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Abstract of the Dissertation 

Improving and Understanding Climate Models: Scale-Aware Parameterization of Cloud 

Water Inhomogeneity and Sensitivity of MJO Simulation to Physical Parameters in a 

Convection Scheme 

by 

Xin Xie 

Doctor of Philosophy 

in 

Marine and Atmospheric Science 

Stony Brook University 

2017 

Microphysics and convection parameterizations are two key components in a climate model to 

simulate realistic climatology and variability of cloud distribution and the cycles of energy and 

water. When a model has varying grid size or simulations have to be run with different resolutions, 

scale-aware parameterization is desirable so that we do not have to tune model parameters tailored 

to a particular grid size. The subgrid variability of cloud hydrometers is known to impact 

microphysics processes in climate models and is found to highly depend on spatial scale. A scale-

aware liquid cloud subgrid variability parameterization is derived and implemented in the 

Community Earth System Model (CESM) in this study using long-term radar-based ground 

measurements from the Atmospheric Radiation Measurement (ARM) program. When used in the 

default CESM1 with the finite-volume dynamic core where a constant liquid inhomogeneity 

parameter was assumed, the newly developed parameterization reduces the cloud inhomogeneity 

in high latitudes and increases it in low latitudes. This is due to both the smaller grid size in high 

latitudes, and larger grid size in low latitudes in the longitude-latitude grid setting of CESM as 

well as the variation of the stability of the atmosphere. The single column model and general 

circulation model (GCM) sensitivity experiments show that the new parameterization increases 

the cloud liquid water path in polar regions and decreases it in low latitudes. 
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Current CESM1 simulation suffers from the bias of both the pacific double ITCZ precipitation 

and weak Madden-Julian oscillation (MJO). Previous studies show that convective 

parameterization with multiple plumes may have the capability to alleviate such biases in a more 

uniform and physical way. A multiple-plume mass flux convective parameterization is used in 

Community Atmospheric Model (CAM) to investigate the sensitivity of MJO simulations. We 

show that MJO simulation is sensitive to entrainment rate specification. We found that shallow 

plumes can generate and sustain the MJO propagation in the model. 
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Chapter 1 Introduction 

Cloud microphysics and convection parameterizations are two important components of a 

climate model to simulate cloud processes and the cycles of energy and water in the atmosphere. 

Cloud microphysics parameterization calculates the sources and sinks of the hydrometeors in the 

model. An important process in a cloud microphysics scheme is the conversion rates among 

various cloud hydrometeor species in the atmosphere. The representation of microphysics 

conversion rate directly determines the distribution and properties of clouds. Since cloud has great 

impact on the radiation transfer, microphysics can play an important role in changing the energy 

budget in the climate simulation.  

Convection parameterization describes the unresolved subgrid vertical transport within a spatial 

domain as a result of vertical instability of the atmosphere. It redistributes heat and moisture in a 

vertical direction. During the ascending or descending motion of the air in convection, 

microphysical processes such as condensation or freezing takes place. These processes may form 

clouds, sources and sinks of heat and moisture, leading to precipitation. As a result, the convection 

parameterization greatly controls the distribution of cloud and precipitation, which is especially 

significant in the tropics. The heating produced by convection usually has a large impact on many 

types of atmospheric variability in the tropics such as Madden Julian Oscillation (MJO). Therefore, 

simulations of clouds, precipitation and atmospheric variability in climate models are greatly 

impacted by microphysics and convection parameterizations.  
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1.1 Cloud Subgrid Variability 

Because climate models prognostically calculate grid-averaged atmospheric physical variables, 

subgrid-scale variability need to be parameterized. Early models assumed homogeneous cloud 

hydrometer distributions within clouds. For example, the radiation in early GCMs was solved by 

a one-dimensional radiative transfer equation, which assumes that cloud layer is horizontally 

uniform [Stephens et al., 1991]. However, homogeneous clouds are usually more attenuative 

relative to more realistic variable cloud with the same optical thickness [Barker et al., 2008]. Later 

studies showed that the such homogeneity approximation could lead to more than 10% bias in 

calculating cloud albedo [Cahalan et al., 1994]. Therefore, the impact of subgrid variability on the 

radiation parameterization has been introduced to provide more accurate radiative flux calculations 

One way to include this inhomogeneity effect involves describing variable cloud property with a 

distribution and integrating this PDF. For example, Barker et al. [1996] has found that the cloud 

optical depth distribution over several cloud types could be described by a Gamma distribution so 

they have proposed a parameterization to correct the homogeneity bias. Pincus et al. [1999] 

suggested that the mean and the dispersion of cloud optical thickness may also depend on cloud 

types and provide a basis for the subgrid variability parametrization. 

An alternative method to introduce subgrid variability is the use of sub column method. The 

sub column method requires a reconstruction of cloud structure within a grid box so that its sample 

statistics are consistent with the large-scale cloud variables. Raisanen et al. [2004] described a 

possible way to specify such stochastic cloud structure based on cloud fraction, univariate cloud 

water amount distribution and a cloud overlap assumption. When a homogeneous radiation 

calculation could be conducted over each sub column, the total impact given by the averaged flux 

proved to be more accurate [Barker et al., 1999]. The advantage of a sub column method is that it 
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could be used with the homogeneous radiative calculation to automatically include subgrid 

variability impact. However, the computing cost of sub column will be multiplied by the sub 

column number. To reduce the computing time, Pincus et al. [2003] has suggested the Monte Carlo 

independent column approximation (McICA), which calculates the radiation of a spectral interval 

only once for a sub column.  

Inhomogeneity of cloud properties not only affect radiation calculation, it also impacts cloud 

microphysics. Microphysics problem is usually represented by two types of models: explicit bin 

models and bulk parameterization [Straka, 2009]. Since GCM has a much larger grid size than 

LES, the subgrid variability from cloud variables can play a significant role so its impact could not 

be neglected. Efforts have been made to incorporate inhomogeneity information in the cloud 

microphysics parameterizations. Pincus and Klein [2000] has estimated the impact of subgrid 

variability in cloud condensate on radiation in both horizontal and vertical directions and they 

suggested that either tuning or statistical cloud schemes is necessary to account for the impact. 

Morrison and Gettelman [2008] has introduced inhomogeneous cloud liquid amount with a 

Gamma distribution in their microphysics parameterization. An integration of this Gamma 

distribution leads to an adjustment factor in the microphysics conversion rates between 

hydrometeors so that the cloud liquid subgrid variability could be accounted for. Golaz et al. [2002] 

has designed subgrid variability schemes for boundary layer cloud using prognostic probability 

distribution functions (PDF). Khairoutdinov and Kogan [2000] have coupled each model grid with 

a cloud resolving model so that more subgrid cloud dynamics could be represented. 

1.2 Scale Dependence of Cloud Water Inhomogeneity 

When subgrid variability is included, it is meant to represent the portion that cannot be resolved 

within a spatial domain. Observations have shown that the amount of subgrid variability depends 
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on the domain size, namely the scale of the model grids. When subgrid variability is accounted for 

in a parameterization, its parameters are usually designed for a fixed domain size. For example, 

Khairoutdinov and Kogan [2000] has emphasized that their proposed bulk microphysics scheme 

cannot be simply extrapolated for use in large-scale models due to nonlinear dependence of water 

conversion rates on local cloud variables. If a model resolution changes or a model has different 

grid sizes, the parameters have to be modified to adapt to different scales. The tuning is tedious so 

it is desirable that a scale-dependent relationship could be derived from observations. Since 

currently most climate models do not have such a scale dependence description, it would be also 

valuable to understand the impact of scale dependence of inhomogeneity in climate model 

simulation. Early observational cloud subgrid variability was calculated using cloud optical depth. 

Barker et al. [1996] has used Gamma distribution to fit the cloud optical depth derive from 45 

Landsat 28.5m resolution images and  the subgrid variability represented by Gamma shape 

parameter has been provided for different cloud types. Oreopoulos and Cahalan, 2005] have given 

a global distribution of subgrid variability for summer and winter using 1°×1  Moderate Resolution 

Imaging Spectroradiometer (MODIS) data. The comparison of the previous studies indicate the 

strong dependence of cloud subgrid variability on scale, cloud types and atmospheric conditions 

[Shonk et al., 2010;Kawai and Teixeira, 2011]. 

The scale dependence of cloud subgrid variability can be described by parameterization so that 

the calculation in radiation and microphysics can be made scale-aware. Hogan and Illingworth 

[2003] presented ice water content inhomogeneity parameterization with a linear empirical 

relationship with grid size and vertical shear of the horizontal wind from cloud radar observations. 

Hill et al. [2012] provided another parameterization for the horizontal inhomogeneity of ice water 

content based on nonlinear relationship on horizontal scales and cloud amount. Boutle et al. [2013] 
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extended the Hill et al. [2012]’s formulation to liquid water content and precipitation and showed 

that such parameterization could correct the microphysics bias significantly. 

Climate Research Facility Continuous Baseline Microphysical Retrieval (MICROBASE) 

value-added product (VAP) is a ground-based observation that provides the primary microphysical 

parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective 

radius [Johnson et al., 2011]. Its high temporal and vertical resolution provides another possibility 

for cloud subgrid variability study. For the parameterization, previous method has used scale size 

and cloud fraction as independent variables. As Kawai and Teixeira [2011] suggested, atmospheric 

stability could be candidate too. Alternative observation and parameterization may be worth trying 

and actual simulation could be conducted to evaluate the scale impact. 

Objective 1: 

This dissertation aims to understand and parameterize the scale dependence of cloud liquid 

inhomogeneity by using the observational MICROBASE data. A parameterization of liquid cloud 

subgrid variability is presented. The observational analysis could be used to verify cloud liquid 

inhomogeneity parameterization in any model. We have implemented this parameterization in the 

microphysics scheme of the CESM and investigated its impact on GCM simulations. 

1.3 MJO Simulation Sensitivity to Convection Parameters 

Madden and Julian Oscillation (MJO) is an intraseasonal oscillation in tropical atmosphere 

[Madden and Julian, 1971]. It is characterized by the planetary convection activities, forming from 

Indian ocean, propagating eastward at a speed about 3-5m/s, and finally dissipating in the central 

Pacific ocean [Zhang, 2005]. It not only is a remarkable tropical phenomenon but also has wide 

connections with other components of the climate system, such as Asian-Australian monsoon, 

ENSO, tropical cyclones, or even extratropical circulation and weather [WALISER et al., 2009]. 
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The MJO simulation in a climate model is one major performance metric of the model, which can 

have great impact on many other aspects of the model. 

It has been reported twenty years ago that most GCMs are not able to capture the intraseasonal 

oscillation found in the analyses [Slingo et al., 1996]. Despite significant efforts in the community 

since then to improve the simulation of MJO, many models still fail to simulate MJO. [Lin et al., 

2006] showed that only 2 out of 14 models are able to capture the MJO variance close to 

observations. Many studies have examined the sensitivity of MJO simulation to convective 

parameterizations. For example, Khairoutdinov et al. [2005] has replaced the traditional 

convective parameterization in each grid with a coupled cloud resolving model, referred to as the 

super parameterization, and found that this explicit model is able to simulate more realistic MJO. 

Li et al. [2009] found that an artificially lowered latent heating in a climate model may help 

enhance the eastward propagation. Zhang [2005] showed that a convection scheme with a revised 

closure and a relative humidity triggering could improve the MJO intensity. But it is still not clear 

what parameters or design of convection parameterization could be the key for realistic MJO 

simulation. Moreover, few studies have investigated the relative roles of deep and shallow 

convection in MJO simulations. 

The convection parameterization accounts for subgrid variability by describing the impact of 

an ensemble of convective clouds to the environment. Traditional convection parameterization is 

usually designed for either shallow convection or deep convection [Park and Bretherton, 2009; 

Zhang and McFarlane, 1995]. Recent developments of convection parameterizations have started 

to include more subgrid varieties of convective plumes so that convections with different heights 

are described in a unified framework. For example, Chikira and Sugiyama [2010] has developed 

a multiple-plume convection parameterization, in which each plume is specified by an initial 
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vertical velocity, and the entrainment rate is solved by a parcel lifting equation. In such 

configurations, both shallow convection and deep convection could be potentially represented 

consistently. Park [2014] has also described a unified multiple-plume convection scheme that aims 

to simulate dry-moist, forced-free, and shallow-deep convection with a single framework. 

