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Abstract of the Dissertation 

Growth of errors and uncertainties in medium range ensemble forecasts of U.S. East Coast 

cool season extratropical cyclones 

by 

Minghua Zheng 

Doctor of Philosophy 

in 

Marine and Atmospheric Sciences 

Stony Brook University 

2016 

  

Cool-season extratropical cyclones near the U.S. East Coast often have significant 

impacts on the safety, health, environment and economy of this most densely populated region. 

For example, the “January 2015 blizzard” caused thousands of flights cancellations, travel bans 

enacted in five states, and two related deaths. Hence it is of vital importance to forecast these 

high-impact winter storm events as accurately as possible by numerical weather prediction 

(NWP), including in the medium-range (3-6 days). Ensemble forecasts are appealing to 

operational forecasters when forecasting such events because they can provide an envelope of 

likely solutions to serve user communities. However, it is generally accepted that ensemble 

outputs are not used efficiently in NWS operations mainly due to the lack of simple and 

quantitative tools to communicate forecast uncertainties and ensemble verification to assess 

model errors and biases. Ensemble sensitivity analysis (ESA), which employs a linear correlation 
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and regression between a chosen forecast metric and the forecast state vector, can be used to 

analyze the forecast uncertainty development for both short- (1─2 days) and medium-range 

forecasts. The application of ESA to a high-impact winter storm in December 2010 demonstrated 

that the sensitivity signals based on different forecast metrics (the EOF PCs, the MSLP run cycle 

differences, and the short-range forecast errors) are robust. In particular, the ESA based on the 

leading two EOF PCs can separate sensitive regions associated with cyclone amplitude and 

intensity uncertainties, respectively. The sensitivity signals were verified using the leave-one-out 

cross validation (LOOCV) method based on a multi-model ensemble from CMC, ECMWF, and 

NCEP.  

The climatology of ensemble sensitivities for the leading two EOF PCs based on 3-day 

and 6-day forecasts of historical cyclone cases was presented. It was found that the EOF1 pattern 

often represents the intensity variations while the EOF2 pattern represents the track variations 

along west-southwest and east-northeast direction. For PC1, the upper-level trough associated 

with the East Coast cyclone and its downstream ridge are important to the forecast uncertainty in 

cyclone strength. The initial differences in forecasting the ridge along the west coast of North 

America impact the EOF1 pattern most. For PC2, it was shown that the shift of the tri-polar 

structurethe East Coast trough and its adjacent ridgesis most significantly related to the 

cyclone track forecasts. 

 The EOF/fuzzy clustering tool was applied to diagnose the scenarios in operational 

ensemble forecast of East Coast winter storms. It was shown that the clustering method could 

efficiently separate the forecast scenarios associated with East Coast storms based on the 90-

member multi-model ensemble. A scenario-based ensemble verification method has been 

proposed and applied it to examine the capability of different EPSs in capturing the analysis 
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scenarios for historical East Coast cyclone cases at lead times of 19 days. The results suggest 

that the NCEP model performs better in short-range forecasts in capturing the analysis scenario 

although it is under-dispersed. The ECMWF ensemble shows the best performance in the 

medium range. The CMC model is found to show the smallest percentage of members in the 

analysis group and a relatively high missing rate, suggesting that it is less reliable regarding 

capturing the analysis scenario when compared with the other two EPSs. A combination of 

NCEP and CMC models has been found to reduce the missing rate and improve the error-spread 

skill in medium- to extended-range forecasts. 

By utilizing the scenario analysis, whether the ensemble mean from the multi-model 

ensemble or each individual model is really better than other subsets of an ensemble forecast has 

also been analyzed. It was found that in the majority of cases, the analysis does not lie within 

Group EM in the multi-mode ensemble. Meanwhile, the quadrant statistics suggest that the 

ECMWF model misses the analysis direction in a majority of past storms although it shows a 

slightly higher chance to be in the analysis quadrant in the medium range than the other two 

EPSs. 

Based on the orthogonal features of the EOF patterns, the model errors for 16-day 

forecasts have been decomposed for the leading two EOF patterns. The results for error 

decomposition show that the NCEP model tends to better represent both EOF1 and EOF2 

patterns by showing less intensity and displacement errors during 13 days. The ECMWF model 

is found to have the smallest errors in both EOF1 and EOF2 patterns during 46 days. The CMC 

model shows moderate errors for days 12 and the largest errors for days 36. We have also 

found that East Coast cyclones in the ECMWF forecast tend to be towards the southwest of the 

other two models in representing the EOF2 pattern, which is associated with the southwest-
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northeast shifting of the cyclone. This result suggests that ECMWF model may have a tendency 

to show a closer-to-shore solution in forecasting East Coast winter storms 

The downstream impacts of Rossby wave packets (RWPs) on the predictability of winter 

storms are investigated to explore the source of ensemble uncertainties. The composited RWPA 

anomalies show that there are enhanced RWPs propagating across the Pacific in both large-error 

and large-spread cases over the verification regions. There are also indications that the errors 

might propagate with a speed comparable with the group velocity of RWPs. Based on the 

composite results as well as our observations of the operation daily RWPA, a conceptual model 

of errors/uncertainty development associated with RWPs has been proposed to serve as a 

practical tool to understand the evolution of forecast errors and uncertainties associated with the 

coherent RWPs originating from upstream as far as western Pacific. It suggests that the central 

and the leading regions of the RWP are the preferable regions for large errors/uncertainties to 

grow and develop. The errors and spread in a case study for a coherent RWP fit the conceptual 

model well. The ESA is also performed for this case study and the corresponding sensitivities 

also qualitatively fit the conceptual model. 

