance. Data source: ERA-20C. 

 
Figure 3-6. 1901-1990 de-trended standardized (a)JFM mean precipitation (color shades over land), SST 
(color shades over ocean), Sea level pressure (contours over ocean), and Surface wind (vectors) 
regression against de-trended standardized annual mean G. bulloides abundance; (b) the same as (a) 
except using JAS mean precipitation, SST, Sea level pressure, and Surface wind. Displayed values passed 
95% significance level. Vectors are shown when regression of U-component passed 95% significance level. 
Contours with dashed lines indicate negative values. Line labels on white background are for contours, 
others are for color shades. Data source: ERA-20C. 
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 In addition, to examine whether summer/fall zonal wind speed can also reach magnitude 

that comparable to winter/spring, a monthly extreme wind index is constructed. The zonal wind 

index is calculated using daily zonal wind data from ERA-20C reanalysis during 1900-2010. The 

index is defined as average daily zonal wind (U) speed in a month that exceeds the threshold of 

one standard deviation of zonal wind during 1900-2010. As the mean zonal wind is negative, the 

monthly zonal wind index can be calculated as: 

 

𝑈 𝑤𝑖𝑛𝑑 𝑖𝑛𝑑𝑒𝑥 =  
∑ 𝑈𝑖  × 𝑛𝑖

𝑁
𝑖=0

𝑁𝑒
 , 

𝑁𝑒 =  ∑ 𝑛𝑖  ,

𝑁

𝑖=0

 {
𝑛𝑖 = 1, 𝑤ℎ𝑒𝑛 𝑈𝑖 < 𝑈𝑡

𝑛𝑖 = 0, 𝑤ℎ𝑒𝑛 𝑈𝑖 ≥ 𝑈𝑡
 ,     (3.2) 

 

where N is the number of the days in the month, 𝑈𝑖 is the zonal wind in the ith day of the month, 

𝑁𝑒 is number of days that daily zonal wind speed exceeds the threshold, 𝑈𝑡 is the threshold of 

zonal wind, 𝑈𝑡 = 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑚𝑒𝑎𝑛 (𝑈) − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑈) during 1900-2010. 

 

Here, we present a zoomed in section of the extreme wind index (U wind index) in Fig. 

3-7 for a 10-year period, along with corresponding monthly extreme zonal wind days (Ne). We 

can see that summer/fall zonal wind speed can also reach magnitude that comparable to 

winter/spring, but with less occurrences. These results indicate that inter-annual variation of G. 

bulloides abundance is possible to be largely impacted by change of summer/fall zonal wind and 

upwelling, while the value of G. bulloides abundance being largest in winter/spring. 
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Figure 3-7. 1980-1989 section of monthly zonal wind index (black line; see Index Definition 2) and 
number of days in a month that daily zonal wind speed exceeds threshold of one standard deviation (Ne) 
(red line). Data source: ERA-20C. 

 

   To see whether the low-frequent summer/fall variables have similar relationship with 

G. bulloides abundance and AMO, we also regressed them on filtered time series of the G. 

bulloides data and AMO index (Figs. 3-8a and 3-8b). It demonstrates that larger G. bulloides 

abundance is related to colder North Atlantic SST and more intense North Tropical Atlantic SLP 

and zonal wind, stronger easterly wind along the Cariaco Basin, and less Sahel rainfall in JAS.   
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Figure 3-8. The same as Fig. 3-4a and 3-4b, except for low-frequency data (filtered by 15-point Lanczos 
low pass filtering). Data source: ERA-20C. 

 

3.3. Cross-validation of the results using other reanalysis data 

 

Above shown results are only based on one data set. In this section, we will cross-

validate these results with NOAA 20CRv2 data during 1871-2010, as well as with JRA-55 data 

during 1958-2013.  

 

Firstly, same multiple time series comparison is done among G. bulloides abundance 

data, AMO index, Azores High pressure index, and Cariaco Basin zonal wind based on NOAA 

20CRv2 data during the common time period, 1871-1990 (Fig. 3-9). Comparing the correlation 



 

42 

 

coefficients in this Figure to the ones in Fig. 3-1, we found that the correlation between G. 

bulloides abundance data and Cariaco Basin zonal wind are not significant (Fig. 3-9d). The G. 

bulloides abundance’s correlation with the Azores High pressure index is still significant using 

this data set (Fig. 3-9c). 

 
Figure 3-9. 1871-1990 de-trended annual mean (grey lines) and filtered time series (other color lines) of 
(a) G. bulloides abundance; (b) AMO index; (c) Azores High pressure index; and (d) Cariaco Basin surface 
zonal wind. Y-axes of (b) and (d) are reversed. A 15-point Lanczos low pass filter is applied to generate 
the low-frequency data. Correlation coefficients (r) and p-values (p) of G. bulloides abundance data and 
climate variables in (b), (c), and (d) are shown in the figure. Data source: NOAA 20CRv2. 
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Replicating Fig. 3-2 with the surface wind and SLP data from NOAA 20CRv2 and SST 

data from HadISST1.1, Fig. 3-10 is produced. Regression spatial distribution of each panel in 

Fig. 3-10 is similar to Fig. 3-2, except for Fig. 4-10a. In Fig. 4-10a, the larger G. bulloides 

abundance data does not significantly relate to local coastal zonal wind, but rather to zonal wind 

in the band over the North Tropical Atlantic.  

 

Moreover, the cross-correlation between each pair of the low-frequency time series in 

Fig. 3-9 reveals that Cariaco Basin zonal wind does not significantly correlate to any of the other 

three variables. The correlation coefficient and p-value for each pair are listed in Table 3-2. 
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Figure 3-10. The same as Fig. 3-2 except for Data source: NOAA 20CRv2. 
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Table 3-2. The same as Table. 3-1 except for during 1871-1990, Data source: NOAA 20CRv2. 

  AMO Azores High pressure Zonal wind 

G. bulloides r = -0.73, 

p = 0.002 

r = 0.60, 

p = 0.02 

r = -0.06, 

p = 0.85 

AMO   
r = -0.73, 
p = 0.001 

r = 0.38, 
p = 0.19 

Azores High 
pressure 

    
r = -0.40, 
p =0.15 

 

This phenomena is also exemplified in the regression maps based on the low-frequency 

data. Fig. 3-11 is generated by reproducing Fig. 3-3 with the surface wind and SLP data from 

NOAA 20CRv2 and SST data from HadISST1.1. The relationship indicated by this plot is also 

largely consistent with Fig. 3-3, except for the connections involving Cariaco Basin zonal wind. 

In Fig. 3-11c, the regression coefficients of Cariaco Basin coastal zonal wind do not display 

much relationship with other fields or zonal wind over other locations other than local area. 

Applying shorter time span in the calculation also results in similar pattern (not shown). This 

result is dubious. As NOAA 20CRv2 does not assimilate wind fields, we suspect this 

inconsistency may come from the uncertainty of surface wind in this data set. To investigate if 

this is the case, we will include another reanalysis data to do the verification. 
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Figure 3-11. The same as Fig. 3-3 except for Data source: NOAA 20CRv2. 
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Before the verification with the other reanalysis data, the same replication of regression 

maps based on NOAA 20CRv2 and HadISST1.1 data are also done for seasonal analysis (Fig. 3-

12 to Fig. 3-14). The spatial patterns of the regression coefficients are mostly consistent with 

their counterparts based on ERA-20C data. But the regression of the NOAA 20CRv2 surface 

zonal wind in JAS against G. bulloides data does not show as significant relationship as using 

ERA-20C data.  

 

 
 

 

Figure 3-12. The same as Fig. 3-6 except for Data source: NOAA 20CRv2. 
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Figure 3-13. The same as Fig. 3-4 except for Data source: NOAA 20CRv2. 
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Figure 3-14. The same as Fig.3-8 except for Data source: NOAA 20CRv2. 

 

To explore whether the discrepancy between the results based on ERA-20C and NOAA 

20CRv2 surface wind data are from wind field uncertainty, and to find out which data is more 

reliable, a new generation reanalysis data, JRA-55, is applied to do the verification. This 

reanalysis is shorter than the previous two reanalysis data sets (55 year time coverage from 1958-

2013) and has little overlap with the G. bulloides abundance data (33 years from 1958-1990). It 

is not suitable for the direct comparison with this proxy data, especially not for the low-

frequency time series analyses. However, its advancement in observation assimilation can 

benefit the verification of the relationship between Cariaco Basin zonal wind and other variables, 

such as North Atlantic SST and SLP.  
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The largest difference between the two data sets shown above involves the relationship 

between low-frequency Cariaco Basin zonal wind with other variables. Firstly, we calculated the 

cross-correlation between this low-frequency local wind time series with filtered AMO index and 

Azores High pressure index, respectively, based on JRA-55 reanalysis data from 1958-2013. The 

results indicate that Cariaco Basin zonal wind is significantly correlated with both of these two 

variables. 