Improved simulations of MJO have been reported by using such schemes. 

Objective 2: 

This thesis aims to understand the relative roles of deep and shallow convection in simulating 

MJO. We implemented a general multi-plume mass flux convective parameterization scheme into 

the CESM that follows that follows the framework of Arakawa and Schubert [1974] and Chikira 

and Sugiyama [2013]. The scheme is general and flexible enough to investigate the sensitity of 

MJO simulations to key processes in a convective parameterization. Our effort is not directed to 

improve the overall performance of climate simulation in the CESM. Instead, it is to understand 

the sensitivity of MJO simulations to physical assumptions under the framework of the multi-

plume convective parameterizations. 

1.4 Outline 

This dissertation is organized into two major chapters. Chapter 2 describes our finding for the 

scale dependence of cloud liquid inhomogeneity by using observational data. A parameterization 

was proposed and evaluated in CESM model. This chapter has been published as Xie and Zhang 

[2015]. Chapter 3 is the investigation of MJO sensitivity to several convection parameters and 

options. A multiple-plume is implemented into CESM and used as a tool to understand the model 

sensitivity. The last chapter summarizes the conclusions and describes future work. 





 

Chapter 2 Scale-aware Liquid Cloud 

Inhomogeneity Parameterization for the CESM 

2.1 Motivation 

The physical parameterizations of subgrid processes are crucial for realistic climate simulation 

in climate models. They are usually designed based on physical assumptions with empirically 

determined parameters. Because the subgrid processes depend on the size of the model grids, these 

parameters need to be tuned for different resolutions of the model. Tuning a model is not only 

tedious, but also difficult when variable resolutions of drastically different grid sizes need to be 

used, such as the regional refinement of grids [Taylor et al., 2008]. Therefore, it is of great interest 

to develop scale-aware parameterizations to make them resolution independent. 

The subgrid variability of cloud hydrometers is known to impact radiation and microphysics 

processes in climate models. It was introduced into the general circulation models (GCMs) in 

Cahalan et al. [1994] and Barker [1996] to correct the radiation flux biases over horizontally 

inhomogeneous clouds. Relative to homogeneous clouds, the subgrid-scale variability of cloud 

water reduces the grid-averaged albedo of solar radiation. The larger the inhomogeneity of cloud 

water within a grid cell, the more efficient the autoconversion and accretion of liquid water to 

rainwater because of the nonlinear dependence of the conversion rate on liquid water content [e.g., 

Morrison and Gettelman, 2008]. Several types of methods have been used to describe the subgrid 

variability of cloud water in large-scale models. Some studies represented it with the sub column 

method, which statistically reconstructs the internal cloud structure by using large-scale cloud 

fraction information and overlapping assumption [Jakob and Klein, 1999; 2000; Jess et al., 2011; 

Pincus and Stevens, 2009; Pincus et al., 2003; Pincus et al., 2006; Raisanen et al., 2004]. Other 
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studies sought to specify the assumed probability density function (PDF) of cloud quantities 

diagnostically or prognostically [Bogenschutz and Krueger, 2013; Golaz et al., 2002; Larson and 

Golaz, 2005; Norris et al., 2008; Tompkins, 2002] so that the subgrid variability effect can be 

accounted by integrating the cloud PDF for microphysics [Larson and Griffin, 2013; Pincus and 

Klein, 2000; Weber and Quaas, 2012; Wood et al., 2002] and for radiation calculations [Shonk and 

Hogan, 2008; 2010; Shonk et al., 2010]. 

Previous studies have pointed out the strong dependence of subgrid variability on the horizontal 

scale and other atmospheric conditions. However, few studies have investigated how to 

quantitatively describe these dependences. Pincus et al. [1999] related the cloud subgrid variability 

to the underlying cloud types. Oreopoulos and Cahalan [2005] gave a very comprehensive survey 

for the 1°×1° global cloud inhomogeneity climatology including latitudinal, seasonal, and diurnal 

change using MODIS data. Kawai and Teixeira [2011] examined the probability density function 

of marine boundary layer clouds and pointed out its implications for cloud parameterization. These 

studies provided very valuable observational base to formulate cloud inhomogeneity, even though 

they did not directly derive the cloud inhomogeneity parameterizations for large-scale models. 

Hogan and Illingworth [2003] was the first study that described a linear empirical relationship of 

ice water content inhomogeneity with grid size and vertical shear of the horizontal wind from cloud 

radar observations. Hill et al. [2012] provided another parameterization for the horizontal 

inhomogeneity of ice water content based on nonlinear relationship on horizontal scales and cloud 

amount. Boutle et al. [2013] extended the Hill et al. [2012] formulation to liquid water content and 

precipitation. These two recent parameterizations used both cloud fraction and horizontal scale as 

the predictor variables. Our study differs from theirs by including other meteorological conditions. 
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According to Kawai and Teixeira [2011], the in-cloud liquid inhomogeneity should also depend 

on atmosphere instability, which will be used in the parameterization derivation of this study. 

The objective of this study is to use the long-term high-resolution data of cloud water from the 

Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program at different 

latitudes to develop a scale-aware parameterization of cloud water inhomogeneity on resolved 

atmospheric instability. A second objective is to understand the impact of the parameterization on 

the simulated climate by the Community Earth System Model (CESM). Recently, Huang et al. 

[2014] used the same dataset to study the standard deviation, relative dispersion (the ratio of the 

standard deviation to the mean), and skewness of cloud liquid water. They reported the dependence 

of these parameters on the length of the averaging time. Our work differs from their study in that 

we focus on the dependences on the spatial length scale and the atmospheric conditions, and we 

target them for parameterizations in large-scale models. An outline of this study is as follows. 

Section 2.2 describes the observational data and methods that we use to estimate the liquid cloud 

inhomogeneity. Section 2.3 shows the relationship of the cloud inhomogeneity parameter with 

scale, location, and season. A parameterization is presented. Section 2.4 presents the results of the 

impact of the new parameterization in CESM single column and General Circulation Model (GCM) 

experiments via the autoconversion and accretion microphysics processes. Section 2.5 contains a 

summary. 

2.2 Data and Model 

This study uses the ground-based Climate Research Facility Continuous Baseline 

Microphysical Retrieval (MICROBASE) value-added product (VAP) developed by ARM 

[Johnson and Jensen, 2011]. MICROBASE combines measurements from 35-GHz millimeter 

wavelength cloud radar, ceilometer, micropulse lidar, microwave radiometer, and balloon-borne 
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radiosonde soundings to produce cloud water vertical profile [Johnson et al., 2011]. Its latest 

version MICROBASEPI2 provides instantaneous liquid water content profile in 10 second time 

intervals and 512 vertical levels, each layer 43m thick. The resultant temporal resolution is 

sufficient to capture the small-scale cloud profile for the present study of cloud variability. The 

quality control flags supplied by the product classify the liquid data into bad, indeterminate, and 

good categories. The good flag has excluded many questionable measurements, for example liquid 

water content out of normal range or with precipitation contamination, so only the liquid water 

content data with good quality flag are used in this study. As a common problem for cloud radar 

reflectivity data, drizzle may introduce positive bias to liquid water content in lower altitude and 

this could result in some uncertainty in parameterization derivation. But since we use the ratio of 

cloud water content mean to its variance (shown later in Equation (2.2)), the error introduced by 

incorrect scaling should be small. Because our focus is only on in-cloud liquid inhomogeneity, 

only data with liquid water content greater than zero are used. Data from the ARM sites at Barrow 

(NSA C1), Lamont (SGP C1), and Darwin (TWP C3) are selected to represent high, middle, and 

low latitudes respectively. To demonstrate the capability of MICROBASEPI2 dataset, Figure 2.1 

gives two examples of short-term MICROBASEPI2 temporal variation of liquid water content 

above two of the ARM sites. Figure 2.1 (a) shows middle and low clouds at SGP C1, while Figure 

2.1 (b) shows deep convective clouds at TWP C3. With the high temporal 10s resolution, the data 

reveal more small-scale details in the liquid cloud distributions. 

To study the spatial scale dependence of liquid cloud inhomogeneity, the ground-based 

MICROBASE cloud measurements in temporal coordinate cannot be used directly. We assume 

ergodicity of clouds or Taylor hypothesis so that the spatial variability can be deduced with the 

cloud data and wind data combined. Grützun et al. [2013] suggested that the ergodicity assumption 
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of ground-based remote sensing data may introduce bias for cloud spatial variability studies within 

a short time period. Therefore, we used three years of long-term data (from 2008-2010) in this 

study to alleviate possible bias. Wind velocity from the ARM Best Estimate Data Product [Xie et 

al., 2010], with vertical resolution 45m and 6 hour temporal interval is integrated at each vertical 

level to calculate what distance the cloud field has moved. This transformation converts the 

temporal variation into spatial distribution. 

In spatial coordinate, we quantify the in-cloud liquid cloud inhomogeneity by using the shape 

parameter 𝜈 of a Gamma distribution at different spatial scales. The same Gamma distribution is 

used in the cloud microphysical scheme of CESM [Morrison and Gettelman, 2008] to calculate 

the auto-conversion and collision-coalescence processes of cloud droplets with a specified value 

of 1.0 for the shape parameter. A Gamma distribution is assumed because it has been found to fit 

observational cloud water well [e.g., Barker et al., 1996; Huang et al., 2014]. The Gamma 

distribution is written as 

 
𝑃(𝑞) =

1

Γ(𝜈)

1

𝜃𝜈
𝑞𝜈−1𝑒−

𝑞
𝜃 

(2.1) 

where 𝜈 is the shape parameter and 𝜃 is the scale parameter. The shape parameter ν in the Gamma 

function can be written as 

 
𝜈 =

𝑞̅2

𝜎2
 

(2.2) 

where 𝜎2 is the variance of in-cloud liquid water mixing ratio 𝑞 and 𝑞̅ is the mean of 𝑞. The shape 

parameter 𝜈 of liquid water is calculated using maximum likelihood method (MLE) [Thom, 1958] 

from the MICROBASE data for clouds of different spatial scales (including both clear-sky and 

cloudy conditions). Every four vertical levels of MICROBASE data are combined into one level, 

in order to obtain more liquid samples to do distribution estimation. The ARM Best Estimate 
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Dataset (ARMBE) is also used in the derivation of the parameterization to understand which 

atmospheric condition controls 𝜈 . Figure 2.2 shows two snapshots of the estimated shape 

parameters that have been converted to spatial coordinates given various scales corresponding to 

the profile from the first few hours at the SGP C1 and TWP C3 sites in Figure 2.1. The shape 

parameter is generally small (larger inhomogeneity) at the edge of the thick clouds where strong 

mixing of cloudy and environment air happens. This is expected because entrainment produces 

more variation in cloud hydrometer properties. The increased variability, which is the denominator 

of the shape parameter (Equation (2.2)), lowers the shape parameter. In the thick cloud core, where 

cloud liquid content is relatively homogeneous, a large shape parameter is usually seen (see Figure 

2.2 (b)(d)). 

Note that several other measures could be used to characterize cloud inhomogeneity, for 

example, inhomogeneity parameter 𝜒  [Oreopoulos and Cahalan, 2005] or fractional standard 

deviation 𝑓 [Boutle et al., 2013; Hill et al., 2012]. These parameters are generally comparable and 

can be converted to each other [Shonk et al., 2010]. The reason we use the definition of 

inhomogeneity in terms of 𝜈  in this study is that CESM also uses 𝜈  to represent liquid cloud 

inhomogeneity in the microphysics conversion process [Gent et al., 2011; Morrison and Gettelman, 

2008]. We are interested in implementing the scale-aware parameterization of 𝜈 in CESM and 

investigate its impact on simulated climate. We also use the single column version of CESM to 

analyze the impact. In the single column setting, we run a short simulation at SGP C1 to evaluate 

the direct impact of 𝜈 on simulated cloud water without its interactive effect on radiation and 

microphysics. In the GCM configuration, we run the CESM standalone atmospheric model CAM5 

with prescribed climatological Sea Surface Temperatures (SST) at a 2° longitude-latitude grid with 

the finite volume dynamical core. Since the longitude-latitude grid in CESM has larger (smaller) 
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horizontal grid over equator (polar region), the scale impact of the parameterization could be 

investigated. We run each simulation for 4 years and analyze the results from the last 3 years. 