To investigate the mechanism of how RWPs affect the downstream predictability, the 

forecasts errors associated with the downstream development have been investigated under the 

framework of eddy kinetic energy (EKE) budget based on the same RWP case. The results show 

that the errors in the total advection term contribute significantly to the errors in the local EKE 

tendency especially over the eastern U.S. and western Atlantic region. The errors in the 

ageostrophic flux term play a significant role in the initial development of the EKE errors. A 

comparison between two ensemble members shows that the ensemble member that has less 

errors better resolved the initial EKE center with less AGFD errors, leading to a much better 
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forecast of the EKE tendency over the downstream areas (eastern U.S. and western Atlantic).  

This work shed lights on improving the understanding of winter storm predictability and 

NWP model bias and provides new perspectives to communicate forecast uncertainty in 

predicting cool-season HIW events.  



viii 

Table of Contents 

 

Abstract of the Dissertation ........................................................................................................... iii 

Table of Contents ......................................................................................................................... viii 

List of Figures .............................................................................................................................. xii 

List of Tables ............................................................................................................................. xxii 

List of Abbreviations ............................................................................................................... xxiii 

Acknowledgements ................................................................................................................... xxv 

Chapter 1 Introduction .................................................................................................................... 1 

1.1 Background and motivations ................................................................................................. 1 

1.2 East Coast cyclone climatology and dynamics ..................................................................... 9 

1.3 Numerical weather predictions and ensemble forecasts ..................................................... 16 

1.4 Ensemble forecasts of East Coast cyclones......................................................................... 18 

1.5 Tools to examine forecast sensitivity to initial conditions ............................................. 21 

1.5.1 Singular vector, adjoint sensitivity and ETKF analysis ............................................... 21 

1.5.2 Ensemble sensitivity analysis ....................................................................................... 25 

1.6 Science questions ............................................................................................................... 27 

1.7 Outline of the dissertation ................................................................................................... 29 

Chapter 2 Data and Methodologies ........................................................................................... 31 

2.1 Data ..................................................................................................................................... 31 

2.1.1 Deterministic and ensemble data: TIGGE .................................................................... 31 

2.1.2 Variables, forecasting, and analysis data used for each chapter ................................... 34 

2.2 Winter storm case selection .............................................................................................. 36 

2.2.1 Analyzed cyclone cases ................................................................................................ 37 

2.2.2 Predicted cyclone cases ................................................................................................ 39 

2.2.3 Dropout cases selection ................................................................................................ 39 

2.3 Empirical Orthogonal Function analysis ........................................................................ 40 

2.4 Sensitivity analysis ............................................................................................................ 43 

2.4.1 Ensemble sensitivity method ........................................................................................ 43 



ix 

2.4.2 LOOCV: the verification of ensemble sensitivity signals ............................................ 46 

2.4.3 An introduction to the ETKF method ........................................................................... 48 

2.5 Fuzzy clustering method ................................................................................................... 50 

2.6 Rossby wave packet: detection and tracking .................................................................. 52 

2.6.1 Rossby wave packet amplitude..................................................................................... 52 

2.6.2 An objective way to track RWPs .................................................................................. 54 

2.7 Chapter summary ............................................................................................................. 55 

Chapter 3 Ensemble sensitivity and its applications to ensemble forecasting ...................... 57 

3.1 Ensemble sensitivity analysis background ...................................................................... 58 

3.2 Formulating ensemble sensitivity .................................................................................... 62 

3.2.1 Ensemble sensitivity using the EOF approach ............................................................. 62 

3.2.2 Sensitivity using run cycle differences ......................................................................... 64 

3.2.3 Forward sensitivity regression using short-range forecast errors ................................. 64 

3.3 A case study applying ensemble sensitivity to an East Coast winter storm ................. 66 

3.3.1 Synoptic overview of the case ...................................................................................... 68 

3.3.2 Ensemble sensitivity results.......................................................................................... 71 

3.4 The verification of ESA signals using LOOCV .............................................................. 85 

3.5 An alternative way of verifying the robustness of medium range ESA signals ........... 92 

3.6 Climatology of ensemble sensitivity ................................................................................. 97 

3.7 Possible link to RWPs via. Downstream development mechanism ............................ 107 

3.8 Chapter summary ........................................................................................................... 111 

Chapter 4 Fuzzy clustering and evaluations of multi-model ensemble ............................... 115 

4.1 A brief introduction to fuzzy clustering method in ensemble studies ........................ 116 

4.2 Applying fuzzy clustering to winter storm forecast in a case study: 26-28 January 2015 

winter storm event ................................................................................................................... 117 