Table 3-3. Cross-correlation coefficient between Cariaco Basin Coastal zonal wind and low frequent 
variabilities of annual mean AMO index (1958-2013), and Azores High pressure index (1958-2013) (r: 
correlation coefficient; p: p-value. Data are filtered by 15-point Lanczos filter). Data source: JRA-55. 

  AMO Azores High pressure 

Zonal wind r = 0.94, 

p = 0.008 

r = -0.82, 

p = 0.03 

 

As the JRA-55 data has too short common period with G. bulloides data, we reproduce 

Fig. 3-3 using JRA-55 data during 1958-2013, except for Fig. 3-3a. Comparing Fig. 3-16 (using 

JRA-55) to Fig. 3-3 (using ERA-20C), and Fig. 3-11 (using NOAA 20CRv2), we can see more 

resemblance between the results based on JRA-55 and ERA-20C. Especially for the regressions 

maps against Cariaco Basin zonal wind, both the Figures using JRA-55 (Fig. 3-15b) and using 

ERA-20C (Fig. 3-3c) indicate that stronger Cariaco coastal easterly wind is connected to colder 

North Atlantic SST, enhanced Azores High pressure, more intense easterly trade wind at 

Tropical North Atlantic, and decreased precipitation at Sahel region in Africa. In the meanwhile, 

the same plot using NOAA 20CRv2 does not show much information about this relationship 

(Fig. 3-11c). Based on these comparisons, we consider that above results based on ERA-20C 

data are validated and can be concluded upon. 
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Figure 3-15. 1901-1990 de-trended standardized low-frequency (filtered by 15-point Lanczos filter) 
annual mean precipitation (color shades over land), SST (color shades over ocean), Sea level pressure 
(contours over ocean), and Surface wind (vectors) regression against de-trended standardized low-
frequency annual mean (a) negative AMO index; (b) negative Cariaco Basin surface zonal wind (easterly 
wind); and (c) Azores High pressure index. Displayed values passed 95% significance level. Vectors are 
shown when regression of U-component passed 95% significance level. Contours with dashed lines. Data 
source: JRA-55. 
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3.4. Summary 

 

We have shown that enhanced abundance of annual and low-frequency Cariaco Basin G. 

bulloides is associated with cooler North Atlantic SST, higher Azores High pressure south to 

30°N, stronger tropical North Atlantic easterly trade winds and local easterlies over the Cariaco 

Basin, and less ITCZ rainfall in the Sahel. The local rainfall is not in favor of increasing Cariaco 

Basin G. bulloides, at the discussed time scales.  

 

The relationships between these climate variables with AMO index bares large similarity 

with their counterparts with G. bulloides data, at both of the interannual and multidecadal time 

scales. Colder North Atlantic SST is associated to stronger low-latitude Azores High pressure, 

more intense Cariaco coastal surface easterly wind, less Sahel rainfall and more dust, and 

enhanced Tropical North Atlantic low level easterly winds which can bring dust from Africa to 

Cariaco Basin. Other than local watershed rainfall-impacted riverine inputs, both of the nutrients 

brought up by trade wind driven upwelling and Sahel dust transported by easterly wind are food 

sources for Cariaco Basin G. bulloides production. Thus, we conclude that the collective effect 

of the large circulation at North Atlantic can better explain the low-frequency variation of 

Cariaco Basin G. bulloides, and the G. bulloides abundance data can reflect the AMO variability 

during the past century. 

 

Counterintuitively, the easterly wind variation in the summer/fall season shows large 

impacts on changes of G. bulloides abundance, despite the fact that both local trade winds and G. 
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bulloides production reach their peaks in winter/spring. The seasonal analysis is not to dwarf the 

effect of winter atmospheric circulation influence on Cariaco Basin G. bulloides abundance, but 

rather to highlight this proxy’s connection with Sahel summer/fall rainfall and to suggest a 

possibility to compare this proxy with other summer/fall paleoclimate data, especially for SST 

reconstructions.  

 

Thus, the strong association of the G. bulloides data with large-scale climate variability in 

the North Atlantic provides a basis for using the longer record of the G. bulloides data to study 

past climate change in the region. Our results also offer the spatial patterns of climate variability 

with which other proxy data of the North Atlantic SST or SLP can be compared and interpreted. 

The results of our paleoclimate data comparisons are shown in Chapter 4. 
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Chapter 4. Examine past millennium Atlantic Multidecadal Variabilities by putting 

Cariaco Basin Globigerina bulloides Abundance in the context of other paleoclimate data 

 

4.1. Characteristics of the long-term Globigerina bulloides abundance data 

 

  In Chapter 3, we have found that G. bulloides abundance data can reflect multidecadal 

Atlantic variability (AMO) in the past century. However, in Black et al. [1999], spectral analysis 

of the whole eight century time series does not show significant variance corresponding to the 

frequencies associated multidecadal timescales. Before we study its multidecadal variability in 

the past in the context of other Atlantic proxy data, the characteristics of the G. bulloides 

abundance data is revisited. 

 

 Fig. 4-1 shows the wavelet analysis [Torrence and Compo, 1998] of annual G. bulloides 

abundance data. We can see multidecadal and lower frequency periods are active during most of 

the 800 years, though the 50-100 year periodicities are not considered significant. The longer 

periodicities around 250 year are persistent and significant. But we also need to treat them with 

caution, because they are largely out of the cone of influence. The variance of 50-100 year 

periodicities varies between 0.1-0.3, with three peaks around 1450, 1700, and 1900. 

 

 The spectral analysis of annual G. bulloides abundance data (Fig. 4-2) shows that its 

variance at low frequencies (f < 0.07 cycles/year, period > 14 years/cycle) is not significant. 
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Based on this analysis, we used 15-point low pass filter to filter out the high frequencies of the 

annual time series. This approach was used to highlight the multidecadal variabilities in the short 

observation and reanalysis data (in Chapter 3). However, in this chapter, long time series of 

proxy data are discussed and compared. Both of the annual and 10 year running mean time series 

will be presented for each paleoclimate data. And the Lanczos band pass filters will be applied 

on the low frequency time series comparisons [Duchon, 1979]. 

 

 

 
Figure 4-1. 1165-1990 (top) Morlet Wavelet analysis of G. bulloides abundance,(a) wavelet spectrum, x-
axis is year, y-axis is period, (b) x-axis is wavelet spectrum, y is the same as (a); (bottom) year-variance 
plot of 50-100 year band pass filtered time series. Data are standardized before wavelet analyses. 95% 
significance regions are hatched. 
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Figure 4-2. Spectral analysis of annual G. bulloides abundance data during 1165-1990; the green dashed 
line is the “red noise” curve, and the blue and red lines are the lower (p = 0.05) and upper (p = 0.95) 
confidence bounds, respectively. 

 

4.2. Comparison of Cariaco Basin Globigerina bulloides Abundance with SST 

Reconstructions 

 

 As we are focusing on finding out the low-latitude AMV spatial characteristics in the past 

millennium, other North Atlantic SST proxies that recovered at a low-latitude location are 

needed. Based on the analyses in the previous chapter, our location choice can be as far east as to 

the coast of Western Africa. Thus, we chose a paleoclimate data that can expand our spatial 

coverage there. In Fig. 4-3, we compare the original and filtered time series of G. bulloides 

abundance, Eastern Tropical Atlantic SST reconstruction based on G. ruber (p) Mg/Ca ratio 

[Kuhnert and Mulitza, 2011], and instrumental AMO index. As in the previous chapter we find 



 

57 

 

that multidecadal variability of G. bulloides abundance is able to reflect the AMO in the past 

century, with larger G. bulloides abundance corresponding to cooler North Atlantic SST. Thus, 

in this comparison, we reversed the Y axes of the SST proxy and AMO index. 

 

 
 

Figure 4-3. 1165-1990 original data (gray) and 10 year running averages of interpolated annual mean 
data (other colors) of G. bulloides abundance (red), Eastern Tropical Atlantic G. ruber (pink) Mg/Ca SST 
(black, Y axis reversed, unit °C), and 1856-1990 instrumental AMO index (purple, Y axis reversed). 