2.3 Parameterization of the Shape Parameter 

2.3.1 Shape Parameter Dependence on Scales and Atmosphere Instability 

At each location and height, the frequency distribution of the in-cloud liquid water is obtained 

from the high-resolution data within the given scale. Figure 2.3(a) to Figure 2.3(c) show the 

examples of the frequency distribution at SGP C1 and at 100 meter height for three different 

horizontal scales (5 km, 25 km, and 100 km respectively) at about 02Z on June 3, 2009. Also 

plotted is the fitted Gamma distribution (dash lines) using MLE. It can be seen that the Gamma 

distributions capture the shape of the observed liquid water content histogram well. We can also 

see that the estimated shape parameter from the fitting decreases (from 5.18 to 2.17) with the 

increasing horizontal scales (from 5 km to 100 km). This is because a spatial segment of larger 

scale tends to cover more cloud regimes so it includes more liquid inhomogeneity than a smaller 

scale. Therefore, larger scales are associated with larger variance of liquid water for given mean 

liquid water, so they are associated with smaller shape parameter (shown later in Equation (2.4)). 

Smaller scales, however, may just cover a portion of a large cloud. They are associated with larger 

shape parameter. As the scale approaches zero, the variance of liquid water will approach zero, 

which is associated with an infinite shape parameter. 

We calculated the shape parameters for different sites (NSA C1, SGP C1, and TWP C3), 

different seasons (December-January-February (DJF) and June-July-August (JJA)), and different 

scales (from 5 km to 200 km). The median values at each height are shown in Figure 2.4 by the 

dense lines, with the three locations given in the three rows, the two seasons given in the two 

columns, and the various scales in different colors. Several features are noted. The first is the 
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consistent decrease of the shape parameter with increasing horizontal scales in almost all the panels. 

The decrease is not linear. For example, in Figure 2.4(a), the shape parameter changes from around 

5 to 2 for small scales from 5 km to 50 km while for larger scales from 50 km to 200 km, the 

change is only from 2 to 1. 

The second feature in Figure 2.4 is that 𝜈 depends strongly and consistently on season and 

location. At NSA and SGP, 𝜈 in JJA is systematically smaller than its magnitude in DJF, meaning 

more inhomogeneity in the warm season. From the high-latitude NSA C1 to the low-latitude TWP 

C3, the shape parameter has a decreasing trend. This is because the low-latitude warm atmosphere 

is more frequently associated with more unstable atmospheric condition and convective clouds 

than the high-latitude and cold atmosphere, thus it has larger inhomogeneity and smaller shape 

parameter. The dependence of season and location here is consistent with the results of Kawai and 

Teixeira [2011]: more cloud inhomogeneity in warm season; less inhomogeneity in cold season. 

Based on these observations, we combine the shape parameter dependences on season and location 

into one single variable, atmosphere instability, for any given scale. 

There is also a height dependence of the shape parameter in Figure 2.4. For example, there is a 

linear increase of shape parameter with height in Figure 2.4(e). However, no generalized 

relationships with height can be derived for all stations. We therefore neglect the height 

dependence of 𝜈, acknowledging that this can be improved in the future. 

2.3.2 Parameterization 

A simple metric of atmosphere instability can be defined as 

 
𝑆 =

ℎ950 − ℎ500
∗

45000𝑃𝑎
 

(2.3) 

, where ℎ950 is the moist static energy at 950hPa and ℎ500
∗  is the saturated moist static energy at 

500hPa. This formula is an approximate measure of convective available potential energy (CAPE) 
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but its simplicity allows for easy calculations [Arakawa and Schubert, 1974]. Usually, the larger 

the 𝑆, the more unstable the atmosphere is. This instability parameter is calculated using the data 

from ARMBE. When 𝑆  is negative, the atmosphere is stable. 𝑆  is a crude measure of the 

atmospheric stratification. 

According to the studies of Boutle et al. [2013] and Hill et al. [2012], the nonlinear dependence 

cloud inhomogeneity on scale could be described by a -5/3 power law relationship. In their papers, 

cloud inhomogeneity is represented by fractional standard deviation 𝑓 = 𝜎/𝑞̅ , which is 

proportional to 𝑥1/3 (𝑥 is length scale). We follow their proposed scale power function in this 

study. Since we use shape parameter 𝜈 to represent inhomogeneity here, the relationship of 𝜈 =

1/𝑓2 implies that the equivalent scale power function for 𝜈 is 𝑥−2/3. Multivariate regression was 

then used to find the best fit of 𝜈 as a function of the scale 𝑥−2/3 and the atmosphere instability 𝑆 

at the three latitudes and in the two seasons. We arrived at the following formula 

 
𝜈 = 0.67 − 0.38 ⋅ 𝑆 + 4.96 ⋅ 𝑥−

2
3 − 8.32 ⋅ 𝑆 ⋅ 𝑥−

2
3 + 𝑅(𝑥, 𝑆) 

(2.4) 

where the horizontal scale 𝑥 is in kilometer; 𝑆 is atmospheric instability given in Equation (2.3) in 

unit J/kg/Pa, 𝑅 is a stochastic parameter to represent the uncertainties of the 𝜈 values from cloud 

variability, including the sampling errors and the imperfectness of the formula. We note that the 

two dependent parameters and the form of the parameterization are only heuristically determined 

because of the inherent complexities of the cloud variability. This formula is plotted in Figure 

2.5(a) with 𝑆 as the abscissa and the scale as the ordinate with 𝑅(𝑥, 𝑆) set to zero. As expected, 

shape parameter decreases with increasing horizontal scale and increasing atmospheric instability. 

Figure 2.5(b) shows the binned mean of shape parameter from observation. It is seen that Equation 

(2.4) captures the major pattern of 𝜈 variations in observations, especially for scales smaller than 

90 km. It may underestimate 𝜈 at large scales slightly (in the upper region of the figure) compared 
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with the binned observational mean but this is still within the observational range. The standard 

deviation of the random term 𝑅(𝑥, 𝑆) is shown in Figure 2.5(c). 

To further investigate whether the parameterization can reflect the realistic variability of shape 

parameter in observation, we used Figure 2.6(a)-(d) to show the shape parameters from the 

instantaneous observations against the corresponding values from the parameterization with the 

stochastic term set to zero, for different given scales. For three years of data, we have collected the 

lower quartile, the median, and the upper quartile of the instantaneous 𝜈 respectively in each month 

and calculated the parameterized 𝜈  based on the collocated instability and spatial scale using 

Equation (2.4). In these figures over selected horizontal scales, the observational shape parameters 

(shown as dots) exhibit a significant decrease with larger instability (more unstable atmosphere), 

which is well captured by the derived parameterization shown in solid black line. The scale 

dependence is also evident. The overall magnitude of 𝜈 changes from about 1.0 for 200 km to 

about 4.0 for 10km (see Figure 2.6(a) and (d)) and the parameterization lies within the 

observational range. The unresolved variability is represented by the residual term 𝑅(𝑥, 𝑆) in 

Equation (2.4), which is shown in Figure 2.5(c). When the shape parameter is used in the 

microphysical parameterization, this residual term can either be set to zero or treated stochastically 

to represent the uncertainties. 

2.4 Impacts on Climate Simulation 

The proposed parameterization is next implemented in CESM for the calculation of cloud 

microphysics. In the global model, at the location where the surface pressure is lower than 950hPa, 

ℎ950  is replaced by the surface moist static energy and the denominator is replace by 

(𝑃𝑠 − 500ℎ𝑃𝑎) in Equation (2.3). Figure 2.7(a) shows the global distribution of the annual mean 

shape parameter diagnosed from CESM simulation of 2°×2° resolution. It is seen that 𝜈 gradually 
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increases from about 0.7 in the equatorial regions to up to 5.0 in the polar regions. This is consistent 

with the longitude-latitude grid size distribution in CESM, where the larger low-latitude grid size 

contains more inhomogeneity (lower 𝜈) and vice versa. Along the same latitude band, atmosphere 

instability also plays a significant role in varying 𝜈, especially in tropics. The area with lower 𝜈 

generally matches the region with high SST and convective clouds, such as Tropical West Pacific 

Warm Pool, the Pacific ITCZ, and the Atlantic ITCZ. 

Some previous studies also provided the map for the global distribution of 𝜈 [Lebsock et al., 

2013; Oreopoulos and Cahalan, 2005]. The spatial pattern of our parameterized shape parameter 

is consistent with Lebsock et al. [2013], where major tropical oceans usually have lower 𝜈 and 

high latitudes have larger 𝜈 (see their Figure 6). The magnitude of our parameterized 𝜈 is overall 

smaller than most previous studies based on satellite data [Barker, 1996; Boutle et al., 2013; 

Cahalan et al., 1994; Lebsock et al., 2013; Oreopoulos and Cahalan, 2005]. In Table 2.1, we 

compared the cloud inhomogeneity parameter values and the different sampling methods from 

these studies as summarized by Shonk et al. [2010] with our study. The relatively smaller value in 

our study is likely because we used radar data at high temporal and vertical resolutions while these 

studies used satellite cloud optical depth data. Higher frequently sampling captures more cloud 

variability and may introduce larger variance 𝜎2 therefore causing smaller 𝜈 (𝜈 = 𝑞̅2/𝜎2). Our 

result is comparable to Barker [1996] (Table 2.1), which uses LandSat data with 0.04km sampling 

resolution, higher than other satellite studies in the table. In addition, the larger grid box size using 

a CESM 2°×2° grid in our study is mostly larger than the horizontal scale in their estimations (see 

Table 2.1). Therefore more inhomogeneity and smaller 𝜈 is expected from our calculation. 

In the microphysical scheme of CESM, prior to version 1.2.0 [Morrison and Gettelman, 2008], 

𝜈 was set as 2.0, which is close to the overall mean 𝜈 from Lebsock et al. [2013] and Oreopoulos 
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and Cahalan [2005]. It has been changed to 1.0 in the publicly released default model of CESM 

version 1.2.0, closer to our estimation. From Figure 2.7(a), we can see that the parameterized 𝜈 

could be from about 0.7 with 200km gridbox over an equatorial unstable atmosphere to about 5.0 

with a much smaller grid box at the polar region. Therefore, according to the parameterization, the 

default fixed value 1.0 overestimates 𝜈 at low latitudes but underestimates it at high latitudes. The 

use of uniform spatial sizes in a climate model may greatly reduce such large cloud inhomogeneity 

difference due to scale dependence. We have also included a map of 𝜈 distribution assuming global 

constant spatial scale 200km in Figure 2.7(b) to emulate such a uniform grid. Note that the color 

range in Figure 2.7(b) is a much smaller than that in Figure 2.7(a). The spatial variation of 𝜈 in 

Figure 2.7(b) is entirely due to changes in atmospheric conditions. 𝜈 is still larger at highs latitudes, 

but the latitudinal gradient of 𝜈 is reduced. 

As has been pointed out in many previous studies [e.g., Huang and Liu, 2014; Lebsock et al., 

2013], the shape parameter 𝜈 can impact the conversion rates in the sinks of the cloud liquid water. 

When the sink terms S is expressed as liquid water mixing ratio 𝑞𝑙 to the power of 𝑦 as 𝑆 ∝ (𝑞𝑙)
𝑦, 

the subgrid variability effect can be described by multiplying the conversion rate with an 

adjustment factor [Morrison and Gettelman, 2008]: 

 
𝐸 =

Γ(𝜈 + 𝑦)

Γ(𝜈)𝜈𝑦
 

(2.5) 

Figure 2.8 shows how the adjustment factor changes with 𝜈 within commonly used 𝑦 range 

(from 1.0 to 3.0) in the microphysical schemes. Compared with the globally fixed shape parameter 

1.0 in the default CESM, a ±0.5 change of shape parameter around 1.0 could introduce about 

±20%  change to the original adjustment factor given 𝑦 = 1.5  and more than about ±120% 

change given 𝑦 = 3. In CESM, the major nonlinear conversion terms in the liquid water tendency 

equation are from the rain autoconversion and accretion processes, with 𝑦 values of 2.47 and 1.15 
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respectively [Khairoutdinov and Kogan, 2000; Morrison and Gettelman, 2008]. Therefore, 

compared with the fixed 𝜈 1.0 case, the parameterized 𝜈 will lead to higher conversion rate from 

cloud liquid to rain in the low latitudes (𝜈 < 1.0) and lower conversion rate in the higher latitudes 

(𝜈 > 1.0). 