4.2.1 Synoptic overview ...................................................................................................... 117 

4.2.2 Ensemble forecasts at different lead times ................................................................. 121 

4.2.3 Steps for applications to operational forecast ............................................................. 122 

4.3 Comparing different forecast metrics for clustering ......................................................... 129 

4.4 Applying fuzzy clustering to ensemble verification of historical winter storm cases ...... 132 



x 

4.4.1 Analysis scenario definition ....................................................................................... 133 

4.4.2 Outside-of-envelope (OOE) cases .............................................................................. 138 

4.4.3 Steps for applying clustering approach to verify a historical storm case ................... 140 

4.5 Evaluation of the multi-model ensemble .......................................................................... 141 

4.5.1 Different EPS’s ability in capturing the analysis scenario ......................................... 142 

4.5.2 Ensemble mean group versus other groups ................................................................ 146 

4.5.3 Error-spread relationship ............................................................................................ 150 

4.5.4 Physical interpretation of model errors based on PC metrics ..................................... 156 

4.5.5 Evaluations based on predicted cyclones ................................................................... 165 

4.6 Summary of outlier cases .................................................................................................. 166 

4.7 Chapter summary .............................................................................................................. 169 

Chapter 5 Predictability associated with Rossby wave packets ........................................... 173 

5.1 Dropout cases and RWP ................................................................................................. 174 

5.1.1 RWP amplitude anomaly for Dropout cases .............................................................. 175 

5.1.2 RWPA anomaly for good-forecast cases .................................................................... 179 

5.2 Large spread cases and RWP ......................................................................................... 181 

5.3 Errors and uncertainties in coherent RWPs ................................................................ 185 

5.3.1 A conceptual model of errors/uncertainty development associated with RWPs ........ 185 

5.3.2 A case study of Error/forecast uncertainty growth with respect to a propagating RWP 

from western Pacific ............................................................................................................ 189 

5.4 ESA of forecast metric to RWP ..................................................................................... 193 

5.5 Downstream development of forecast errors ................................................................ 199 

5.5.1 The eddy kinetic energy budget .................................................................................. 199 

5.5.2 The diagnostic of forecast errors under EKE framework ........................................... 202 

5.6 Chapter summary ........................................................................................................... 218 

Chapter 6 Conclusions and future work ................................................................................. 222 

6.1 Summary and conclusions .............................................................................................. 222 

6.2 Implications...................................................................................................................... 227 

6.3 Future work ..................................................................................................................... 230 

Appendix 1 .................................................................................................................................. 234 



xi 

References .................................................................................................................................. 255 

 

  



xii 

List of Figures 

 

Figure 2.1: Region 1 (red box) and region 2 (blue box). The red box includes an area from 95°W 

to 65°W, and 30°N to 50°N; and the blue box includes an area from 79°W to 68°W, and 32°N to 

45°N. ............................................................................................................................................. 38 

Figure 2.2: Region (red box) for calculating RMSE and selecting large error cases. The red box 

includes an area from 99°W to 47°W, and 22°N to 63°N. ........................................................... 40 

Figure 2.3: One illustrative example to interpret the ensemble sensitivity. The abscissas and 

ordinates are Z500 at one grid point within the verification region and the minimum pressure 

forecast from 90-member ensemble within the same verification region..................................... 45 

Figure 3.1: (left, a-d)  Surface cyclone tracks starting from 0000 UTC 26 December to 1200 

UTC 28 December initialized at 1200 UTC 20, 0000 UTC 22, 0000 UTC 24, and 0000 UTC 25 

December 2010; (right, e-h) ensemble forecasts of 996 hPa MSLP for 50 ECMWF (red) 

members valid at 1200 UTC 27 December initialized at 1200 UTC 20, 0000 UTC 22, 0000 UTC 

24, 0000 UTC 25 December 2010; black and blue thick line represent analysis and ensemble 

mean of 996 hPa MSLP contour; red and black dots represent ensemble mean positions of 

surface cyclone for ECMWF and analysis, respectively. ............................................................. 67 

Figure 3.2: (a-f) Surface weather charts: MSLP (black contours, [hPa]), 2-meter air temperature 

(Shading, [°C]) starting from 0000 UTC 25 December to 1200 UTC 27 December 2010. Contour 

interval: 4 hPa. .............................................................................................................................. 69 

Figure 3.3: (a-f) Geopotential height (thick black contour, [m]) and absolute vorticity [×10-5 s-1] 

at 500 hPa level starting from 0000 UTC 25 December to 1200 UTC 27 December 2010. 