 

The spectral analysis of this proxy during 1165-1990, the common period with G. 

bulloides abundance data, display significant multidecadal variance (Fig. 4-4 left). The spectral 

coherence between it and G. bulloides abundance also show significant peak at frequencies that 

associated with multidecadal timescales (Fig 4-4 right). 
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Figure 4-4. (Left) Spectral analysis of Easter Tropical Atlantic G. ruber (pink) SST during 1165-1990; the 
green dashed line is the “red noise” curve, and the blue and red lines are the lower (p = 0.05) and upper 
(p = 0.95) confidence bounds, respectively. (Right) The coherence-squared value between this SST proxy 
and G. bulloides abundance data during the same period; the red line indicates the critical coherence 
squared-value corresponding to the 95% significance level.  

 

The wavelet analysis shows that spectral power in the multidecadal band is significant 

over several time intervals during the past centuries (Fig. 4-5). It may imply the AMO’s signal in 

the local SST. The variance of 50-100 year periodicities varies between 0.1-0.4, also with three 

peaks around 1450, 1700, and 1900, which is similar to the analysis of G. bulloides abundance in 

Fig. 4-1. 

 

  Comparison of G. bulloides abundance and Eastern Tropical Atlantic Mg/Ca SST proxy 

indicates they have significant correlation at multidecadal timescales, shown by the 50-100 year 

band pass filtered time series (Fig. 4-6). The correlation coefficient is -0.53 and p-value is 0.001. 

In Fig. 4-6 (bottom), we can see that the two time series closely covariate with each other, except 
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for short periods during 1400-1450 and 1800-1900. The lag-correlation between these two 

filtered data (Fig. 4-7) shows that when the SST reconstruction data leads for three years, the 

correlation reaches its maximum absolute value. Considering age model uncertainties, these two 

times series are considered to be almost concurrent. 

 

 
 

Figure 4-5. Same as Fig. 4-1 except using 1165-1947 Easter Tropical Atlantic G. ruber (pink) SST 

 

These two proxies are based on different locations, species (with peak production at 

different seasons), and are developed independently using different marine sediments and 

method.  In addition, the average uncertainty of the age model of the SST proxy is ± 11 year 

during this period, and age model uncertainty can reach 60 years at the oldest part of G. bulloides 
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abundance data. Considering these factors, the multidecadal variability of these two time series 

are showing surprising consistency with each other, and strongly suggests that they are 

influenced by similar process at this timescale. It is possible the relationship of G. bulloides 

abundance and AMO we see in the past century is persistent during the past eight centuries, thus 

it contains the AMO signal in its whole time series; and the SST proxy recorded the AMO 

variations during this period of time at a tropical latitude. 

 

 
Figure 4-6. Comparison of G. bulloides abundance (red) and Eastern Tropical Atlantic Mg/Ca SST (black, 
Y-axis reversed) with (upper) original time series, (lower) time series filtered by 50-100 years band pass 
filter. 
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Figure 4-7. Lag-correlation of filtered G. bulloides abundance and Eastern Tropical Atlantic Mg/Ca SST 
(red). Data filtered by 50-100 years band pass filter. Positive value of X-axis indicates that G. bulloides 
abundance leads the SST reconstruction data. Blue lines indicate the interval of the 95% significance level. 

 

We have also selected another SST proxy data, which located to the north of Cariaco 

Basin, to the south shore of Puerto Rico. Hence, the three proxy data together cover a large area 

of tropical North Atlantic both zonally and meridionally. In Fig. 4-8, we compare the original 

(annual) and filtered time series of G. bulloides abundance, Puerto Rico coral Sr/Ca ratio (SST 

index) and δ18O (SST-SSS index) [Kilbourne et al., 2008], and instrumental AMO index. As 

mentioned in the data description, larger values of Sr/Ca indicate lower SST, and larger values 

(less negative) of δ18O corresponds to lower SST and higher SSS.  
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Figure 4-8. 1751-1990 original data (gray) and 10 year running averages (other colors) of G. bulloides 
abundance (red), Puerto Rico Sr/Ca SST (black), Puerto Rico δ18O SST-SSS index (blue), and 1856-1990 
instrumental AMO index (purple, Y axis reversed) 

 

The wavelet analysis of annual Sr/Ca time series shows that spectral power in the 

multidecadal band (50-100 years period) is not significant inside the cone of influence (Fig. 4-9). 

The variance of 50-100 year periodicities is consistently below 0.15. 
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Figure 4-9. Same as Fig. 4-1 except using 1751-2004 Puerto Rico Sr/Ca SST index 

 

Nevertheless, the same analysis of annual δ18O time series indicates that spectral power 

in its multidecadal band (50-100 years period) is persistently significant through the whole study 

period (Fig. 4-10). The variance of 50-100 year periodicities is around 0.15-0.27. 
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Figure 4-10. Same as Fig. 4-1 except using 1751-2004 Puerto Rico δ18O SST-SSS index 

 

Comparison of G. bulloides abundance and annual Sr/Ca time series indicates they have 

significant correlation at multidecadal timescales, shown by the 50-100 year band pass filtered 

time series (Fig. 4-11). In Fig. 4-11 (bottom), we can see that larger G. bulloides abundance 

associates with larger Sr/Ca ratio, which represents lower Puerto Rico SST (r = -0.77, p = 0.04). 

This is consistent with the relationship we find between G. bulloides abundance with AMO 

index. The lag-correlation between these two filtered data (Fig. 4-12) indicates that when the G. 

bulloides abundance data leads for two years, the correlation reaches its maximum value near the 

zero-lag. The age model uncertainty of Sr/Ca SST index is ± 1 year at most. The two filtered 

time series are also considered almost concurrent based on the age model uncertainties of both of 

the two data. 
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Figure 4-11. Comparison of G. bulloides abundance (red) and Puerto Rico Sr/Ca SST index (black) with 
(upper) original time series, (lower) time series filtered by 50-100 years band pass filter. 
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Figure 4-12. Same as Figure 4-7, except between 50-100 years band pass filtered G. bulloides abundance 
and Puerto Rico Sr/Ca SST index. 

 

However, the same comparison of G. bulloides abundance and annual δ18O time series 

does not show this relationship (Fig. 4-13).  Fig. 4-13 (bottom) indicates a shift between the two 

low-frequency time series. As δ18O does not only contain SST signal, but also SSS information, 

the relationship G. bulloides abundance data and SST at this timescale may not be easily 

separated using this proxy. In Kilbourne et al. [2008], these two time series are compared under 

the proposed mechanism that stronger trade wind drives more fresh water to Puerto Rico and 

larger δ18O. Thus, peaks of δ18O are associated with increasing periods of G. bulloides 

abundance. This relationship is also confirmed by the lag-correlation analysis of the filtered data 

(Fig. 4-14). When G. bulloides abundance data leads for 17 years, their correlation reaches the 
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maximum absolute value but is still not significant. Based on our analysis in Chapter 3, higher G. 

bulloides abundance corresponds to cooler North Atlantic SST (including SST south to Puerto 

Rico), and thus lower δ18O. Thus, G. bulloides abundance has potential to reflect the Peurto Rico 

SST and SSS in opposite directions in terms of contributing to δ18O values. This is why the 

relationship between G. bulloides abundance and δ18O is hard to interpret only by the influence 

of trade wind on SSS. 

 

 

Figure 4-13. Comparison of G. bulloides abundance (red) and Puerto Rico δ18O SST-SSS index (black) with 
(upper) original time series, (lower) time series filtered by 50-100 years band pass filter. 
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Figure 4-14. Same as Figure 4-7, except between 50-100 years band pass filtered G. bulloides abundance 
and Puerto Rico δ18O SST-SSS index. 

 

4.3. Compare Globigerina bulloides abundance with North Atlantic Oscillation 

Reconstructions 

 

4.3.1. Mechanism of AMO and Multidecadal NAO-AMO relationship 

 

The AMO is a basin-wide North Atlantic SST variability characterized by an alteration of 

prolonged warm phases and cold phases on multidecadal timescales [Schlesinger and 

Ramankutty, 1994; Enfield et al., 2001]. The mechanisms of the persistence and switch of the 

warm and cold phases in AMO have been studied in previous studies. One of the most important 
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mechanism is that the AMO is associated with variations of the Atlantic Meridional Overturning 

Circulation (AMOC), the North Atlantic branch of the Thermohaline Circulation (THC) 

[Delworth and Mann, 2000; Knight et al., 2005]. Anomalous meridional heat transport by a 

stronger AMOC to North Atlantic surface and subsurface will build up the heat there and warm 

up the North Atlantic SST, leading to warm phase of the AMO. Warm SST anomalies also 

reduces the strength of the trade winds in the tropics and North Atlantic westerlies in the mid-

latitudes, surpresses surface evaporative cooling, and thus sustain the warm phase through a 

positive feedback (WES: Wind-Evaporation-SST feedback) [Xie, 1999].  