2.4.1 Single Column Simulation 

We first use a single column simulation to demonstrate the direct impact of 𝜈  on CESM 

microphysics processes. The simulation uses ARM SGP forcing data starting on 07/19/1995 for 

five days. The control run uses CESM default setting with the fixed 𝜈 = 1.0. Figure 2.9(a) shows 

the cloud fraction distribution from the control run. Convection developed at day 1.5, so significant 

microphysical conversion from liquid cloud to precipitation is expected at that moment. Focusing 

on this short period of vigorous cloud activity, we carried out the offline microphysics calculation 

with 𝜈 = 0.6, 𝜈 = 0.8, 𝜈 = 2.0 and the CESM 2°×2° grid scale. The interactive effect of 𝜈 is 

suppressed by using the liquid water from the control run in the radiation and in the subsequent 

microphysical calculations. The lines in Figure 2.9(b) show the liquid water conversion difference 

within each time step between the sensitivity simulations and the one from the control run. As 

expected, the simulations with 𝜈 smaller than 1.0 shown by dotted line (𝜈 = 0.6) and dash dot line 

(𝜈 = 0.8) have larger liquid water sinks (more negative tendency). But the one with 𝜈 = 2.0 has 

more liquid water due to smaller liquid water conversion. The difference in the liquid water 

tendency from the simulation using the parameterized 𝜈 is shown by a solid line. It is between the 

lines using 𝜈 = 0.6 and 𝜈 = 0.8 at the peak. The corresponding 𝜈 is plotted in Figure 2.9(c) as the 

thick line that fluctuates around 0.7. These are all consistent with the expectation that smaller 𝜈, 

corresponding to large inhomogeneity of liquid water, is associated with larger cloud-to-rain 

conversion rate, and less cloud water, while the opposite is true for larger 𝜈. 
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2.4.2 GCM Simulation 

We next show the sensitivity of the cloud liquid water to the varying 𝜈 using a GCM simulation. 

Instead of fixing liquid water content and diagnosing its converting tendency offline, we calculated 

the parameterized shape parameter 𝜈 at each grid point of CESM and allowed it to impact the 

microphysics processes in the Morrison and Gettelman [2008] cloud microphysical scheme. The 

liquid water content will respond to the modified cloud liquid conversion rates so liquid cloud 

distribution will be changed which will in turn impact the model hydrological and dynamical 

processes. We have run CESM in a 2°×2° resolution for four years and the following analysis is 

based on the annual mean of the last three-year results. In the CESM longitude and latitude grid 

setting, the 2°×2° resolution corresponds to spatial grid scale ranging from over 200 kilometers 

near the Equator to about 5 kilometers in the polar region. Owing to the interactive nature of the 

cloud microphysics and radiation, the response is not expected to be the same as the direct impact 

of 𝜈 in the offline simulation. 

Figure 2.10 (a) shows the difference of the annual liquid water path between the simulation 

with varying 𝜈 and the control run with fixed 𝜈 = 1.0. The black thick line shows the contour of 

𝜈 = 1.0. The hatched areas pass Student t-test with the confidence level 95%. It is seen that even 

though the interactive response is very noisy, at higher latitudes where 𝜈 > 1.0, there is an overall 

increase of cloud liquid water path; in the middle and low latitudes, cloud liquid water is overall 

reduced. We have calculated the area average of these differences in both high latitudes (poleward 

of 45°) and low latitudes (equatorward of 45°). The area-averaged liquid water path is increased 

by 0.43g/m2 in high latitudes and decreased by 0.82 g/m2 in low latitudes. These represent about 

1.4% increase and 1.7% of decrease of the cloud water path in the control simulations. 
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The distribution change of liquid water content is expected to impact radiation. Because the 

parameterization in this study only affects warm liquid clouds, the radiative impact is expected to 

be most clear in the regions of low clouds. Figure 2.10(b) shows the shortwave cloud forcing 

difference between varying 𝜈 and control 𝜈 = 1. The local response is generally consistent with 

the liquid cloud content change, where liquid increase corresponds to stronger shortwave cloud 

forcing, and liquid decrease corresponds to weaker shortwave cloud forcing. While the figure is 

noisy, in the subtropical eastern Pacific where low clouds dominate and 𝜈  is larger than 1, 

shortwave cloud forcing is more negative. The difference is about 5 W/m2. In the Arctic, where 

we have smaller grid size, larger 𝜈, and generally less efficient liquid cloud conversion, the region 

passing the statistical significance test has less negative shortwave cloud forcing with a difference 

up to 5 W/m2. 

When averaged over the globe, we have found that the varying 𝜈 has relatively small impact on 

the overall climate. Since the contour with 𝜈 = 1 is around 30S and 30N, compared to the control 

run with all constant 𝜈 = 1, the varying 𝜈 case here produces opposite impacts over low and high 

latitude on the shape parameter distribution and further causes opposite microphysics and radiation 

impacts. It is possible these opposing impacts in the tropics and the Arctic may cancel each other. 

Besides liquid cloud distribution and radiation, the shape parameter 𝜈  is expected to impact 

precipitation because it adjusts the efficiency of liquid cloud autoconversion and accretion 

processes to large scale precipitation. Annual total precipitation for the varying 𝜈 and control 

versions compared with observation from Global Precipitation Climatology Project (GPCP) are 

presented Figure 2.11. The control CESM version has a global mean at about 3mm/day and it 

shows a spurious double Inter-Tropical Convergence Zone (ITCZ) and too much precipitation over 

Indian ocean. However, the version with varying 𝜈 exhibits almost the same precipitation pattern 
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as the control version. In CESM, the precipitation in tropics is dominated by convective process 

so the rainfall distribution is less affected by the liquid cloud conversion in microphysics scheme. 

At high latitudes, where the subgrid variability adjustment is large, the magnitude of precipitation 

is generally small to see such scale impact. We also compared the total cloud distribution of these 

two versions with CloudSat cloud observation in Figure 2.12. The impact of varying 𝜈 versus the 

control is small. The annual liquid water path shown in Figure 2.13 presents a slight improvement 

using varying 𝜈  than the control. This is because the less subgrid variability in high latitude 

converts liquid less efficiently so the negative bias in the control is reduced. This also suggests 

that the default model is nearly optimally tuned. However, the impact of the parameterized 𝜈 on a 

model with different resolutions may be larger if the shape parameter is not optimally tuned. For 

example, if we increase the model resolution to 1°, we expect that the shape parameter 𝜈 will 

increase globally and cause weaker liquid cloud autoconversion and accretion. This may generally 

increase the global large scale liquid water path and reduce shortwave cloud forcing. 

2.5 Conclusion 

We analyzed the long-term ground-based MICROBASE dataset to derive the liquid cloud 

inhomogeneity represented by the shape parameter 𝜈  of the Gamma distribution. Smaller 𝜈  is 

associated with larger inhomogeneity. We reported the dependence of 𝜈 on the horizontal scale 

and atmospheric instability and derived a scale-aware parameterization of 𝜈 that depends on the 

model resolution and atmospheric state. 

When the parameterization is implemented in CESM at a 2o×2o resolution, we found that the 

inhomogeneity parameter 𝜈 is larger than the default value of 𝜈 = 1 in high latitudes and smaller 

than the default value in low latitudes that is used in CESM, owing to the varying grid sizes and 

atmospheric instability. Larger values of the parameter are shown to correspond to more cloud 
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liquid water, owing to smaller rate of cloud-to-rain conversion. Smaller values of the parameter ν 

lead to less cloud water in the simulation. The parameterized inhomogeneity therefore leads to 

more cloud water in high latitudes. However, the overall impact of the parameterization on the 

default model is small, owing to the fact the default model used a tuned parameter that is close to 

the observationally derived values. 

This study is only a small step toward the scale-aware description of cloud water inhomogeneity. 

Future studies should include cloud ice and other hydrometeors. While the impact of the 

parameterized inhomogeneity on the simulated climate in this study is small, we think the main 

benefit of the scheme is its direct use in variable resolution models. 
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Tables 

Table 2.1. Comparison of Cloud Inhomogeneity Parameters in Previous Studiesa 

Reference, source 
Observational 

Property 

Effective 

Spatial 

Resolution 

Gridbox Size 
Estimation 

Method 

Mean of 

equivalent 𝜈 

Barker [1996], 

LandSat 

cloud optical 

depth 
0.04 km 58 km MOM 1.5 

Oreopoulos and 

Cahalan [2005], 

MODIS 

cloud optical 

depth 

2 km in 

middle 

latitude and 

5 km in 

equator 

1°×1°, 45 km 

in middle 

latitude and 

110 km in 

equator 

MLE and 

MOM 

2.96 in Jan 

and 2.87 in 

Jul 

Lebsock et al. 

[2013], CloudSat 

and MODIS 

cloud water 

path 
1.1km 141 km MOM 2.46 

Parameterization in 

this study, 

MICROBASE 

liquid water 

content 

0.01 km to 

0.1 km for 

wind speed 

1 m/s to 

10 m/s 

2°×2°, 90 km 

in middle 

latitude and 

220 km in 

equator 

MLE 1.1 

  

                                                      

 
a The references may have different inhomogeneity definition usually estimated by either MOM (method of moments) 

or MLE (maximum likelihood estimation) but we have converted them to the equivalent Gamma shape parameter 𝜈. 
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Figures 

 

 
Figure 2.1. (a) An example of MICROBASEPI2 liquid water content profile on 06/03/2009 at 

SGP C1 site. (b) Same as (a) but at TWP C3 site on 01/03/2009. 
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Figure 2.2. (a-c) snapshot of liquid cloud shape parameter at SGP C1 site on 06/03/2009 

estimated in given spatial scales 5km, 25km, and 100km. These data are converted from temporal 

ground observation combined with wind information. Flowing distance represents the spatial 

coordinate converted from temporal coordinate. (d-f) are as for (a-c) but for TWP C3 site on 

01/03/2009.  
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Figure 2.3. Examples of the frequency distribution of cloud water and the Gamma distribution 

fitting using the maximum likelihood method. The data are from the ARM SGP on 06/03/2009 in 

Figure 1 at 100 m height. The sampling horizontal scales are 5 km, 25 km, and 100 km for (a), (b), 

and (c) respectively.  
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Figure 2.4. The liquid water shape parameter for NSA C1, SGP C1, and TWP C3 sites in DJF 

and JJA. Different colors represent different scales as shown in the legend.  
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Figure 2.5. (a) The parameterized shape parameter as a function of scale and atmospheric 

instability. (b) The binned mean of observational shape parameter as a function of scale and 

atmospheric instability. (c) The binned standard deviation of the random term estimated from 

observations. 
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Figure 2.6. Parameterized shape parameter (black solid line) versus observationally derived 

lower quartile, median, and upper quartile of the shape parameter (gray dots) in each month as a 

function of atmospheric instability for different horizontal scale: (a) 200 km, (b) 100 km, (c) 50 

km, and (d) 10km. 
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Figure 2.7. (a) Annual mean of global shape parameter distribution diagnosed from CESM 

simulation using a 2°×2° resolution. (b) same as (a) but assuming global 200 km spatial scale. 
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Figure 2.8. The adjustment factor in the conversion rate of microphysics scheme with different 

power relations (y=1, 1.5, 2.5, 3). 
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Figure 2.9. (a) Cloud fraction from a 5-day simulation from the single column simulation of 

CAM5. (b) Column-integrated microphysics liquid water conversion difference by using shape 

parameter ν=0.6, ν=0.8, ν=2.0 and parameterized varying ν relative to the control simulation of 

ν=1.0. (c) The corresponding varying ν magnitude.  
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Figure 2.10. (a) Global liquid water path difference between the simulation with varying ν and 

the control simulation of ν=1.0 (dotted hatch is the area passing the statistical significance test with 

95% confidence level). The thick solid line represents the contour of ν=1.0 in the simulation with 

varying ν. (b) Same as (a) but for shortwave cloud forcing.  
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Figure 2.11. Annual total precipitation. (a) observation from GPCP. (b)(d) are the output and 

the difference from GPCP for the control simulation  with fixed 𝜈 = 1. (c)(e) are the output and 

the difference from GPCP for the simulation with scale-aware parameterized 𝜈. The impact of 

liquid cloud inhomogeneity is very small compared with the control simulation. 