Contour interval: 50 m. The grey dot in each panel denotes the corresponding surface cyclone 

position. ......................................................................................................................................... 70 

Figure 3.4: (a) Ensemble mean MSLP (contours, [hPa]) and spread (shading, [hPa]); (b) EOF 1 

MSLP pattern, unit: [hPa]; (c) EOF 2 MSLP pattern, unit: [hPa]. Valid time (VT): 1200 UTC 27 

December2010; Initial time (IT): 0000 UTC 22 December 2010. ............................................... 73 

Figure 3.5: (left, a-e) Sensitivity (shading) of EOF PC1 to Z500; (right, f-j) Sensitivity (shading) 

of EOF PC2 to geopotential height. Contours are ensemble mean of Z500. VT (0 h): 1200 UTC 

27 December 2010; IT: 0000 UTC 22 December 2010. ............................................................... 75 

Figure 3.6: (a) Ensemble mean MSLP (contours, [hPa]) and spread (shading, [hPa]) for forecast 

initialized at 0000 UTC 24 DEC 2010; (b) Ensemble mean MSLP (contours, [hPa]) and spread 

(shading, [hPa]) for forecast initialized at 0000 UTC 25 DEC 2010; (c) Difference between 



xiii 

ensemble mean MSLP initialized at 0000 UTC 25 DEC 2010 and that initialized at 0000 UTC 24 

DEC 2010 (shading, [hPa]). VT: 1200 UTC 27 2010. Solid black circle is the ensemble mean 

position of surface cyclone forecast by cycle 0000 UTC DEC 2010 and solid black square is that 

forecast by cycle 0000 UTC DEC 2010. In (a) and (b), dark yellow squares/dots represent 

cyclone positions forecast by 50 individual ensemble members and their sizes represent cyclone 

central pressure relative to ensemble mean central pressure with larger (smaller) size 

representing weaker (stronger) cyclone. ....................................................................................... 77 

Figure 3.7: Sensitivity (shading) of projection coefficients on forecast jump pattern to MSLP (a-

d, left) and Z500 (e-h, right). Contours are ensemble mean of MSLP and geopotential height, 

respectively. VT (0 h): 1200 UTC 27 DEC 2010; IT: 0000 UTC 24 DEC 2010. ........................ 79 

Figure 3.8: Difference between ensemble mean MSLP (a-d, shading, [hPa]) or Z500 (e-h, 

shading, [dm]) initialized at 0000 UTC 25 DEC 2010 and that initialized at 0000 UTC 24 DEC 

2010. VT (0 h): 1200 UTC 27 DEC 2010. Contours are ensemble mean MSLP and Z500 

initialized at 0000 UTC 24 DEC 2010, respectively. Boxes 1 and 2 will be used in forward 

ensemble regression calculations. ................................................................................................. 81 

Figure 3.9: (a) 500 hPa Geopotential height analysis at 0000 UTC 25 DEC 2010 (red contours, 

[dm]) and 24-hr forecast of 500 hPa geopotential height initialized at 0000 UTC 24 DEC 2010 

(blue contours, [dm]); (b) difference (shading) of Z between analysis [red contours in (a)] and 

24-h forecast [blue contours in (a)], unit: [dm]. Note, the region is the solid red box (box 1) in 

Figure 3.8h. ................................................................................................................................... 82 

Figure 3.10: Sensitivity regression (shading) of projection coefficients on forecast error pattern 

in Fig.3.9b over box 1 to MSLP (a-d; [hPa]) and Z500  (e-h; [dm]). Contours are ensemble mean 

of MSLP and Z500, respectively. VT (0 h): 1200 UTC 27 DEC 2010; IT: 0000 UTC 24 DEC 

2010............................................................................................................................................... 83 

Figure 3.11: One example comparing leave-one-out cross validated correlation (red dotted solid) 

and median ratio (blue squared dashed) of predicted EOF PC1 and actual EOF PC1 for 3-day 

forecast initialized at 1200 Dec 09 2008. VT is the 72 h on the plot. Note that the x-axis is the 

forecast hours, not the lead times for the LOOCV calculations. The lead time can be inferred by 

subtracting the forecast hour from VT (see text). ......................................................................... 88 

Figure 3.12: Leave-one-out cross validated correlation using EOF PC1 and PC2 for 3-day 

forecast initialized at 1200 Dec 24 2010. VT is 72 h on the plot. Note that the x-axis is the 

forecast hours, not the lead times for the LOOCV calculations. The lead ti me can be inferred by 

subtracting the forecast hour from VT (see text). ......................................................................... 89 

Figure 3.13: Boxplot of leave-one-out cross validated correlation for PC1 (a), and PC2 (b) using 

3-day forecast for all 102 verified cyclone cases over region 2.  VT is 72 h on the plot. Note that 



xiv 

the x-axis is the forecast hours, not the lead times for the LOOCV calculations. The lead time 

can be inferred by subtracting the forecast hour from VT (see text). ........................................... 90 

Figure 3.14: The same as Figure 3.13 but for 6-day forecast. VT is 144 h on the plot. Note that 

the x-axis is the forecast hours, not the lead times for the LOOCV calculations. The lead time 

can be inferred by subtracting the forecast hour from VT (see text). ........................................... 91 

Figure 3.15: Ensemble sensitivity (shades)of EOF PC 1 to 500 hPa Z at verification time (a), -36 

h (b), -72 h (c) and -108 h (d). Ensemble forecasts are based on 50 ECMWF members initialized 

at 0000  UTC 15 FEB 2007. Verification time: 0000 UTC 25 FEB 2007. .................................. 96 