 

The North Atlantic Oscillation (NAO) is the dominant North Atlantic variability 

characterized by the fluctuations of the winter SLP difference between the Azores High and 

Icelandic Low [Hurrell, 1995]. The positive phase of NAO is associated with a larger pressure 

difference between the two pressure centers and stronger westerlies in the mid-latitude. And 

during the negative phase of NAO, westerlies are reduced. 

 

Previous studies suggest that multidecadal variabilities of NAO has close association 

with AMO [Marshall, 2001]. The positive phases of the NAO coincide with the negative phases 

of the AMO, with several years of lag-lead [Robertson et al., 2000; Li et al., 2013].  

 

The NAO structure depends on meridional SLP and SST gradient on the North Atlantic 

Ocean. In the warm phase of AMO, the horseshoe pattern of SST anomalies warms higher 

latitude and eastern North Atlantic, but cool the SST in the mid-latitude western North Atlantic. 
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Thus, the SLP and SST gradient weakens and the NAO will switch to negtive phase [Robertson 

et al., 2000; Zhang and Vallis, 2006].  

 

In the other hand, low-frequency NAO is also found to have significant impacts on the 

AMOC and AMO. The AMOC is driven by the sinking of dense water in the higher latitudes of 

the North Atlantic, forming North Atlantic Deep Water (NADW). The NAO can alter convection 

at Labrador Sea, which is critical in NADW formation, and in turn influece the AMOC and lead 

the AMO [Latif et al., 2006a, 2006b; Li et al., 2013].  

 

Although the lead-lag years and/or mechanisms are not consistent among the previous 

studies, the opposite-sign relationship between the multidecadal variabilities of NAO and AMO 

are agreed upon. As we have established the relationship between Cariaco Basin G. bulloides 

abundance and the AMO, we would like to compare this paleoclimate data with NAO 

reconstructions based on the NAO-AMO antiphase relationship.  
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4.3.2. Relationship between G. bulloides abundance and NAO reconstructions 

 

Firstly, we investigated the relationship between G. bulloides and NAO using the 

reconstruction of NAO index derived from Bermuda winter SST based on coral Sr/Ca [Goodkin 

et al., 2008a]. This NAO reconstruction covers 1793-1988, largely overlapped the G. bulloides 

abundance data and instrumental climate indices. This data set is recovered at a relatively low 

latitude as an NAO index. However, as it is partly constructed based on the relationship between 

multidecadal variability of NAO and Bermuda winter SST, this data is considered ideal in a 

study of multidecadal variabilities. 

 

In Fig. 4-15, we compare the original (annual) and filtered time series of G. bulloides 

abundance, reconstruction of NAO in Goodkin et al. [2008a], AMO index, and Hurrell’s NAO 

index. Hurrell’s NAO index is defined as difference of normalized annual SLP between two 

stations, one near the Azores and another near Iceland [Hurrell, 1995]. The NAO reconstruction 

is shown to be able to capture the low-frequency variability of instrumental NAO index. And this 

proxy bears large resemblance with the G. bulloides abundance data. The two time series will be 

compared to show if they can reflect the relationship between multidecadal NAO and AMO 

variabilities.  

 

The wavelet analysis of annual NAO reconstruction time series shows that spectral power 

in the multidecadal band (50-100 years period) is significant through the whole period. However, 
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due to the shortness of the data, most of it is outside of the cone of influence (Fig. 4-16). The 

variance of 50-100 year periodicities is between 0.2-0.35, with the largest value being near 1890. 

 

 
 

Figure 4-15. Original data (gray) and 10 year running averages (purple and blue) of 1751-1990 G. 
bulloides abundance (red), 1856-1990 instrumental AMO index (purple, Y axis reversed), and 1865-1990 
instrumental Hurrell NAO index (blue). Black line is the 20-100 year Bermuda Sr/Ca NAO index (flipped 
sign), overlaid by the combined NAO index (gray) during 1751-1990. 
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Figure 4-16. Same as Fig. 4-1 except using 1793-1988 Bermuda Sr/Ca winter SST proxy of NAO index 

 

Comparison of G. bulloides abundance and NAO reconstruction time series indicates 

they have barely significant correlation at multidecadal timescales, with slight shift (Figs. 4-17, 

4-18). We can see that the two time series in Fig. 4-17 (bottom) demonstrate a seemingly in-

phase relationship between the two filtered time series, consistent with the antiphase relationship 

between multidecadal NAO and AMO. However, the lag-correlation analysis between them (Fig. 

4-18) shows that when the NAO reconstruction leads for 9 years, the correlation between them 

reaches maximum value (r = 0.86), which implies that positive NAO leads negative AMO for 
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about a decade. To further investigate the relationship displayed in paleoclimate data, we 

included the comparison with Luterbacher’s NAO reconstruction Luterbacher [2002].  

 

 

 

Figure 4-17. Comparison of G. bulloides abundance (red) and Bermuda Sr/Ca winter SST NAO index (black) 
with (upper) original time series, (lower) time series filtered by 50-100 years band pass filter. 
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Figure 4-18. Same as Figure 4-7, except between 60-80 year band pass filtered G. bulloides abundance 
and Bermuda NAO reconstruction data. 

 

Luterbacher [2002] extended earlier studies and reconstructed a monthly NAO index for 

1659-2000 and seasonal NAO index for 1500-1658. We only calculate winter NAO and annual 

NAO index from their reconstruction and compare with relevant instrumental and paleoclimate 

data. This data has been used in many other research on NAO. Including it in our comparison 

may provide us opportunities to verify our results with other studies. 

 

 Shown in the Fig. 4-19 are 20 years running averages of all the data, except for NAO 

reconstruction from Goodkin et al. [2008a]. As Goodkin et al. [2008a] provided the 20-100 year 

NAO index, we use it directly as the low-frequency time series. The multidecadal NAO index 
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has an antiphase relationship with Bermuda SST, the Y-axis of this time series is reversed. Both 

of the winter and annual index are consistent with the Goodkin et al. [2008a] reconstruction and 

instrumental Hurrell NAO index during their common period, with winter index bearing more 

resemblance with Goodkin et al. [2008a] reconstruction. 

 

 
Figure 4-19. (a) 20 year running averages of 1500-1990 G. bulloides abundance (red) and 1856-1900 
AMO index (purple, Y axis reversed); (b) 20 year running averages of annual NAO (blue) and winter NAO 
reconstruction (brown) in Luterbacher et al. [2002]; (c) 20-100 year NAO reconstruction in Goodkin et al. 
[2008] (black, Y axis reversed) and 20 year running averages of 1865-1990 Hurrell NAO index (purple) 

 

 As mentioned in the data description of this NAO reconstruction, the winter NAO index 

was shown to have the least uncertainties during the whole period. As meaningful estimates of 

NAO start in the 1720s for spring, summer, and autumn, the annual mean NAO index is also 

considered usable only after 1720s.  
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 Also, as the data consists of two sections with different time resolution, there might be 

inconsistency between the two sections, such as in the magnitude and/or variance. In Fig. 4-19b, 

we can see that the time series for both of annual and winter NAO reconstructions show a 

diminished value and variance during the time period before 1650s. Thus, to avoid high 

uncertainty and potential inconsistency inside the reconstruction, we only use the later section of 

the winter NAO index, during 1659-2000, in the following multidecadal data comparison and 

correlation calculation. 

 

Comparison of G. bulloides abundance and winter NAO reconstruction time series also 

indicates they have significant correlation at multidecadal timescales, with slight shift (Figs. 4-

20, 4-21). We can see that the two time series in Fig. 4-20 (bottom) also display a same-sign 

relationship. By comparing Fig. 4-20 (bottom) with Fig. 4-17 (bottom), relationship between G. 

bulloides abundance and these two NAO reconstructions is found to be highly consistent with 

each other during their overlapped period, 1830-1950.  

 



 

78 

 

 
 

Figure 4-20. Comparison of G. bulloides abundance (red) and winter NAO reconstruction (black) with 
(upper) original time series, (lower) time series filtered by 50-100 years band pass filter. 
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Figure 4-21. Same as Figure 4-7, except between 60-80 year band pass filtered G. bulloides abundance 
and Luterbacher winter NAO reconstruction. 