  

(a) 

(b) (c) 

(d) (e) 
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Figure 2.12. Annual total cloud fraction. (a) observation from CLOUDSAT. (b)(d) are the 

output and the difference from CLOUDSAT for the control simulation  with fixed 𝜈 = 1. (c)(e) 

are the output and the difference from CLOUDSAT for the simulation with scale-aware 

parameterized 𝜈 . The impact of liquid cloud inhomogeneity is very small compared with the 

control simulation.  

(a) 

(b) (c) 

(d) (e) 
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Figure 2.13. Annual total grid-box cloud liquid water path. (a) observation from UWisc. (b)(d) 

are the output and the difference from UWisc for the control simulation  with fixed 𝜈 = 1. (c)(e) 

are the output and the difference from UWisc for the simulation with scale-aware parameterized 

𝜈. The negative bias in the control is reduced using varying 𝜈 due to the increase of liquid cloud 

in high latitude. 
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Chapter 3 Sensitivity of MJO Simulation to 

Physical Parameters in a Convection Scheme 

3.1 Motivation 

In the previous chapter, we have discussed the scale dependence of subgrid variability for liquid 

cloud, its parameterization and its impact on climate simulation. The purpose of all these efforts is 

to represent the unresolved subgrid-scale processes more accurately in the radiation transfer and 

microphysics process.  

Is it possible to introduce subgrid variability to the convective scheme as we do for 

microphysics? In fact, this question has been answered back in the 1970s when the early convective 

parameterization framework was designed. Yanai et al. [1973] and Arakawa and Schubert [1974] 

formulated a generalized cumulus parameterization based on convective mass flux that aims to 

represent the thermodynamic impact of a spectrum of subgrid convective plumes on the large scale 

environment. A spectrum parameter was chosen to represent a particular cloud type so the final 

response will be the sum or integration of the ensemble of all subgrid convective clouds, very 

similar to the idea of what we currently do with microphysics subgrid variability. Many convection 

parameterizations developed since then have adopted this cumulus parameterization framework. 

During the past several decades, great efforts have been made not only to understand and better 

parametrize convection but also to treat the subgrid variability in more unified and physical way. 

For instance, Golaz et al. [2002] designed a boundary layer cloud scheme that natively adopts a 

more realistic PDF model that is able to represent not only one or two cloud types but a variety of 

clouds, such as cumulus, stratocumulus, and clear regimes. Khairoutdinov and Randall [2001] 
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embedded and solved a CRM within a model grid box and let it interact with the large-scale state 

variables so that a large portion of subgrid cloud process is automatically resolved.   

Although great progress has been made to design better cloud parameterization, the simulation 

performance of most current climate models is far from reality. For example, many climate models 

suffer from a spurious double intertropical convergence zone (double ITCZ) in the simulated 

precipitation climatology at eastern Pacific ocean [Lin, 2007]. A realistic intraseasonal oscillation 

or Madden Julian Oscillation (MJO) with correct phase speed and strength still remains a challenge 

for most models [Slingo et al., 1996; Waliser et al., 2003; Lin et al., 2006]. 

Several studies have attributed these two biases to the convective parameterization schemes in 

the models. For example, Li et al. [2009] shows that artificially lowering the adiabatic heating 

profile in a climate model will convert a stationary perturbation in the Indian and west Pacific 

oceans into a planetary-scale, intraseasonal, and eastward propagating pattern with a phase speed 

similar to MJO. Zhang and Song [2009] found that the moistening of shallow convection may be 

the key to simulate a realistic MJO when it is working with a revised version of deep convection 

scheme. Khairoutdinov et al. [2005] reported that when superparameterization is used in GCM, 

not only the double ITCZ bias would be significantly reduced but also the intraseasonal oscillation 

simulation would be greatly improved. 

The latest update or new design of convection schemes have also lead to an improvement of 

precipitation climatology and intraseasonal variability. For example, in a newly released ECMWF 

model, a revision of the convection scheme [Bechtold et al., 2008] that adopts an empirical 

entrainment formulation based on relative humidity led to reduction of both the double ITCZ and 

MJO biases. Chikira and Sugiyama [2010] developed a cumulus parameterization that removes 

the double ITCZ bias and simulates an east propagating MJO. Park [2014] used a unified 
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convection scheme that allows natural transition from shallow convection to deep convection. It 

turned out to simulate well both the climatology and MJO. 

The key components of a mass-flux based convective parametrization scheme include the cloud 

model, the cloud properties at the launching level, the entrainment/detrainment calculation, and 

the closure for cloud base mass flux. What role do each of these components play in changing the 

MJO simulation? The answer to these questions will provide us a hint about a similar correction 

that could be applied to the various convection parameterizations in different GCM models. 

In this study, we aim to target the MJO bias and determine its sensitivity to several key 

components in the convection scheme. We will use a relatively simple but flexible multiple-plume 

convection scheme as our study tool. Each plume is based on a simple mass-flux type bulk cloud 

model. The scheme is general enough to work as a basis for different types of convection 

parameterization. In Section 3.2, we present the formulation of this convection scheme. Most of 

its formulation follows the classical  framework by Yanai et al. [1973] and Arakawa and Schubert 

[1974] with modifications by Chikira and Sugiyama [2010]. In Section3.3 and 3.4, we will 

introduce the parameter settings in Chikira and Sugiyama [2010] and evaluate its standard 

performance metrics. Section 3.5 will provide sensitivity tests of MJO simulation to several key 

parameters in the scheme. 

3.2 Formulation 

The major purpose of convection parameterization is to represent the unresolved subgrid 

convective impacts on the large-scale environment. Therefore, the final outputs from the scheme 

are the tendencies of dry static energy (representing temperature change), water vapor, and liquid 

water. Yanai et al. [1973] and Arakawa and Schubert [1974] have derived a primitive form of the 

budget equations representing the tendencies with the contribution from condensation, evaporation, 
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and vertical heat and moisture transport terms by cumulus plumes.  When the convective area 

relative to the grid size is small and the environmental vertical velocity is only a small fraction of 

the convective vertical velocity, the tendency equations can be written as follows:   

 
(

𝜕𝑠

𝜕𝑡
)

𝑐
= 𝑀𝐵,𝑗[𝐿𝑣∑𝑗(𝐶𝑗 − 𝐼𝑗) + 𝐿𝑠∑𝑗𝐼𝑗 − 𝐿∑𝑗𝐸𝑉𝑗]

−𝑀𝐵,𝑗

1

𝜌

𝜕 ∑ [𝑚𝑢,𝑗𝑠𝑢,𝑗 + 𝑚𝑑,𝑗𝑠𝑑,𝑗 − (𝑚𝑢,𝑗 + 𝑚𝑑,𝑗)𝑠𝑒]𝑗

𝜕𝑧

(
𝜕𝑞𝑣

𝜕𝑡
)

𝑐
= 𝑀𝐵,𝑗 (−∑𝑗𝐶𝑗 + ∑𝑗𝐸𝑉𝑗 −

1

𝜌

𝜕 ∑ [𝑚𝑢,𝑗𝑞𝑣𝑢,𝑗 + 𝑚𝑑,𝑗𝑞𝑣𝑑,𝑗 − (𝑚𝑢,𝑗 + 𝑚𝑑,𝑗)𝑞𝑣𝑒]𝑗

𝜕𝑧
)

(
𝜕𝑞𝑙

𝜕𝑡
)

𝑐
= 𝑀𝐵,𝑗 (∑𝑗𝐶𝑗 − ∑𝑗𝐼𝑗 − ∑𝑗𝑅𝑗 −

1

𝜌

𝜕 ∑ [𝑚𝑢,𝑗𝑞𝑙𝑢,𝑗 + 𝑚𝑑𝑖𝑞𝑙𝑑,𝑗]𝑗

𝜕𝑧
)

(
𝜕𝑞𝑖

𝜕𝑡
)

𝑐
= 𝑀𝐵,𝑗 (∑𝑗𝐼𝑗 − ∑𝑗𝑆𝑗 −

1

𝜌

𝜕 ∑ [𝑚𝑢,𝑗𝑞𝑖𝑢,𝑗 + 𝑚𝑑𝑖𝑞𝑖𝑑,𝑗]𝑗

𝜕𝑧
)

 

(3.1) 

where the index 𝑗 represents the contribution from 𝑗th plume, 𝑞𝑣 is water vapor mixing ratio, 𝑞𝑙 is 

liquid cloud mixing ratio, 𝑠 is dry static energy 𝑠 = 𝑐𝑝𝑇 + 𝑔𝑧 (𝑇 is temperature), 𝐿𝑣 and 𝐿𝑠 are 

latent of vaporation and sublimation, 𝐶 is the total condensation, 𝐼 is the part of total condensation 

freezing into ice, 𝐸𝑉  is evaporation rate, 𝑅  is precipitation rate, 𝑆  is snowing rate, 𝜌  is 

environmental density, 𝑚 is the normalized plume mass flux, 𝑀𝐵 is the mass flux at the cloud base, 

the subscript 𝑢 and 𝑑 represent the in-cloud properties for updraft and downdraft, and the subscript 

𝑒 represents environmental variables. The 𝐶, 𝐸𝑉, 𝑅, and mass flux terms are all normalized by the 

mass flux at the cloud base specific to a plume. We assume zero environment liquid and ice 

condensate (𝑞𝑙𝑒=0 and 𝑞𝑖𝑒 = 0). Ideally speaking, the more kinds of plume we can include, the 

more accurate the tendencies terms could be formulated. But the number of plumes has a cost to 

the computing resources we have. Using too many plumes may not give us a computational 

advantage over solving a CRM using superparameterization because a CRM not only includes 

vertical transport but also more internal dynamics of cloud systems. Therefore, we will use as few 

plumes as possible to meet the design requirement. 
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To solve for the unknown terms on the RHS of the above equations, we have chosen the 

classical bulk plume model that has been used in many convection schemes [Tiedtke, 1989; Zhang 

and McFarlane, 1995; Chikira and Sugiyama, 2010] which assumes horizontally homogeneous 

in-cloud properties within the individual plumes 

 𝐸 = 𝑒𝑚𝑐

𝐷 = 𝑑𝑚𝑐

𝜕𝑚𝑐

𝜕𝑧
= 𝐸 − 𝐷 = (𝑒 − 𝑑)𝑚𝑐

𝜕ℎ𝑢

𝜕𝑧
= 𝑒(ℎ𝑒 − ℎ𝑢) +

𝐿𝑠𝜌𝐼

𝑚𝑐

𝜕𝑠𝑐

𝜕𝑧
= 𝑒𝑠𝑒 − 𝑒𝑠𝑐 +

𝐿𝑣𝜌(𝐶 − 𝐼)

𝑚𝑐
+

𝐿𝑠𝜌𝐼

𝑚𝑐

𝜕𝑞𝑣𝑐

𝜕𝑧
= 𝑒𝑞𝑣𝑒 − 𝑒𝑞𝑣𝑐 −

𝜌𝐶

𝑚𝑐

𝜕𝑞𝑙𝑐

𝜕𝑧
= −𝑒𝑞𝑙𝑐 +

𝜌(𝐶 − 𝐼 − 𝑅)

𝑚𝑐

𝜕𝑞𝑖𝑐

𝜕𝑧
= −𝑒𝑞𝑖𝑐 +

𝜌(𝐼 − 𝑆)

𝑚𝑐

 

(3.2) 

where ℎ is moist static energy (MSE) ℎ = 𝑐𝑝𝑇 + 𝑔𝑧 + 𝐿𝑣𝑞𝑣, 𝑒 and 𝑑 are fractional entrainment 

and detrainment rates, the subscript 𝑐 could be either 𝑢 or 𝑑 to represent updraft or downdraft. 