Figure 3.16: ETKF reduction of wind forecast error variance due to adaptive obs of (u,v,T) 

at850/500/200hPa for verification time (a), -36 h (b), -72 h (c) and -108 h (d). Ensemble 

forecasts are based on 50 ECMWF members initialized at 0000 UTC 15 FEB 2007. Verification 

time: 0000 UTC 25 FEB 2007. Orange frame shows verification region. ................................... 97 

Figure 3.17: Mean of absolute ensemble sensitivity using EOF PC1 for MSLP (left, shaded) and 

Z500 (right, shaded) over 102 cyclone cases, and ensemble mean MSLP (left, black contours) 

and Z500 (right, black contours) at different lead times. The verification time is 72h. ............. 100 

Figure 3.18: Mean of absolute ensemble sensitivity using EOF PC2 for MSLP (left, shaded) and 

Z500 (right, shaded) over 102 cyclone cases and ensemble mean MSLP (left, black contours) and 

Z500 (right, black contours) at different forecast times. The verification time is 72h. .............. 101 

Figure 3.19: The same as Figure 3.17 but for 6-day forecast with the verification times at 144h.

..................................................................................................................................................... 102 

Figure 3.20: The same as Figure 3.19 but for EOF PC2. ............................................................ 103 

Figure 3.21: ESA using PC1 averaged in the mid-latitudes from day 0 to day 6. ...................... 105 

Figure 3.22: The same as Figure 3.21 but for PC2. .................................................................... 105 

Figure 3.23: Correlation of sensitivity for PC1 at the central longitude of each day with 

sensitivity average over other longitude. Red, blue, cyan, magenta, green and blue represent day 

1 to day 6 average. The central longitudes are from 170°E to 282.5°E with an increase of 22.5° 

longitude. .................................................................................................................................... 106 

Figure 3.24: The same as Figure 3.23 but for sensitivity using PC2. ......................................... 107 

Figure 3.25: (a) Hovmoller diagram of ensemble mean forecast of meridional wind (shading, [m 

s-1]); (b) sensitivity signals (shading) averaged between 30°N and 60°N; IT: 1200 UTC 20 DEC 

2010; sensitivity forecast metric is PC1 of the meridinal wind over a boxed region (magenta box 



xv 

in Fig.3.26). Black contours are for Hovmoller diagram of analyzed meridional wind averaged 

over 30°N to 60°N with an interval of 10 m s
-1

. Thick black line shows the movement of 

analyzed Rossby wave packets. .................................................................................................. 110 

Figure 3.26: Sensitivity (shading) of EOF PC1 to meridional wind from -84 h to -12 h (a-d). The 

magenta Box shows the verification region for EOF pattern 1. IT: 1200 UTC 20 DEC 2010; VT 

(0 h): 1200 UTC 27 DEC 2010. .................................................................................................. 111 

Figure 4.1: (a)–(f) Z500 (gray solid contour), MSLP (black dashed contour) and potential 

temperature at 2PVU dynamical tropopause (shading, [K]) from 1200 UTC 25 January to 0000 

UTC 28 January 2015. Contour interval for geopotential height is 100 m, and the 5700 and 5500 

m lines are labeled. The MSLP contours start from 1008 hPa and decrease at 4 hPa intervals. The 

green solid box in (a) represents the verification region at valid time (1200 UTC 27 January 

2015). .......................................................................................................................................... 119 

Figure 4.2: (a) The CPC 24-h precipitation (shading and black contour), (b)–(d) 3-day ensemble 

mean forecasts (shading and red contour) from three models, and (e)–(f) the means (shading and 

red contour) from Group EM and Group ANA (or Group 2) for 3-day m ulti-model ensemble. 

The black contours in (b)–(f) are the same with the contours in (a) to represent the observed 

precipitation. Unit: [mm]. Time period is from 1200 UTC 26 January to 1200 UTC 27 January 

2015............................................................................................................................................. 120 

Figure 4.3: (a)–(f) Ensemble mean forecasts of MSLP from a lead time of 6 days to 1 days. The 

red, green and blue contours are the ensemble means from the CMC, NCEP, and ECMWF 

model, respectively. Black and gray are the multi-model mean and analysis. Contours for the 

ensemble means in (a)–(c) range from 1008 to 1000 hPa, and in (d)–(f) range from 1000 to 980 

hPa with a contour level of 4 hPa. .............................................................................................. 121 

Figure 4.4: (a) MSLP ensemble mean (contours, [hPa]) and spread (shading, [hPa]), (b) spaghetti 

plots of 996 hPa contour for 90 multi-model ensemble members (blue are for the ECMWF 

members; green are for the NCEP members; and orange are for the CMC members) with the 

dashed magenta lines and black lines to be the ensemble mean and the analysis. (c) EOF1 MSLP 

pattern (contours, [hPa]), and (d) EOF2 MSLP pattern (contours, [hPa]). The VT is 1200 UTC 

27 January 2015; IT: 1200 UTC 24 January 2015. The black/red dot in each panel denotes the 

analyzed/ensemble mean position of the surface cyclone at VT. ............................................... 123 