 

Their lag-lead relationship of G. bulloides abundance and Luterbacher’s winter NAO 

reconstruction is shown in Fig. 4-21. In this figure, we can see that when the low-frequency time 

series of NAO reconstruction leads for 4 years, their correlation is the largest and significant (r = 

0.86). Peaks of NAO are considered coincide with the peaks of G. bulloides abundance, 

indicating an opposite-sign relationship between the multidecadal NAO and AMO during this 

period of time. These comparison results based on two different NAO reconstructions further 

confirms that the multidecadal variation signal contained in G. bulloides data is related to large 

circulation at Atlantic basin and Atlantic climate has multidecadal variability before 

industrialization. 
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4.4. Discussion of Cariaco Basin Globigerina bulloides abundance variation mechanism at 

longer timescales 

 

In the comparison of the original unsmoothed, non-detrended G. bulloides abundance 

data and other paleoclimate data, we found that the opposite-sign relationship between 

multidecadal variabilities of G. bulloides and AMO may not be able to explain G. bulloides data 

at longer timescales. To discuss its longer term variations, we compared it with three other 

Cariaco Basin paleoclimate data that display significant lower frequent variabilities.  

 

In Fig. 4-22, we show the original and 10-year-running-mean time series of G. bulloides 

abundance (Fig. 4-22 upper), winter/spring SST reconstruction based on G. bulloides Mg/Ca 

ratio and summer/fall SST based on G. ruber (pink) Mg/Ca ratio (Fig. 4-22 middle), and Ti 

concentration (%) data that indicates local watershed rainfall variations and ITCZ south-north 

shift [Haug et al., 2001; Kennett et al., 2012] (Fig. 4-22 lower).  

 

The spectral analysis and wavelet analysis indicate that these Cariaco Basin SSTs do not 

have significant multidecadal variabilities. They do not bear similarities with AMO index during 

the instrumental period either (not shown). Also, multidecadal G. bulloides data does not have 

significant correlation with these SST reconstructions, filtered by 50-100 year band pass filter.  
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Figure 4-22. Original data (gray) and 10 year running averages (other colors) of 1165-1990 G. bulloides 
abundance (red), G. bulloides Mg/Ca SST (brown), G. ruber (p) Mg/Ca SST (green), and Cariaco Basin Ti% 
(blue). 

 

On the other hand, these two SST reconstructions have peak variances at periodicities 

longer than 150 year. Not as for the multidecadal variabilities, the SSTs’ variations at these 

timescales show in-phase relationship with G. bulloides abundance. It means that the larger G. 

bulloides abundance corresponds to higher local SST. The comparison of the two time series in 

Fig. 4-23 can illustrate this relationship. However, the correlation between this summer/fall SST 

reconstruction and G. bulloides abundance is not significant. 
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Figure 4-23. Comparison of G. bulloides abundance (red) and G. ruber(p) SST index (green) with (upper) 
original time series, (lower) time series filtered by 150 year low pass filter. 

 

Correlation values of G. bulloides abundance data and the Ti% data are not significant at 

multidecadal or centennial timescales. Considering the large error of the age model of Ti% data, 

it is also not suitable to be used in analyses at these timescales. Nevertheless, in Fig. 4-22, we 

can see both of G. bulloides abundance data and the Ti% time series have a decreasing trend 

before about early 17th century and an increasing trend from the early 17th century to the middle 

18th century.  
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As mentioned previously, nutrients from trade wind driven upwelling, Cariaco Basin 

watershed rainfall driven riverine inputs, and easterly wind transported African dust can 

influence Cariaco Basin G. bulloides abundance variation. It is possible that the local rainfall 

effect may dominate the mechanism of the G. bulloides production variation at millennial 

timescales and/or above. When annual mean ITCZ position shift to north, Cariaco Basin and 

Sahel rainfall increases while local coastal zonal wind decreases, suppressing both of the 

upwelling and dust source of nutrients. However, these time series are too short to see such a 

long term variability.  

 

Previous studies on the relationship between cross-equatorial SST gradient and ITCZ 

mean position shifting suggests that when the tropical North Atlantic SST increases, North-to-

South SST gradient decreases and ITCZ moves to the north. Thus, we suspected that the 

concurrence of high Cariaco Basin SST and G. bulloides abundance at centennial timescales 

shown in Fig. 4-23 (bottom) can also be explained by the rainfall domination effect. However, by 

comparing the SST reconstructions to the Ti% data, we cannot find association between high 

Cariaco Basin SST with large local precipitation or with northward movement of ITCZ mean 

position at this timescale. More studies are needed to explain the mechanism of G. bulloides 

abundance variation at this timescale. In the future studies, the relationship between Cariaco 

Basin local SST with local precipitation, tropical North Atlantic SST and ITCZ movement will 

also be examined. 
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4.5. Summary 

 

 Multidecadal variation of G. bulloides abundance in the last 800 years is shown to be 

consistent with the SST variability at Eastern Tropical Atlantic [Kuhnert and Mulitza, 2011] and 

Puerto Rico [Kilbourne et al., 2008], at the same timescales as what was found in Chapter 3 

based on reanalysis data in the last century. This result suggests the natural variability of AMO 

and its spatial pattern, at least at low latitudes, exist before the instrumental period. It also 

indicates that multidecadal G. bulloides abundance can reflect the AMO during its whole time 

span. 

 

Globigerina bulloides abundance at this timescale also displays a same-sign relationship 

with multidecadal variabilities of the NAO reconstructions that are based on Bermuda [Goodkin 

et al., 2008a] and based on northeastern North Atlantic to Europe [Luterbacher, 2002]. This 

result is consistent with the out-of-phase relationship between multidecadal NAO and AMO, 

shown in previous studies. The results derived from both of the two NAO reconstructions shows 

consistency during their overlapping periods.  
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Chapter 5. Evaluation of Atlantic Multidecadal Variability in CMIP5 models   

  

After the relationship is established between G. bulloides data and North Atlantic SST 

variability during the past century based on observation and reanalysis data, and during the past 

millennium based on paleoclimate data, we would like to evaluate if the models can capture the 

observed SST variability in the historical and last millennium simulations. 

 

 Previously, several studies have already assessed the performance of CMIP5 models on 

simulating Atlantic Multidecadal Variability in historical simulations [Zhang and Wang, 2013; 

Martin et al., 2014] and in last millennium runs [Landrum et al., 2013; Zanchettin et al., 2013]. 

The assessment works are done in many aspects, including the variability and magnitude of the 

AMV, relationship between AMO and AMOC, AMV’s sensitivity to external forcing, 

teleconnection between AMV and Sahel rainfall, etc.  

 

 Although we have not done analyses on the relationship between AMO and AMOC, the 

five models we will compare in this study fall into all of the four categories based on AMOC-

AMO relationship [Zhang and Wang, 2013]. All the five models can generally capture the 

AMOC structure in their comparison work, but show large differences in simulating AMO 

amplitudes and phases. 

 

The MPI-ESM-P belongs to Category I, which simulates a positive correlation between 

AMOC and AMO when the AMOC leads the AMO and a negative correlation when the AMO 
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leads the AMOC. It means that when the AMOC leads the AMO, enhanced AMOC increases 

heat transport convergence in the North Atlantic, which induces AMO warm phase. And after a 

while, the AMO warm phase warms the mid- and high-latitudes, reduces the North Atlantic 

meridional density gradient, and thus leads to a weakening of the AMOC. This relationship is 

consistent with the AMOC mechanism proposed by Lee and Wang, 2010, the delayed advective 

oscillation mechanism. 

 

CCSM4 and FGOALS models are in Category II, which simulate negative correlation 

between AMOC and AMO, no matter when the AMOC leads or lags the AMO. Similarly, MRI-

CGCM3 is in Category III, simulating uniformly positive correlations. This indicates that there is 

positive feedback between AMOC and AMO, and they will not oscillate unless other feedbacks, 

such as external forcing, are involved. 

 

And the fourth category includes BCC-CSM 1-1. Models in this category show a 

complicated correlation between the AMO and AMOC. 

 

The evaluation work we do here is to compare historical and last millennium AMV 

simulations in these five models based on the analyses in Chapter 3 and Chapter 4, as well as in 

the context of previous works. 
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5.1. Evaluation using the 20th century reanalysis data 

 

 The aim of this section is to compare the performance between the models during the 

instrumental period, which we have the observation and reanalysis data as reference. Providing 

the observation reference, the three leading significant components of the EOF (Empirical 

Orthogonal Function) analysis of ERA-20C reanalysis North Atlantic SST variability are shown 

in Fig. 5-1, which together explain 56.6% of the variability. 