Other variables are defined the same as in Equation 3.1. We have ignored the plume index 𝑗 here 

for simpler notation but this set of equations will be solved for each plume. We only consider the 

vertical dimension here so it is a set of ordinary differential equations that could be solved upward 

or downward when the boundary condition, entrainment/detrainment rates 𝑒  and 𝑑 , and the 

relationship among 𝐶, 𝐼, 𝑅, and 𝑆 can be specified. After solving the cloud model for each plume, 

the scheme still needs to derive the cloud base mass flux 𝑀𝐵 . Additional equation has to be 

specified to solve 𝑀𝐵, namely the closure. Most mass-flux convection schemes share the above 

framework and the difference is the way entrainment/detrainment rates and cloud-bass mass flux 

are calculated. 
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The following steps describe how the properties of the updraft plume are calculated in our study 

if the entrainment/detrainment rates 𝑒/𝑑 are already prescribed: 

1. Launching the parcel to cloud base. A launching level is chosen and the boundary 

conditions of the plume are specified at this level. Typical choices of the launching level 

are the model surface level or the level with maximum MSE. Larger MSE helps the 

plume to reach higher level. The initial plume values for ℎ𝑢, 𝑠𝑢, 𝑞𝑣𝑢, 𝑞𝑙𝑢, and 𝑞𝑖𝑐 are 

usually equal to the environment values at the launching level. Cloud base is usually 

defined as where the plume begins to become saturated. We may integrate the plume 

equations for ℎ𝑢 and 𝑞𝑢 upward level-by-level. Cloud base is reached when the plume 

moisture 𝑞𝑢  is less than the plume saturated moisture 𝑞𝑢𝑠  (obtained by solving the 

saturation equation for ℎ𝑢 from Arakawa and Schubert [1974]). The updraft mass flux 

𝑚𝑢 below the cloud base should be solved too but a typical method is to let it decrease 

to zero from the cloud base to the surface. 

2. Launching the parcel to cloud top. After the cloud base is found, the plume properties 

at this level could be set to what are obtained in the previous step or to a set of newly 

specified values that include additional turbulent perturbations. In the second 

circumstance, the cloud properties under the cloud base may have to be solved again 

using zero condensation 𝐶 because unsaturation is assumed below the cloud base. At 

the cloud base, the normalized mass flux 𝑚𝑐 has value 1.0 and it is integrated upward 

using the information of entrainment and detrainment. The MSE ℎ𝑢  could also be 

solved upward. The plume temperature 𝑇𝑢 and water vapor 𝑞𝑣𝑢 are derived using ℎ𝑢 

under the condition of saturation. Because solving ℎ𝑢  may require the prescribed 
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freezing rate 𝐼 , we set 𝐼  to zero first and iterate to let the solution converge. The 

calculated buoyancy 𝐵𝑢 could then be used to determine the cloud top.  

3. Microphysics. Above the cloud base the total condensation 𝐶 is diagnosed from the 

plume equation of 𝑞𝑣𝑢 . Once 𝐶  is solved, the freezing rate 𝐼 , precipitation rate 𝑅 , 

snowing rate 𝑆 could generally be solved using assumptions of their relationships with 

𝐶. Precipitation is calculated by integrating the precipitation rate for the whole column.   

4. Detrainment at the cloud top. When the cloud top is reached, the plume will decelerate 

and its mass flux should decrease to zero, which means we must have detrainment rate 

𝑑 larger than entrainment rate 𝑒. If the specified entrainment and detrainment do not 

have such property, we have to enforce the mass flux at top to be zero. The needed 

detrainment for that could is diagnosed from the mass flux equation. Some convective 

scheme with vertical velocity information will allow the plume to reach higher than the 

neutral buoyancy level and this is also used as an option. 

Because the framework described above is shared by most mass-flux convection schemes, 

different choices and the methods to specify entrainment/detrainment rate, the condensation 

related relationships, and the closure can be tested to investigate the sensitivity of simulation 

performance to the parameter options. Different combinations of these options lead to a particular 

version of convective parameterization. For example, when we choose one plume, specify their 

entrainment/detrainment with moisture convergence and evaporation information, and solve 

everything else the same, the scheme will work like the  Tiedtke [1989] scheme. 

To evaluate the sensitivity of MJO simulation to various convection options in this study, we 

have implemented such a plume framework and choose almost the same convection options 

described in Chikira and Sugiyama [2010] with modifications. The reason we choose their 
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specification is that they have reported an improved MJO simulation with their convection scheme 

and it would be easier to do sensitivity tests with a scheme that has the possibility of generating 

realistic MJO. Since previous studies have emphasized the important role of shallow convection, 

we wish to see if a larger fraction of shallow plumes can enhance MJO.  Because their scheme has 

been only implemented in MIROC4.1, not in other models, we would also like to examine the 

dependence of the performance of the convection scheme on other models. We will next introduce 

the method to calculate the entrainment/detrainment rates based on Chikira and Sugiyama [2010]. 

3.3 Plume Specification 

A major difference among various convection schemes is how they specify entrainment and 

detrainment. In the early stage of convection parameterization, entrainment rate of a particular 

cloud type was considered to depend on cloud size [Simpson and Wiggert, 1969] and treated as 

constant at different heights. Arakawa and Schubert [1974] has used entrainment rate as a cloud 

spectrum parameter, which implies that only one value could be used for a one plume model. 

However, later observation and CRM modeling studies [Lin and Arakawa, 1997] show that 

entrainment rate could actually depend on height. Therefore, many studies have proposed methods 

to estimate entrainment rate profile for use in convection scheme. Gregory [2001] has proposed a 

way to estimate entrainment rate by solving a vertical velocity equation using buoyancy 

information that is more physically based than other empirically determined methods [Bechtold et 

al., 2008]. His method was used in Chikira and Sugiyama [2010] to calculate entrainment rate for 

different plumes. In this study, we adopt the same formulation. The plume vertical velocity is 

written 

 1

2

𝜕𝑤𝑢
2

𝜕𝑧
= 𝑎𝐵𝑢 − 𝐶𝜀𝑎𝐵𝑢 = 𝑎(1 − 𝐶𝜀)𝐵𝑢 

(3.3) 
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where 𝐵𝑢 is the plume buoyancy, 𝑎 and 𝐶𝜀 are tuning parameters with default values 0.15 and 0.5, 

and 𝑤𝑢 is plume vertical velocity. When the initial value at cloud base is given for 𝑤𝑢, we can 

solve this equation upward. The buoyancy is represented by 

 
𝐵𝑢 = 𝑔

𝑇𝑣𝑢 − 𝑇𝑣

𝑇𝑣𝑢
 

(3.4) 

where 𝑇𝑣𝑢 = 𝑇𝑢(1 + 0.61 ⋅ 𝑞𝑣𝑢) and 𝑇𝑣 = 𝑇𝑢(1 + 0.61 ⋅ 𝑞𝑣) are the virtual temperature for plume 

and environment. The entrainment rate 𝑒 is then calculated by using the vertical velocity 𝑤𝑢 and 

buoyancy 𝐵𝑢 as 

 
𝑒 = 𝐶𝜀 

𝑎𝐵𝑢

𝑤𝑢
2

  
(3.5) 

For each plume, we assign a particular initial value for 𝑤𝑢. Fourteen plumes with initial 𝑤𝑢 

ranging from 0.1 m/s to 1.4 m/s are used in Chikira and Sugiyama [2010] for cloud base. Each 

plume will be first lifted from the lowest model level to cloud base (usually the lifting condensation 

level) and the plume properties at the cloud base will be reset to the environment saturation values 

at the cloud base. From there, the plume equation and the vertical velocity equation are solved 

iteratively to the cloud top. 

A three-step method is used to solve the equations numerically as described in Chikira and 

Sugiyama [2010]: (1) 𝐵𝑢,𝑘−1/2 and 𝑤𝑢,𝑘−1/2 in the lower cloud layer interface are used to estimate 

the entrainment rate in the middle level 𝑒𝑘
′  with Equation 3.5. (2) the estimated 𝑒𝑘

′  is used to solve 

the estimated plume properties in the upper cloud layer interface 𝑤𝑢,𝑘+1/2
′ , 𝑇𝑢,𝑘+1/2

′ , 𝑞𝑣𝑢,𝑘+1/2
′ , 

𝐵𝑢,𝑘+1/2
′ , and 𝑒𝑘+1/2

′ . The middle level entrainment rate is updated by 𝑒𝑘 = 0.5(𝑒𝑢,𝑘−1/2 +

𝑒𝑢,𝑘+1/2
′ ). (3) the updated entrainment rate 𝑒𝑘  is used to calculate the final plume properties 

𝑤𝑢,𝑘+1/2, 𝑚𝑢,𝑘+1/2, 𝑇𝑢,𝑘+1/2, 𝑞𝑣𝑢,𝑘+1/2, 𝐵𝑢,𝑘+1/2, and 𝑒𝑢,𝑘+1/2 in the upper cloud level interface. 
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The index 𝑘 = 1, ⋯ , 𝐾 represents levels from model bottom to top. The mass flux 𝑚𝑢 is solved 

by 

 𝑚𝑢,𝑘+1/2 = 𝑚𝑢,𝑘−1/2exp(𝑒𝑘Δ𝑧) (3.6) 

where Δ𝑧 is the cloud layer depth. The mass flux below the cloud base is given by an exponential 

function of height 𝑧 

 
𝑚𝑢 = (

𝑧

𝑧𝑏
)

1/2

 
(3.7) 

where 𝑧𝑏 is the height of cloud base. Detrainment is assumed to occur only at the top of the plumes. 

For a plume equation of a conservative quantity ℎ 

 𝜕ℎ𝑢

𝜕𝑧
= 𝑒(ℎ𝑒 − ℎ𝑢) 

(3.8) 

, we discretize it as 

 ℎ𝑢,𝑘+1/2 − ℎ𝑢,𝑘−1/2

Δ𝑧
= 𝑒𝑘 (ℎ𝑒,𝑘 −

ℎ𝑢,𝑘−1/2 + ℎ𝑢,𝑘+1/2

2
) 

(3.9) 

For cloud microphysics, the total condensation could be diagnosed using a similar discretization 

of water vapor equation 

 𝑞𝑣𝑢,𝑘+1/2 − 𝑞𝑣𝑢,𝑘−1/2

Δ𝑧

= 𝑒𝑘 (𝑞𝑒,𝑘 −
𝑞𝑣𝑢,𝑘−1/2 + 𝑞𝑣𝑢,𝑘+1/2

2
) +

𝜌𝑘𝐶𝑘

0.5 ⋅ [𝑚
𝑢,𝑘−

1
2

+ 𝑚𝑢,𝑘+1/2]
 

(3.10) 

We have assumed that all the source and sink terms of rain (R), cloud ice (I) and snow (S) are 

related to condensation 𝐶 through a precipitating fraction 𝐹𝑝 and freezing fraction 𝐹𝑖 

 𝑅 = (1 − 𝐹𝑝)(1 − 𝐹𝑖)𝐶

𝐼 = (1 − 𝐹𝑝)𝐹𝑖𝐶

𝑆 = 𝐹𝑝𝐹𝑖𝐶
 

(3.11) 

The precipitating fraction 𝐹𝑝 is given by 
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 𝐹𝑝(𝑧) = 1 − 𝑒−(𝑧−𝑧𝑏−𝑧0)/𝑧𝑝 (3.12) 

where 𝑧𝑏 is cloud base, 𝑧0 and 𝑧𝑝 are 1500 m and 4000 m by default in Chikira and Sugiyama 

[2010]. Their setting is problematic because when 𝑧 − 𝑧𝑏 < 𝑧0 , 𝐹𝑝  is negative, which is not 

physical. We have set 𝑧0 = 0 as default setting. The freezing fraction 𝐹𝑖 is given by 

 

𝐹𝑖(𝑇) = {

1 𝑇 ≤ 𝑇1

(𝑇2 − 𝑇)/(𝑇2 − 𝑇1) 𝑇1 < 𝑇 < 𝑇2

0 𝑇 ≥ 𝑇2

 

(3.13) 

where 𝑇1 and 𝑇2 are 258.15K and 273.15K. 