Figure 4.5: The 5 clusters divided using fuzzy clustering method on the PC1-PC2 space from the 

90 ensemble members for 3-day forecast. The VT is 1200 UTC 27 January 2015, and IT is 1200 

UTC 24 January 2015. ................................................................................................................ 124 



xvi 

Figure 4.6: A summary of 5 cluster means using 1008hPa MSLP contour line (a, c, and e) and 

5400m Z500 contour line (b, d, and f) for 3-day forecast. The VT is 1200 UTC 27 January 2015; 

IT, 1200 UTC 24 January 2015. ................................................................................................. 126 

Figure 4.7: Spaghetti plot for the 5 groups (a)–(e) using 1000 hPa MSLP contour line. Red, green 

and blue contour lines are from CMC, NCEP and ECMWF members, respectively. The dashed 

magenta line is for the group mean. The black and purple lines are the multi-model mean and the 

analysis in all panels. The VT is 1200 UTC 27 January 2015; IT: 1200 UTC 24 January 2015.

..................................................................................................................................................... 128 

Figure 4.8: RMSE of MSLP (a) and Z500 (b) for each cluster mean and model means at different 

forecast times; Correlation of MSLP (c) and Z500 (d) between each mean and the analysis at 

different forecast times. The clusters are selected based on the EOF PC s at 72 h forecast 

initialized at 1200 UTC 24 January 2015. The black, green, blue and purple solid lines are for 

Group EM, 3, 4 and 5, respectively. The red dotted solid line is for Group 2 (analysis group). 

The black dashed line is for multi-model ensemble mean. The green, red and blue dashed lines 

are for the NCEP, CMC and ECMWF model means. The blue dot is the 95% significant line 

based on 100 randomly selected clusters. The verification area is a box (24 longitude x 20 

latitude) moving with the cyclone (for MSLP) and the corresponding upper level trough (for 

Z500) system. .............................................................................................................................. 135 

Figure 4.9: The same as Figure 4.8 but for Case 2 initialized at 0000 UTC 24 December 2010 

and verified at 1200 UTC 27 December 2010. Group 3 (green dotted solid line) is the analysis 

group. .......................................................................................................................................... 136 

Figure 4.10: The explained squared error fraction by EOF1 to EOF10 patterns respectively, as 

well as the accumulated fraction by EOF1-2, EOF1-3, EOF1-10, all 90 EOF patterns, and the 

residual for (a) day 3 forecast and (b) day 6 forecast. ................................................................ 137 

Figure 4.11: In the envelope (left, a) and outside-of-envelope (right, b) examples. Green, red, and 

blue open circles represent members from the NCEP, CMC, and ECMWF models, respectively. 

Black dashed represents the outside envelope of the multi-model ens emble. Magenta circle with 

a plus sign denotes the analysis point. Left (a) is for 3-day MSLP forecast initialized at UTC1200 

January 24 2015; while right (b) is for 3-day MSLP forecast initialized at UTC1200 December 

09 2008........................................................................................................................................ 139 

Figure 4.12: (left, a) Same spaghetti plot as Figure 4.4b except for 1000 hPa contour line and 

initialized at 1200UTC December 09 2008; (right, b) same cluster mean plot as Figure 4.7e 

except for 1000 hPa contour line with initial time at 1200UTC December 09 2008. ................ 140 

Figure 4.13: The average percentage of member numbers in the analysis group for each EPS. 

The NCEP, CMC, and ECMWF have a total of 20, 20, and 50 ensemble members, respectively. 



xvii 

The percentage is calculated by counting the number of each model member in the analysis 

group and dividing it by the total member number of each model. The average percentage is 

calculated based on all the historical cases for each lead time. The vertical bars represent the 

95% confidence level for each lead time. ................................................................................... 143 

Figure 4.14: The percentage (missing rate) for each EPS and NAEFS that misses the analysis 

group based on all cases at each lead time. The percentage is calculated by counting the cases 

with zero member in the analysis group and dividing it by the total case number at each lead 

time. ............................................................................................................................................ 144 

Figure 4.15: The fraction of cases (red line with dot) with the Group EM same with Group ANA 

for all cases at each lead time. For the five-cluster solution, each group is supposed to have 20% 

(black dot line) chance (average chance) to be similar with the Group ANA. The blue and 

magenta dashed lines represent 50% less and 50% more chance than the average chance to 

include analysis group, respectively. .......................................................................................... 147 

Figure 4.16: The percentage of cases in which the analysis falls into the same quadrant as NCEP, 

CMC, ECMWF, and NAEF means, as well as in a quadrant in which none of the three EPS 

means are in. ............................................................................................................................... 148 

Figure 4.17: The ratio of error to the spread of (a) PC1, and (b) PC2at each lead time for each 

EPS. The error is calculated based on the distance of analysis relative to each EPS or multi- 

model mean; while the spread is calculated using all the EPS ensemble members relative to the 

ensemble mean of each EPS or mulit-model. ............................................................................. 151 

Figure 4.18: The same as Figure 4.17 but for two time periods during the examined time. Dashed 

lines with markers are for the cases during the first half period while the solid lines with markers 

are for the second half period. ..................................................................................................... 155 