 

The EOF 1 shows a same-sign spatial pattern for the entire North Atlantic, and the first 

principal component (PC 1) indicates an evident multidecadal variability. This spatial-temporal 

feature of SST is AMV-like. Similar to the method in Martin et al., 2014, we will use the North 

Atlantic SST PC1 time series to represent an AMV index, which is almost identical to the AMO 

index we used in the Chapter 3 [Enfield et al., 2001]. Using this AMV index, we will be able to 

compare structures of and responses to the AMV in models to observations and reanalysis. EOF 

1 explains 34.3% of the North Atlantic SST variance. 

 

The EOF 2 presents a familiar tripole pattern of SST, with the SST anomaly along 

latitudes of Gulf Stream being opposite-sign to the other regions in North Atlantic. It explains 

13.7% of the SST variance. The EOF 3 pattern looks like EOF 2 with a latitudinal shift. Both of 

PC 2 and PC 3 have shown multidecadal temporal variability, as well as variations at higher 

frequencies. These patterns will be compared by the same analyses of the SST field from 

historical simulation of the five CMIP5 models described in Table 2-1. 
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Figure 5-1. (Left) Spatial pattern and (Right) Principal components (PC) time series of the three leading 
EOFs of North Atlantic SST in the region of (0°-60°N, 0°-80°W), derived from 1900-2010 ERA-20C 
reanalysis data. 
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Compared to the reanalysis in Fig. 5-1, the EOF analysis of BCC-CSM 1.1 SSTs (Fig. 5-

2) indicates that the model cannot capture the three leading modes of the SST variability in North 

Atlantic. Both of the spatial pattern and temporal variation of the first mode do not reflect the 

observed phenomenon. The EOF 2 is similar to EOF 1 of ERA-20C reanalysis SST, but it only 

explains 14.4% of the variability. There is resemblance between the spatial pattern of EOF 3 of 

the simulated SST and EOF 2 of the reanalysis data, but the temporal variation of EOF 3 is with 

much higher frequencies. 

 

The FGOALS-s2 (Fig. 5-3) does a better job in the first mode, as it captures the same-

sign spatial pattern and multidecadal variability of PC 1 during most of the period. However, its 

EOF 1 shows a clear center at mid-latitude, rather than the horseshoe pattern in reanalysis data. 

The low-latitude arm of the AMO pattern is missing. The EOF 2 is not similar to the observed 

leading modes. As for its third mode, a tripole mode similar to the one with reanalysis data is 

captured, with similar multidecadal variability in the corresponding PC. However, due to the 

performance of the first two modes, it is not considered very effective. 

 

Same analysis of CCSM4 simulation (Fig. 5-4) finds more consistent patterns with the 

reanalysis. The first mode bears much resemblance with the EOF 1 in Fig.  5-1, with relative 

lower similarity over higher latitudes. PC 1 shows multidecadal variations, but also higher 

frequency variabilities. The EOF 2 also captures the tripole pattern, with a larger center over the 

latitudes of Gulf Stream. The third mode is also like shifting the second mode north. PC 2 and 

PC 3 contain multidecadal variabilities as observed. 
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The analysis of MPI-ESM-P outputs (Fig. 5-5) gives a horseshoe spatial pattern for EOF 

1, which is similar to the reanalysis pattern, including in the higher latitudes. PC 1 shows 

multidecadal and lower-frequency variations. The EOF 2 pattern has a concentrated center over 

the latitudes of Gulf Stream. And third mode shows a dipole between low and high latitude.  

 

MRI-CGCM3’s EOF 1 pattern (Fig. 5-6) is similar to MPI-ESM-P, but with a rather 

intense center to a more eastern position at high latitude. This pattern is not considered quite 

consistent with the reanalysis results, as it shows a too large zonal SST gradient in the higher 

latitude. Its second and third modes of EOF analysis do not capture the reanalysis patterns. All of 

the three PCs have relatively higher frequency variations too.  

 

From the EOF analysis, we can see that only CCSM4 and MPI-ESM-P model captured 

the similar patterns of the first mode of North Atlantic SST as in the reanalysis data. Also, these 

two models captured the tripole SST mode in the second EOF. However, they also have 

discrepancies compared to the reanalysis pattern, and their EOF 1 explain less variance of North 

Atlantic SST. To further investigate the performance of these models in capturing the 

relationship between the North Atlantic SST and other variables shown in Chapter 3, we 

compare the same regression maps using reanalysis data (Fig. 5-7) to the ones using model 

simulations (Fig. 5-8, 5-9). 
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Figure 5-2. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs (1850-2005) of 
model BCC-CSM 1.1. 
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Figure 5-3. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs (1850-2005) of 
model FGOALS-s2. 
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Figure 5-4. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs (1850-2005) of 
model CCSM4. 
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Figure 5-5. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs (1850-2005) of 
model MPI-ESM-P. 
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Figure 5-6. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the historical simulation outputs (1850-2005) of 
model MRI-CGCM3. 

  

To complement the regression analysis in Chapter 3 using indices, the regression 

coefficient patterns of SST, SLP, surface wind, and precipitation against North Atlantic SST PC1 

(the AMO index) using annual time series (Fig. 5-7a) and filtered time series (Fig. 5-7b) are 

presented for the ERA-20C reanalysis. Comparison of Fig. 5-7a and Fig. 3-2b indicates that the 



 

96 

 

annual reanalysis SST PC1 well-captured the AMO variability in the observation during the past 

century and the relationship between the other fields with AMO. And the plot with low-frequent 

time series (Fig. 5-7b) is also showing similar patterns as in Fig. 3-3b. From these figures, we 

can see the consistent relationship between colder North Atlantic SST, higher Azores High 

pressure, and more intense easterly trade wind.  

 

 
Figure 5-7. 1901-2010 de-trended standardized (a) annual mean precipitation (color shades over land), 
SST (color shades over ocean), Sea level pressure (contours over ocean), and Surface wind (vectors) 
regression coefficients against de-trended standardized PC1 of North Atlantic SST from ERA-20C 
reanalysis; (b) the same as (a) except using filtered data.  

 

Similar regression maps based on CCSM4 historical simulation data are shown in Fig. 5-

8. The spatial distribution of coefficients for SST shows similar pattern as in Fig. 5-7a in the 
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North Atlantic, while the corresponding part for SLP shows a center shifting much too west in 

Fig. 5-8a. The patterns for wind display a similar shift, but mostly captured the observed 

relationship between 10°-20°N. However, the significant correlation between the AMO and 

Sahel rainfall is not shown in this map, probably due to the western shift of subtropical High 

center. Besides, the plot with filtered data (Fig. 5-8b) is quite different from Fig. 5-7b. The 

relationship between the SST and other variables are generally disappears, which imply that the 

relationship between the low-frequency variables are not well simulated.   

 

 

 
Figure 5-8. Same as Figure 5-10, except for using CCSM4 historical simulation outputs, 1850-2005. 
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The same analysis based on MPI-ESM-P historical simulation are shown in Fig. 5-9. The 

regression coefficients for SLP and surface winds in Fig. 5-9a display similar patterns in the 

North Atlantic as in Fig. 5-7a. Nonetheless, the regression maps with filtered data (Fig. 5-12b) 

also shows large discrepancy from Fig. 5-7b, displaying almost no significant relationship 

between the AMO and other variables. 

 

However, there is a discrepancy between the CCSM4 and MPI-ESM-P simulations lies in 

these regression patterns. The regression maps of CCSM4 (Fig. 5-8a and 5-8b) show similar, 

same sign, regression coefficients of SST for the whole Atlantic Basin and (tropical) eastern 

Pacific. This is not shown in the same maps based on reanalysis data (Fig. 5-7a and 5-7b) or 

MPI-ESM-P simulations (Figs 5-9a and 5-9b). The interhemispheric contrast of SST is a 

fingerprint of the AMOC activity [Zhang, 2008]. Previous studies showed that both of the 

CCSM4 and MPI-ESM-P can generally capture the AMOC structure correctly, but the 

representation of AMOC-AMO relationship in these two models are different [Zhang and Wang, 

2013]. This discrepancy may come from this difference. As mentioned earlier this Chapter, The 

AMOC-AMO relationship in MPI-ESM-P is consistent with the delayed advective oscillation 

mechanism [Lee and Wang, 2010], while CCSM4 AMO oscillation suggests no internal 

oscillation mechanism. Thus, the CCSM4’s whole basin same sign AMO patterns may reflect the 

global SST variation signal which may be induced by some external forcing, while the MPI-

ESM-P can display some effect of the internal AMO variability. 
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Figure 5-9. The same as Fig. 5-10, except for based on MPI-ESM-P historical simulation, 1850-2005. 