Chikira and Sugiyama [2010] also calculated evaporation in the downdraft plumes. Since their 

impact on MJO simulation has been found to be small, we will not include them in this study. 

When all the above processes are calculated, the only variable left on the RHS of the budget 

equation 3.1 is the mass flux at the cloud base 𝑀𝐵,𝑗 for the 𝑗the plume. A prognostic cloud kinetic 

energy equation 

 𝜕𝐾

𝜕𝑡
= 𝐴𝑀𝐵 −

𝐾

𝜏𝑃
 

(3.14) 

 

has been used to provide the closure [Xu, 1993]. 𝐾 is the cloud kinetic energy. 𝐴 is the cloud work 

function. 𝜏𝑃 is the dissipation time scale. 𝐾 can be represented by 𝛼𝑀𝐵
2. 𝛼 and 𝜏𝑃 are both tuning 

parameters set to values 5.0×107 kg-1m4 and 1.0×103s. When 𝑀𝐵 is determined, all terms in the 

budget equations can be derived and the convective precipitation on the surface is calculated from 

precipitation rate. 

With all the tunable parameters set to the default values in Chikira and Sugiyama [2010], we 

replaced both the shallow convection scheme and deep convection scheme in CESM version 1.2.1 

and we call it the control version. In Section 3.4, we will evaluate its standard climatology and 
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MJO performance in the single column model and GCM, and compare its simulation with that of 

CESM default setting. In Section 3.5, we will use different options in the scheme and analyze the 

sensitivity of MJO simulation to these parameters. 

3.4 Results with Default Parameter Settings  

Since the convective parameterization described above is a multiple plume scheme, it would be 

interesting to see how the in-cloud property of each plume changes with height. Similar to Chikira 

and Sugiyama [2010] (hereafter CS), we have chosen an atmospheric profile that is easy to trigger 

convection. The profile is the averaged profile in the Tropical Ocean Global Atmosphere Coupled 

Ocean-Atmosphere Response Experiment (TOGA-COARE) with precipitation larger than 20 mm 

day-1 for 10 November-10 December, 18 December-23 January, and 31 January-18 February. 

Figure 3.1 shows the in-cloud properties calculated by the plume equation with vertical velocity 

ranging from 0.1 m/s to 1.4 m/s spaced at intervals of 0.1 m/s. We note large variability among the 

plumes. A plume with larger initial vertical velocity tends to reach a higher level up to about 8 km, 

because its entrainment rate is smaller.  A tall plume has larger overall vertical velocity, buoyancy, 

and mass flux. Plumes with smaller initial vertical velocity has larger entrainment rate they would 

lose their buoyancy within a few kilometers. These plumes represent shallow convection. Since 

there are no detrainment terms specified in the plume equation, the mass flux of each plume 

increases monotonically until it reaches the cloud top. The sum of mass flux over all plumes 

produces a gradual decrease (the blue line in (e)) due to the sharp detrainment of each plume at the 

top.    

Compared with the results given by the Figure 1 of CS, even with all the same parameters and 

options, our version seems to produce in-cloud MSE closer to the environment saturated values. 
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The reason could be due to the difference in implementation detail but the overall pattern looks 

reasonable. 

We have set all parameters the same as in CS and name it DEFAULT. We first conducted a 

single column simulation with observational forcing from the TOGA-COARE case starting from 

12/19/1992 for twelve days.  We have run the same case using the standard CESM version 1.2.1 

with both ZM deep convection [Zhang and McFarlane, 1995] and UW shallow convection [Park 

and Bretherton, 2009] for comparison (hereafter CAM). 

Figure 3.2 shows the simulated precipitation during the twelve-day TOGA-COARE period 

from CAM and DEFAULT. The observation shows several large precipitation peaks transitioning 

gradually into a period of less precipitation activity after day 7. CAM is able to capture this smooth 

pattern very well. The phase of CAM convective precipitation seems to be delayed for a few hours 

from observation. To the contrary, DEFAULT shows a very different sporadic precipitation with 

extremely large peaks. Almost all the precipitation is from the convection scheme. Figure 3.3 

displays the heating rate contributed by convection scheme for CAM and DEFAULT, compared 

with the observational Q1. CAM produces very smooth heating pattern consistent with the 

observation even though the heating height is lower than that observed, especially from day 2 to 

day 3. DEFAULT simulated very irregular and sharp heating features corresponding to its 

precipitation pattern. The convection heating is in the lower troposphere, implying that a greater 

of shallow convection is involved. Figure 3.4 shows the corresponding moisture tendencies. These 

moistening patterns for both versions are consistent with their heating patterns. CAM produces a 

drying pattern below its heating center while moistening at the top by detrainment. We see that 

DEFAULT is creating too much heating that stabilizes the atmosphere too quickly so that it is not 

able to trigger convection continuously. The all-time average of the heating profile in Figure 3.5 
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shows that DEFAULT heating rate is about two times that observed in CAM. Both CAM and 

DEFAULT generate lower heating rate centers than observed. 

From the results of the single column run, we can see that a default set of parameters that work 

well in a model may not be a suitable configuration for another. The process that controls the 

convective strength in DEFAULT is the prognostic closure Equation 3.14. The dissipation time 

scale 𝜏𝑝 and tunable parameter 𝛼 in DEFAULT may not work with CESM and may need to be re-

tuned. 

Next, we briefly show a few examples of the GCM climatology and variability with these 

default settings. The GCM simulation is set up as a AMIP-type 5-year simulation forced by 

climatological sea surface temperature (SST). Figure 3.6 shows the annual mean precipitation by 

CAM and DEFAULT. CAM produces a generally reasonable global precipitation distribution but 

it suffers from a positive double ITCZ bias at east Pacific Ocean. DEFAULT does not have such 

bias, consistent with the results by CS, while biases from other regions increase dramatically, such 

as too much precipitation in western Pacific warm pool and Indian Ocean, too little precipitation 

over the Amazon and Africa, and too much extension of southern ITCZ. Figure 3.7 shows the 

simulated MJO east-westward and north-southward propagating pattern in the tropics from 

observation, CAM and DEFAULT. Neither CAM nor DEFAULT are able to reproduce the strong 

and sustained eastward OLR propagating signal (shading) and the coupled 850mb zonal wind 

(shown in contour) from the reference point in the Indian ocean. There is a very weak propagation 

of zonal wind toward the east in CAM and DEFAULT but its phase speed is too fast. The power 

spectra plot in Figure 3.8 also reveals these deficiencies of the models. The peak around the 

frequency with period 45 days and wave number 1 in the observation is not captured in both models. 

Again, the default parameter settings used by CS is not directly transferable to CESM, so the good 
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MJO performance reported in CS scheme is not observed. In the following section, we will use 

several options to investigate the roles of some of the key parameters in changing the MJO 

simulations. 

3.5 Sensitivity Test 

As mentioned at the beginning of the chapter, many previous studies have emphasized the 

important role of shallow convection in enhancing MJO by preconditioning the atmospheric moist 

environment in the low troposphere. We designed two experiments to control the relative  

population of deep and shallow plumes to investigate the sensitivity of MJO simulations. 

The key parameters to determine the height of convective cloud top are the choice of launching 

level, initial plume vertical velocity, and entrainment rate. In the offline calculation, DEFAULT 

version generally exhibits lower plumes than that in CS with the initial vertical velocity ranging 

from 0.1 m/s to 1.4 m/s. We discovered that an enlarged range from 0.2 m/s to 4 m/s with 15 

plumes will help the plumes reach a higher level, similar to that shown in CS Figure 3.9. With this 

change, the plumes generally reach a higher top with larger buoyancy and have slightly higher 

mass flux centers. These plumes could be considered as deep plumes (hereafter DP). 

For the shallow plumes, we seek smaller vertical velocity and larger entrainment rate so that 

the plumes lose buoyancy faster. We slightly reduce the vertical velocity range to 0.1 m/s-1.2 m/s 

and  increase the plume entrainment rate by changing the parameter 𝐶𝜀 to 0.8. From Equation (3.3) 

and (3.5), we know that the increase of 𝐶𝜀 will lead to larger entrainment rate. The launching level 

in CS is the LCL and all the plume variables are reset to the environment saturated values. 

Therefore, the cloud base could be several model levels higher than the surface. We have changed 

it to launch from the maximum MSE level and then reset the plume properties to the environment 

saturated values. We show the offline calculation with all these modifications in Figure 3.9 and 
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Figure 3.10.  We can see that the modifications indeed led to deep (hereafter DP, Figure 3.9) and 

shallow plumes (hereafter SH, Figure 3.10). 

We found that the strong and sporadic heating and precipitation problem in DEFAULT can be 

largely alleviated by changing the parameters 𝛼 and 𝜏𝑝 in the closure equation. Larger values of 𝛼 

and 𝜏𝑝 slower the converting rate of cloud work function into cloud base mass flux and dissipation 

rate according to Equation 3.14. The sharp pattern in heating profile and precipitation could be 

reduced by such modifications. We have used the values 5×1011 and 2×107 for 𝛼 and 𝜏𝑝 in shallow 

plumes and the values 4×1010 and 8×105 for 𝛼 and 𝜏𝑝 in deep plumes. We have repeated the single 

column simulation for the TOGA-COARE case using both DP and SH shown in Figure 3.11 and 

Figure 3.12 respectively. It is seen that in both of these cases, precipitation patterns are much better 

than DEFAULT. They follow the observations well. SH is able to capture the precipitation phase 

well while DP precipitation peak is usually delayed for a few hours. Generally speaking, the 

heating center of DP is always higher and that of SH is lower. 

To test which type of plumes are more favorable for MJO, we did the same GCM simulation 

using SH and DP as we did for DEFAULT and plot the lag regression map in Figure 3.13. SH 

reproduces both the eastward and northward MJO propagation pattern very well as shown in 

Figure 3.13(b). Not only is the OLR propagating signal strong but it is well coupled with the 800mb 

zonal wind structure with a reasonable phase speed, similar to observation. On the contrary, DP 

produces very noisy and localized pattern in the lag regression plot, implying no MJO propagating 

signal at all. A further examination in Figure 3.13 shows that SH may have a slightly smaller 

frequency than that in observation. With only several modifications of the convective parameters, 

we are able to generate totally different MJO patterns. The simulation of MJO is sensitive to the 

choice of launching level, entrainment rate specification, initial vertical velocity, and the 



 

57 

dissipation time scale in the closure. Shallower convection with lower and broader heating rate 

tends to enhance the MJO propagating. Li et al. [2009] found that an artificially lowered heating 

rate helps to improve MJO simulation. Our results are consistent with their conclusion but the 

heating is naturally applied by multiple plumes. 

Since there are several differences between DP and SH, it would be useful to know which one 

or two components are more important than the others. We have tried to apply the combination of 

the modifications one at a time to see which contributes most to improvement of MJO simulation. 

Figure 3.14 shows the MJO lag regression plot with several combinations we have tried. We can 

see from all the figures that making any one single modification cannot not produce the good MJO 

as SH does. The most significant improvement comes from simultaneously applying both initial 

vertical velocity range and entrainment rate changes (see (d)). Note that the launching level used 

by SH has been applied to all test cases. A removal of this modification will result in noisy and 

localized MJO signals. 

Note that in the shallow setting for convection plumes, parameters are adjusted to allow more 

shallow convection to take place but it does not imply that deep convection is never triggered. The 

overall enlarged entrainment rate for the shallow setting dilutes the lifting plumes more efficiently 

and most plumes reach their neutral buoyancy level at lower heights. But when the environment 

profile is favorable for the deep convection, more plumes are able to reach higher. This could also 

be seen in Figure 3.11 that the weak heating range could still expand up to 200mb, only slightly 

lower than that for the deep plume setting. Therefore, deep convection still plays a role under 

shallow plumes but its fraction is less. This is also the advantage of using multiple plumes, 

representing both shallow and deep plumes in a unified way. 