Figure 4.19: The first (left panel) and second (right panel) EOF pattern (shaded) in the multi-

model ensemble for day 1 to day 6 forecast (top to bottom). The purple dot represents the 

ensemble mean cyclone position averaged over all cases for each lead time. ............................ 159 

Figure 4.20: Mean minimum pressure error (unit: [Pa]) of each EPS and the combined model for 

PC1 (a) and PC2 (b) errors from day 1 to day 6 forecast. .......................................................... 160 

Figure 4.21: The displacement errors corresponding to averaged PC1 (left) or PC2 (right) errors 

-day forecast. The radius has unit of 

kilometer (km). ........................................................................................................................... 164 

Figure 4.22: (a) The same as Figure 4.13 but for the predicted cyclone cases; (b) The same as 

Figure 4.14 but for the predicted cyclone cases. ......................................................................... 166 



xviii 

Figure 4.23: The fraction of OOE cases to all observed cyclone cases for each forecast lead time.

..................................................................................................................................................... 168 

Figure 4.24: OOE cases count for each cool season based on all the OOE in table A4.1 in 

Appendix 1. ................................................................................................................................. 169 

Figure 5.1: The time series of168-h forecast RMSE of Z300 over VR for 5 cool seasons from 

2007/08 to 2012/13. Unit: [m]. Red dots and blue dots represent 83 large error cases and 85 

small error cases, respectively. ................................................................................................... 175 

Figure 5.2: Climatology of RWPA over the 2007-2012 cool seasons. Unit: [m/s]. ................... 176 

Figure 5.3: Composited forecast absolute error anomaly of Z300 conditional on 77 drop-out 

cases. Unit: [m]. Black line: significant values at 95% confidence level using t-test. Day 1-7: 1-7 

day forecast times. Day 7 is also the forecast verification time. ................................................. 178 

Figure 5.4: Composited RWPA anomaly (relative to climatology) conditional on 77 drop-out 

cases. Unit: [m/s]. Green line: significant values at 95% confidence level using t-test. Black 

contour: significant large absolute error region in Figure 5.3. ................................................... 179 

Figure 5.5: The same as Figure 5.3 but for the good-forecast cases. Note the black contours 

represent the significantly smaller errors relative to the climatological errors. .......................... 180 

Figure 5.6: The same as Figure 5.4 but for the good-forecast cases. Note that black contours 

show the significantly smaller errors relative to the climatological errors. ................................ 181 

Figure 5.7: Composited ensemble forecast spread anomaly of Z300 conditional on 70 large 

spread cases. Unit: [m]. Black line: significant values at 95% confidence level using t-test. .... 184 

Figure 5.8: Composited RWPA anomaly (shaded, [m/s]) and the normalized ensemble spread 

(black contour, [%]) in 70 large spread cases. ............................................................................ 185 

Figure 5.9: A conceptual model of the errors/uncertainties relative to the different stages of an 

RWP. Green, orange, red, and purple solid contours represents the RWP amplitude with the 

green being the least value and purple the largest value. The dashed contours represent an 

alternate process between two adjacent stages of RWP. The area enclosed by the green contour 

represents one RWP object. The black four-pointed star, diamond, six pointed star, triangle 

(dashed triangle), and plus sign, denote the possible regions for large errors/uncertainties 

associated with each RWP object. Note that the positions of RWP objects just denote an 

approximation of the preferred RWP location, instead of the exact locations of an RWP. ........ 186 

Figure 5.10: The ensemble mean RWPA (magenta solid contours, [m/s]), ensemble spread of 

Z300 (black contours,[m]), and the ensemble mean Z300 errors (shaded, [m])  of a 20-member 



xix 

GEFS run from 24h to 120h forecasts initialized at 1200 UTC March 21, 2014. The green box is 

the verification box later used to compute ensemble sensitivity. ............................................... 191 

Figure 5.11: The Hovmoller plot of ensemble mean RWPA (magenta solid contours, [m/s]), and 

the ensemble spread of Z300 (a, blue contours,[m]) averaged between 30°N and 55°N, and the 

ensemble mean Z300 absolute errors (b, blue contours, [m])  of a 20-member GEFS run from 24 

h to 120 h forecasts initialized at 1200 UTC March 21, 2014.  Black plus signs represents the 

maxima of spread or errors at each forecast day. ........................................................................ 193 

Figure 5.12: Ensemble mean of Z300 (black solid contour), with EOF1 (a, colored contour) and 

EOF2 (b, colored contour) of Z300 patterns based on the 20-member GEFS ensemble of Z300 

initialized at 1200 UTC March 21, 2014 and valid at 1200 UTC March 26, 2014. ................... 194 

Figure 5.13: Sensitivity of EOF PC1 of Z300 to Z300 (left, shaded) and WPA (right, shaded) 

from 24h (day 1) to 120h (day 5) forecast time. The ensemble is the 20-member GEFS run 

initialized at 1200 UTC March 21, 2014. The EOF PC1 is calculated based on the 120 h or day 5 

forecast over the green box. Magenta contours: the ensemble mean WPA; Gray contours: 

ensemble mean Z300. ................................................................................................................. 195 