 

 

5.2. Evaluation based on proxy data comparison 

 

The results in Chapter 4 imply that the Atlantic multidecadal variability exists before 

instrumental period. Based on this finding, we compare the CMIP5 modeling of the North 

Atlantic SST pattern again, using the last millennium simulations (850-1850) in this section. The 

results of the EOF analyses of North Atlantic SSTs from this long term simulations of the five 

models are displayed in Figs. 5-10 to 5-14. 
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The EOFs of the modeled North Atlantic SST from last millennium simulations of the 

five models show similar spatial patterns as their counterparts using historical runs (Figs. 5-2 to 

5-6). The EOF 1 of CCSM4 (Fig. 5-12) and of MPI-ESM-P SSTs (Fig. 5-13) have same sign 

over the North Atlantic basin, and are most similar to the EOF 1 of reanalysis SST in Fig. 5-1. 

 

To investigate the stationarity of this spatial pattern, we obtained 20 random samples of 

consecutive 91-year North Atlantic SST field from the 1000 year simulation of each model, by 

applying a 91-year moving-blocks bootstrap sampling method. By comparing the EOF 1 of the 

20 samples from each model, we found that the MPI-ESM-P gives AMO-like patterns in most of 

its samples, while CCSM4 shows less stationarity. For CCSM4, the EOF 1 spatial pattern 

demonstrates an alternation between its EOF 1 and EOF 2 patterns of the historical run (as in 

Fig. 5-4), during the 1000 year period.  
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Figure 5-10. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation outputs (850-1850) 
of model BCC-CSM 1.1. 
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Figure 5-11. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation outputs (850-1849) 
of model FGOALS-s2. 
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Figure 5-12. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation outputs (850-1850) 
of model CCSM4 
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Figure 5-13. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation outputs (850-1849) 
of model MPI-ESM-P. 
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Figure 5-14. (Left) Spatial pattern and (Right) PC time series of the three leading EOFs of North Atlantic 
SST in the region of (0°-60°N, 0°-80°W), derived from the past millennium simulation outputs (850-1850) 
of model MRI-CGCM3 
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The wavelet analyses of the AMO index (PC 1 time series) from the last millennium 

simulations of the two models also show this difference in the stationarity of multidecadal 

variabilities. Wavelet analysis of CCSM4 displays a primary peak of variance around AD 1200 

at 20-100 year periodicities (Fig. 5-15, bottom), but the variance at these multidecadal 

periodicities disappears before AD 1100. The same analysis of the PC 1 time series from MPI-

ESM-P shows a more persistent active multidecadal variability throughout the 1000 years, with 

the same largest peak near 1200 (Fig. 5-16, bottom). Both of the two model simulations three 

AMO variance peaks, near AD 1200, AD 1400, and AD 1800, respectively. These peaks are 

concurrent with the reconstructed occurrence of major tropical strong volcanic eruptions (SVEs) 

[Crowley, 2000].  

 

In Zanchettin et al., 2013, unforced, naturally-forced, and anthropogenically-forced 

experiments of simulating multidecadal-to-centennial SST variability are performed, using MPI-

ESM-P model for the last millennium. Among other conclusions, they found that bidecadal and 

near-centennial North Atlantic SST variabilities are sensitive to natural forcing, especially to 

SVEs. During periods dominated by external forcing, the AMO simulation among ensemble 

members are more coherent.  
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Figure 5-15. Same as Fig. 4-1 except using the PC1 of North Atlantic SST from the past millennium 
simulation outputs (850-1850) of model CCSM4 
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Figure 5-16. Same as Fig. 4-1 except using the PC1 of North Atlantic SST from the past millennium 
simulation outputs (850-1850) of model MPI-ESM-P 
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The regression maps derived from MPI-ESM-P past millennium simulation data are given 

in Fig. 5-17. All the variables used in Fig. 5-24b are filtered by a 50-100 year Lanczos band pass 

filter. The regression coefficients of annual North Atlantic SST, SLP and near-surface wind on 

the North Atlantic SST PC1 (Fig. 5-17a) display similar patterns as in reanalysis during the past 

century (as in Fig. 5-7a). However, the spatial patterns of the regression derived from filtered 

data can only indicate that simulated negative AMO index corresponds to cold North Atlantic 

SST.  

 

 
 

Figure 5-17. MPI-ESM-P past millennium simulation (850-1849) derived de-trended standardized (a) 
annual mean precipitation (color shades over land), SST (color shades over ocean), Sea level pressure 
(contours over ocean), and Surface wind (vectors) regression coefficients against de-trended 
standardized PC1 of North Atlantic SST; (b) the same as (a) except using 50-100 year band pass filtered 
data. 
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As in Chapter 3, we also regress the JAS season variables on this PCA-based AMO index 

(Fig. 5-18). Comparing Fig. 5-18a with Fig. 3-4b and Fig. 5-18b with Fig. 3-8b, we found that 

the regression patterns derived from both of the unsmoothed and filtered data indicate that in 

JAS season, colder SSTs associate with higher Azores High pressure and stronger easterly trade 

winds at tropical North Atlantic Ocean.  

 

 

Figure 5-18. the same as Figure 5-17 except for using JAS mean data instead of annual mean. 

 

The variability of AMO has important impacts on low latitude circum-Atlantic climate in 

summer/fall season. One of the examples is that it can influence summer/fall Sahel rainfall, at 

multidecadal timescales. Cold AMO phase is associated with reduced summer/fall Sahel rainfall 

and increased atmospheric dust. And the trade wind can bring the positive anomaly of dust 
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across tropical Atlantic, which can also influence Atlantic SST by altering the radiation factors. 

CMIP5 model performance in simulating this AMV-Sahel rainfall teleconnection is also 

evaluated in a previous study [Martin and Thorncroft, 2014]. However, the relationship between 

AMV and Sahel rainfall is not well simulated in MPI-ESM-P. 

 

5.3. Discussion of a model SST projected Globigerina bulloides index  

 

Considering the G. bulloides-North Atlantic SST relationship established in the 

observation, we would like to see how much of the variance of G. bulloides abundance in the 

past can be explained by a G. bulloides abundance index projected from MPI-ESM-P North 

Atlantic SST field based on this relationship. We applied a stepwise regression model in Kim et 

al. [2014] to do the projection, which is detailed as follows. 

 

Firstly, we consider G. bulloides abundance as the predictand (𝐺𝑏(𝑡)) and North Atlantic 

SST as the predictor (𝑆𝑆𝑇(𝑥, 𝑡)).  The spatial grids are denoted as x, and the temporal points are 

indicated by t. During the training period (K), 1900 to 1990, the covariance pattern 𝐶𝑜𝑣(𝑥) 

between G. bulloides abundance and reanalysis North Atlantic SST field in a domain D is 

calculated as: 

𝐶𝑜𝑣(𝑥) =
1

𝐾
∑ 𝐺𝑏(𝑡)𝑆𝑆𝑇(𝑥, 𝑡).           (5.1)

𝐾

𝑡

 

The domain D is defined by the grids (x) on which the correlation between the 𝑆𝑆𝑇(𝑥, 𝑡) and 

𝐺𝑏(𝑡) are significant over the training period.  
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Then, the predictor field 𝑆𝑆𝑇(𝑥, 𝑡) is projected onto the covariance pattern to get a time 

series P(t): 

P(t) = ∑ 𝐶𝑜𝑣(𝑥)𝑆𝑆𝑇(𝑥, 𝑡).                  (5.2)

𝐷

𝑥

 

The regression coefficient 𝛼 is computed during the training period (K), based on the 

time series P(t) and the predictand 𝐺𝑏(𝑡): 

 

𝛼 =  
∑ 𝐺𝑏(𝑡)𝑃(𝑡)𝐾

𝑡

∑ 𝑃(𝑡)2𝐾
𝑡

.                                    (5.3) 

 

To use cross-validation to compute an approximation to the variance of the residual term 

ε in the model, 𝐺𝑏(𝑡)~ 𝛼𝑃(𝑡) +  𝜖, we do the leave-one-out validation on the 91-year training 

sets 𝐺𝑏(𝑡) . In detail, for each i from 1 to N (N = 91 in our training data), compute the 

corresponding 𝛼 and 𝑃(𝑡) , denoted by 𝛼𝑖 and 𝑃𝑖(𝑡), as in (5.2) and (5.3), using the values of 

𝐺𝑏(𝑡)  and 𝑆𝑆𝑇(𝑥, 𝑡)  for 𝑡 ≠ 𝑡𝑖 . Then the prediction of 𝐺𝑏(𝑡𝑖) is given by  𝛼𝑖𝑃𝑖(𝑡𝑖) . The 

correlation between the series 𝐺𝑏(𝑡) and the predictions is as high as 0.63. 