3.6 General GCM Performance 
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Besides the MJO sensitivity test, we provide a general GCM simulation test for the version with 

shallow plumes. The simulation setting is a 5-year AMIP run the same as the previous run. Figure 

3.15 shows the map of climatology precipitable water and total precipitation. The global mean 

precipitable water is slightly larger than the observation, implying a more moisture atmosphere 

using SH. The precipitation shown in Figure 3.15 (b) is better than that simulated by DEFAULT 

in Figure 3.6. No double-ITCZ bias is observed. The land precipitation over Amazon and Africa 

is close to the observation. However, the overall precipitation magnitude is too large compared 

with the observation. There is also a large positive bias in the Indian Ocean. The convection 

strength may need to be further tuned down by adjusting the time scale parameters in the closure 

to remove such biases. 

Figure 3.16 shows the cloud distribution simulated in low, middle, and high levels. There is too 

much low cloud simulated by SH while lacking moderate amount of middle and high cloud 

compared with the observation. These biases introduce the radiation unbalance at TOA shown in 

Figure 3.17. Too much low cloud reflects larger amount of shortwave radiation, producing an 8 

w/m2 bias compared with observation while the upward longwave radiation shown in (b) is close 

to the one simulated by the CAM default setting (not shown). This could indicate too much shallow 

convection in the shallow-plume settings. The fraction of shallow plumes could be slightly reduced 

to provide a better low cloud distribution while keeping a reasonable MJO propagation. 

Figure 3.18 shows the diurnal cycle simulated by both SH and CAM default version, compared 

with the observation. The precipitation peak over the tropical ocean in CAM default version is in 

the local early morning, earlier than observational late morning. SH is able to represent the 

observational diurnal cycle over the ocean well. However, the observational late afternoon and 
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evening precipitation peak over land is not captured by both SH and CAM default version. There 

is a late afternoon feature over North America with SH but the strength is too weak. 

In summary for the general GCM performance, SH simulates a better Pacific precipitation 

distribution and diurnal cycle but the other fields such as radiation and low cloud distribution 

deteriorate. Since SH is a version targeted for MJO sensitivity study, the convection parameters 

and the parameters in other cloud schemes have not been tuned sufficiently. Future work may be 

required to adjust the model parameters for an overall better simulation of both climatology and 

intraseasonal variability. 

3.7 Conclusion 

In this study, we have used a multi-plume convection parameterization to study the MJO 

sensitivity on convective configurations and parameters. This parameterization was implemented 

to be flexible enough so that different convection configurations such as entrainment/detrainment 

rates, plume designation, launching level, and microphysics, can be tested. 

When the Chikira and Sugiyama [2010] scheme is directly used in CAM, we found that the 

default parameters are not compatible with CAM. After making several modifications to the 

scheme, we are able to reproduce a very strong MJO propagation using an option of enhanced 

shallow convection. The key components of the successful MJO simulation consist of launching 

the plumes from the level of maximum MSE, larger entrainment rate, and weaker initial vertical 

velocity range for the launching plumes. 

This sensitivity study is a first step toward a better understanding of MJO simulation. The set 

of parameters for shallow plumes have been found to favor MJO propagation but we haven’t been 

able to validate them with the realistic values, which requires extensive observation. However, a 

benefit of using multiple plume convection scheme is that the distribution of plume in-cloud 
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properties is given. The plume properties solved by the cloud model can be compared with and 

constrained by the results from cloud resolving models or observations. Moreover, the 

specification of entrainment/detrainment rate and plume properties from the other convective 

scheme or experimental design could be used as options. Ensembles with different options can be 

also tested. Within the parameterization framework and implementation presented, new 

parameterization ideas can be tested and evaluated.  
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Figures 

 

 
Figure 3.1. Offline calculation with an average profile from TOGA-COARE. Different colors 

represents plumes with initial vertical velocoties from 0.1 m/s to 1.4 m/s. (a) Plume MSE (lines in 

colors), environemtn MSE (solid black line), enviroment saturated MSE (dash line). (b) 

Entrainment. (c) vertical velocity. (d) Buoyancy. (e) Normalized mass flux (blue line represents 

the sum of mass flux of all plumes). Dot and cross marks represent properties present in the middle 

of model level and on the interface respectively. 
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Figure 3.2. Precipitation (mm/day) simulated in the TOGA-COARE single column run. The 

black dash line is the observation from TOGA-COARE. (a) and (b) are respectively for CESM 

default ZM+UW setting and the current convection scheme with the default parameters. All 

precipitation amount is additive from the components: large-scale precipitation(blue), shallow 

precipitation (green), and the convective precipitation(red). The precipitation from DEFAULT 

convection is all considered as deep but it may have shallow components in it. 

  

(a) 

(b) 
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Figure 3.3. Heating rate contribution only from the convection scheme simulated in the TOGA-

COARE single column run. (a) is the observational heating rate from TOGA-COARE including 

all physical terms. (b) and (c) are for CESM default ZM+UW setting and the current convection 

scheme with the default parameters. 

  

(a) 

(c) 

(b) 
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Figure 3.4. Moisture tendency contribution only from the convection scheme simulated in the 

TOGA-COARE single column run (unit converted into K/day). (a) is the observational moisture 

tendency from TOGA-COARE including all physical terms. (b) and (c) are for CESM default 

ZM+UW setting and the current convection scheme with the default parameters. 

  

(a) 

(b) 

(c) 
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Figure 3.5. All-time averaged heating (solid line) and moisture (dash line) tendency 

contribution only from the convection scheme simulated in the TOGA-COARE single column run 

(unit converted into K/day). Observations are shown in black and simulation are shown in blue. 

(a) is the output from the CESM default ZM+UW setting. (b) is the output from the current 

convection scheme with the default parameters.  

(a) (b) 
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Figure 3.6. Precipitation simulated by CAM (b) and DEFAULT (c) and their bias ((d) and (e) 

compared with the GPCP observation (a). 

  

(a) 

(b) (c) 

(d) (e) 
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Figure 3.7 Lag-regression zonal mean (80°E to 100°E) and meridional mean (10°S to 10°N) of 

U850 (contour) and OLR (shading) upon the spatial average OLR within the reference area (from 

10°S to 5°N, from 75°E to 100°E) for full seasons. All the results were converted to anomalies 

with a 20-100 day bandpass-filter before they were analyzed. (a) observation. (b) CAM. (c) 

DEFAULT. 

 

  

(a) 

(b) (c) 
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Figure 3.8. OLR power divided by the background spectra for various wavenumbers and 

frequencies in the tropics for (a) observation, (b) CAM and (c) DEFAULT. 

  

(a) 

(b) (c) 
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Figure 3.9. Same as Figure 3.1 but calculated with an initial vertical velocity range designed 

for deep convective plumes. 

  

(a) (c) (b) 

(d) (e) 
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Figure 3.10. Same as Figure 3.1 but calculated with an initial vertical velocity range designed 

for shallow convective plumes.  

(a) (c) (b) 

(d) (e) 
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Figure 3.11. The TOGA-COARE case simulated by shallow plumes (SH). The figures are for 

precipitation, heating rate, and moistening rate, respectively. 
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Figure 3.12. The TOGA-COARE case simulated by the deep plumes (DP). The figures are for 

precipitation, heating rate, and moistening rate, respectively. 

  



 

73 

 

 

Figure 3.13. (a)(b) same as Figure 3.7 but using DP and SH respectively. (c)(d) same as Figure 

3.8 but using DP and SH respectively. 

  

(a) (b) 

(c) (d) 
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Figure 3.14. Lag regression plot same as Figure 3.7 but with different modifications applied to 

the DP. When all the modifications are applied, DP becomes SH. The launching level in all the 

cases here have been changed to the level of maximum MSE. (a) is with the change of initial 

vertical velocity range. (b) is with the change of both initial vertical velocity and dissipation time 

scale. (c) is with the improved dissipation time scale. (d) is with the change of entrainment 

parameter 𝐶𝜀. (e) is with the change of both the entrainment parameter and the vertical velocity 

range.  

(a) (b) (c) 

(d) (e) 
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Figure 3.15. GCM simulation using the setting of the shallow plumes (upper panel) and 

observation (lower panel). (a) Precipitable water. (b) Total precipitation.  

(a) (b) 
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Figure 3.16. GCM simulation using the setting of the shallow plumes (upper panel) and 

observation (lower panel). (a) Low cloud. (b) Middle cloud. (c) High cloud. (d) Total grid-box 

cloud liquid water path.  

(a) (b) 

(c) (d) 



 

77 

  

Figure 3.17. GCM simulation using the setting of the shallow plumes (upper panel) and 

observation (lower panel). (a) Net shortwave flux at TOA. (b) Upward longwave flux at TOA. 

  

(a) (b) 



 

 78 

  

 

 

Figure 3.18. Diurnal cycle simulation performance. (a) Observation. (b) Simulation using the 

setting of shallow plumes. (c) Simulation using the CAM default version 1.2.1. 

 

 

(a) 

(b) 

(c) 
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Chapter 4  

Summary and Future Work 

This dissertation has investigated the scale dependence of cloud liquid subgrid variability and 

its parameterization in a climate model. A convection parameterization with multiple plumes has 

been used to study the sensitivity of intraseasonal variability on the physical assumptions in the 

scheme. 

4.1 Summary 

We analyzed the long-term ground-based MICROBASE dataset to derive the liquid cloud 

inhomogeneity represented by the shape parameter ν of the Gamma distribution. Smaller ν is 

associated with larger inhomogeneity. We reported the dependence of ν on the horizontal scale 

and atmospheric instability and derived a scale-aware parameterization of ν that depends on the 

model resolution and atmospheric state. 

The newly developed parameterization is implemented in CESM1. It provides the distribution 

of cloud liquid inhomogeneity to the microphysics scheme. Compared to the default CESM1, 

where a constant liquid inhomogeneity parameter was assumed, the scale-aware version reduces 

the cloud inhomogeneity at high latitudes and increases it at low latitudes. This is due to both the 

smaller grid size in high latitudes, and larger grid size in low latitudes in the longitude-latitude grid 

setting of CESM as well as the variation of the stability of the atmosphere. The single column 

model and GCM sensitivity experiments show that the new parameterization increases the cloud 

liquid water path in polar regions and decreases it in low latitudes. 
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Current CESM1 simulations suffer from the bias of both the pacific double-ITCZ precipitation 

and weak Madden-Julian oscillation (MJO). Previous studies show that convective 

parameterization with multiple plumes may alleviate such biases. A multiple-plume mass flux 

convective parameterization is implemented in CAM to investigate the sensitivity of MJO 

simulations. We show that MJO simulation is sensitive to entrainment rate specification, and 

shallow plumes play a key role in generating and sustaining the MJO propagation in the model. 

4.2 Future Work 

The scale-aware liquid cloud inhomogeneity parameterization we derived is only one 

component toward the scale-aware description of cloud microphysics. Future studies should 

include cloud ice and other hydrometeors. While the impact of the parameterized inhomogeneity 

on the simulated climate in this study is small, we think the main benefit of the scheme is its direct 

use in variable resolution models. 

It would be also of interest to see what impact this scale-aware parameterization could bring 

when the model resolution increases to 1 degree or 0.5 degree since a full scale-aware model is 

meant to produce consistent results regardless of what resolution is used. From the equation 2.5, a 

generally smaller grid has less subgrid variability, and less adjusted autoconversion and accretion. 

For the MJO sensitivity study, we have only chosen one formulation for the entrainment rate 

calculation in the multiple plume convection scheme. The specification of 

entrainment/detrainment rates and plume properties from other convective schemes can be used 

for more tests. Within the parameterization framework and implementation presented, new 

parameterizations of the closure scheme and precipitation properties can be tested and evaluated. 

Since we used a multiple plume parameterization, the plume properties solved by the scheme can 

also be compared with and constrained by results from cloud resolving models or observations. 
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Finally, further tuning work is needed for the current version of convection parameterization to 

simulate a better climatology given the results shown in Section 3.6. A common problem in tuning 

model is that climatology and variability performance seem to compromise each other. A better 

variability simulation such as MJO propagation usually results in a deterioration in climatology. 

Since in this study we have found the key components to the MJO simulation, a strategy is that we 

may change those sensitive parameters as less as possible while adjusting the other parameters 

until a better climatology is produced. 
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