 

Our estimate of the expected variance of the residual is given by 

𝑀𝑆𝐸 =  
1

𝑁
∑ [𝐺𝑏(𝑡𝑖) − 𝛼𝑖𝑃𝑖(𝑡𝑖)]2𝑁

𝑖=1  .                            (5.4) 

MSE is computed to be 87946.87. As the variance of the series 𝐺𝑏(𝑡) is 146470.2, the 

fraction of variance unexplained is 0.6. 
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Then, by projecting the predictor field 𝑆𝑆𝑇(𝑥, 𝑡𝑓) in the simulation period 𝑡𝑓 (850-1849 

for last millennium simulation, 1861-2005 for historical simulation) onto the covariance pattern 

obtained from the training period (𝐶𝑜𝑣(𝑥)), predicted value 𝑃(𝑡𝑓) is derived as: 

P(𝑡𝑓) = ∑ 𝐶𝑜𝑣(𝑥)𝑆𝑆𝑇(𝑥, 𝑡𝑓).                  (5.5)

𝐷

𝑥

 

By multiplying the predicted time series 𝑃(𝑡𝑓)  by the regression coefficient  𝛼 , the 

predicted anomalous abundance of G. bulloides during the simulation period 𝐺𝑏(𝑡𝑓) can be 

calculated as: 

Gb(𝑡𝑓) =  𝛼P(𝑡𝑓).                                              (5.6) 

 

Finally, the average abundance of G. bulloides over the training period is added to the 

anomaly to obtain the projected index.  

 

This projected index using the MPI-ESM-P historical simulation of SST is shown in Fig. 

5-19, together with the G. bulloides abundance data during 1900-1990, the same time span as the 

training period. During this time period, the variance of the projected index is 36423, and the 

variance of G. bulloides abundance data is 146470. The fraction of variance unexplained by the 

index is 0.75. 

 

And the projected index using MPI-ESM-P last millennium simulation SST is displayed 

in Fig. 5-20 with G. bulloides abundance data during 1165-1849. During this time period, the 

variance of the projected index is 53645.7, and the variance of G. bulloides abundance data is 

210986. The fraction of variance unexplained by the index is also 0.75. 
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Figure 5-19. Comparison of G. bulloides abundance data (red) and the index projected from MPI-ESM-P 
historical simulation of SST (blue) during 1900-1990. 

 
 

 
Figure 5-20. Comparison of G. bulloides abundance data (red) and the index projected from MPI-ESM-P 
last millennium simulation of SST (blue) during 1165-1850. 
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The regression model has a fraction of variance unexplained (FVU) of 0.6, using training 

set of data in the cross-validation. The projected G. bulloides abundance index captured about 

one fourth of the variance of the G. bulloides abundance data, using historical simulation or last 

millennium simulation SST from MPI-ESM-P model. In previous study, the discrepancies in 

SST variability between General circulation model simulations and proxy data are found to be 

large [Laepple and Huybers, 2014]. When we use the last millennium simulation data as test 

data, we should be aware of possible variance reduction due to model’s potential underestimation 

of paleoclimate SST. However, in this calculation, the unexplained fraction of variance does not 

increase as the length of test data extends back from about a hundred years to a thousand years 

long. In this case, maybe the smoothing by the regression model plays the primary role in the 

variance difference between projected index and the paleoclimate data, while the model-proxy 

data difference does not influence the result too much. 

 

5.4. Summary 

 

Among the five models in comparison, the MPI-ESM-P and CCSM4 historical 

simulations can better capture the AMO-like leading EOF of North Atlantic SST. The EOF 

analysis of SST and SLP from the past millennium simulations of each model gives similar 

patterns as its counterpart from the historical run. MPI-ESM-P simulates rather stationary AMV 

during the past 1000 years. It also simulates similar relationship between summer/fall North 

Atlantic SST, Azores High pressure, and trade wind as what is observed during the recent 

century.  
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Chapter 6. Conclusion and Discussion 

6.1. Conclusions 

 

In this research, we used the reanalysis data, paleoclimate proxies, and model simulation 

outputs to study the Atlantic multidecadal variabilities (AMV) in the past millennium. Cariaco 

Basin G. bulloides abundance data is the focus in the study, due to its high temporal resolution, 

geographic location, marine-based data source, and evident covariation with the North Atlantic 

SST multidecadal variability in the past century. We suspected that it contains the AMV signal, 

and tested this hypothesis with observation, reanalysis and other paleoclimate data. 

 

The relationship of the G. bulloides abundance data with Atlantic climate variability in 

the past century is established based on the instrumental observation and reanalysis. The 

interannual and multidecadal variations of Cariaco Basin G. bulloides are both associated with 

lower North Atlantic SST, higher subtropical pressure, stronger tropical North Atlantic easterly 

zonal wind, and reduced Sahel rainfall. This relationship is shown to be robust during the 

summer/fall seasons also, which establishes a connection between Cariaco Basin G. bulloides 

abundance data and Sahel summer/fall precipitation. Moreover, the seasonal analysis also 

provides a possibility to compare this data with proxies reflecting summer/fall climate 

variabilities.  

 

The AMO index has association with the Cariaco Basin G. bulloides abundance data. 

Other than enhanced upwelling at Cariaco Basin, the cold phase of AMO is also related to more 
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Sahel dust and stronger low level easterly wind across the tropical North Atlantic. The easterly 

wind can bring the anomalous dust to Cariaco Basin sea surface and contribute to the G. 

bulloides production boost. Considering the relationship established between the AMO and 

Cariaco Basin G. bulloides abundance data using observation and reanalysis data, we consider 

that this paleoclimate data is able to reflect the AMO in the past century. 

 

Putting the G. bulloides abundance data in the context of other North Atlantic 

paleoclimate data sets, we found that its multidecadal variations is consistent with the SST 

reconstruction at Eastern Tropical Atlantic [Kuhnert and Mulitza, 2011] and Puerto Rico 

[Kilbourne et al., 2008], at the same timescales. In addition, multidecadal variability of G. 

bulloides abundance has a same-sign relationship with NAO reconstructions that are based on 

Bermuda [Goodkin et al., 2008a] and based on northeastern North Atlantic to Europe 

[Luterbacher, 2002] at the same multidecadal timescales. These results attest that AMV exists 

before industrialized era, rather than being anthropogenic forced. They also indicate that 

multidecadal G. bulloides abundance can reflect the AMO during its whole time span. 

  

Five CMIP5 models are compared in simulating the AMV in the past century, based on 

the relationship established with reanalysis data. MPI-ESM-P stands out in the comparison with 

better performance in capturing the AMO-like pattern of North Atlantic SST variability. As the 

Atlantic multidecadal variability is found to exist before instrumental period, we also compared 

the past millennium simulations (850-1850) of the CMIP5 models. MPI-ESM-P simulates AMV 

throughout most of the past 1000 years, as well as observed relationship between summer/fall 

North Atlantic SST, Azores High pressure, and trade wind during the past century.  
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6.2. Discussion and future work 

 

This study is mainly focused on AMV at low-latitude during the past millennium. As we 

were establishing the relationship between the AMV with the paleoclimate data, as well as with 

other climate variabilities, we confined the study area to Atlantic Ocean. This choice is valid in 

this study as our goal is to find out the spatial characteristics of the low-latitude AMV. However, 

as we proceed to in-depth study of the mechanisms, global perspective is need. In the next step, 

we plan to firstly examine the connection between AMV and another two important oceanic 

climate variabilities, the Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation 

(ENSO). And we will also expand our paleoclimate data comparison accordingly, both in terms 

of locations and variables. A more comprehensive picture of the past North Atlantic climate 

variability should be formed in the context of the global climate change. 

 

As for the model evaluation, the intercomparison work is aimed at finding out a model 

that is able to capture the AMV. In the short periods, such as in the last century, de-trending is 

considered to be enough to remove the external forcing. However, other methods should be 

applied to differentiate the internal variability from the external forcing in longer time series. 

Currently, we are using moving-block bootstrapping to sample short time periods to compare the 

piece-wise variabilities. But a better approach could be to include a long pre-industrial control 

experiment in the comparison. This will be done in the future study. After we include more 

models in the comparison and find a best performed one in simulating the AMV, we would also 

like to use it to study the mechanisms of the AMV by executing proper experiments.  
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