Figure 5.14: Hovmoller plot of sensitivity to Z300 (a, blue contours) and to WPA (b, blue 

contours) averaged between 30°N and 55°N. The magenta contours are for RWPA averaged over 

the same longitudinal bands. ....................................................................................................... 197 

Figure 5.15: The same as Figure 5.14 but for sensitivity using EOF PC2. ................................ 198 

Figure 5.16: Vertically integrated EKE (gray shades 1x105 J m-2) and the local EKE tendency 

(colored contours, -70-20, and 2070 W m-2) from 0 h (day 0, 12Z March 21 2014) to 120 h 

(day 5, 12Z March 26 2014) in the NCEP analysis. Black dashed contours are Z500. .............. 204 

Figure 5.17: (left panels) The EKE (shaded) and the AGF (black arrows) and its convergence 

(colored contours, -AGFD); (right panels) the errors of EKE (shaded), AGF (black arrows) and 

its convergence (colored contours). The colored contours are starting from 100 Wm
-2

, with a 

100 increase or decrease. ............................................................................................................ 207 

Figure 5.18: The same as Figure 5.17 but for the AdvF and its convergence (the advection term).

..................................................................................................................................................... 209 

Figure 5.19: Averaged (a-d) MAE and (e-h) ME of the EKE tendency, -AGFD, -AdvD, and the 

total flux convergence for four regions (top to bottom: EP, 150°W-125°W; WN, 125°W-100°W; 

CE, 100°W-75°W; and WA, 75°W-50°W) between 30°N and 60°N.  Unit: W m
-2

. ................. 211 

Figure 5.20: The same as right panels in Figure 5.17 but for member 4 (left panels) and member 

10 (right panels) for lead times of 72 h, 96 h and 120 h. ............................................................ 213 



xx 

Figure 5.21: The same as Figure 5.20 but for the DK/DT errors associated with the AdvF term in 

member 4 (left panels) and member 10 (right panels). ............................................................... 214 

Figure 5.22: Averaged MAE (a, c, e, g) and ME (b, d, f, h) for member 4 (left, a-d) and member 

10 (right, e-h) over region C (a, b, e, f) and D (c, d, g, h). .......................................................... 216 

Figure 5.23: Geopotential height of 1000 hPa for analysis, member 4 and member 10 valid on 

day 5 (1200 March 26, 2014). ..................................................................................................... 218 

Figure A4.1: Day 1 OOE case: case 1a in table A4.1 spaghetti plot for 1005 and 995 hPa MSLP 

contour line (a-d, left) at different forecast step; and (e-h, right) ensemble mean forecast error 

(magenta dashed) with an interval of 2 hPa starting from 2hPa, pressure change (blue contours) 

between two time steps with an interval of 4 hPa, spread change (gray shades and contour with 

an interval of 1 hPa), and analyzed MSLP contour (solid black lines). Unit for all plots: [hPa]. 

The time step is 6 hr. ................................................................................................................... 238 

Figure A4.2: The same as Figure A4.1 except for case 1b in Table A4.1 and spaghetti plot using 

1015 and 1005 hPa MSLP contour lines. The shades in f-j represent the spread instead of spread 

change. ........................................................................................................................................ 240 

Figure A4.3: Day 2 OOE case: case 2a spaghetti plot for 1005 and 995 hPa MSLP contour line 

(a-f, left) at different forecast step; and (g-l, right) ensemble mean forecast error (magenta 

dashed), pressure change (blue contours) between two time steps, spread change (gray shades 

and contour), and analyzed MSLP contour (solid black lines). Unit for all plots: [hPa]. Each time 

step represents 6 hr...................................................................................................................... 244 

Figure A4.4: Day 3 OOE case: case 3d spaghetti plot for1015, 1005 and 995 hPa MSLP contour 

line (a-c, left) at different forecast step; and (d-f, right) ensemble mean forecast error (magenta 

dashed), pressure change (blue contours) between two time steps, spread change (gray shades 

and contour), and analyzed MSLP contour (solid black lines). Unit for all plots: [hPa]. The time 

step is 6 hr. .................................................................................................................................. 246 

Figure A4.5: Composited MSLP forecast errors (red and blue contours) and MSLP analysis 

(black contour) for 6-day forecast OOE cases. The green shaded shows the significant values of 

errors different from the averaged errors of all cyclone cases. The MSLP contours have an 

interval of 5 hPa with 1010 and 1020 hPa lines labeled. ............................................................ 250 

Figure A4.6: Composited Z500 forecast errors (red and blue contours), Z500 analysis (black 

contour) and anomaly to the climatology of Z500 for 6-day forecast OOE cases. The green 

shaded shows the significant values of errors different from the averaged errors of all cyclone 

cases. The climatology of Z500 is based on the mean of cool season (NDJFM) during 2007/8 and 

2014/15. The errors starts from 10m with an interval of 30 m; the Z500 anomaly starts from 



xxi 

20 m with an interval of 40m; and the Z500 contours have an interval of 100 m with 5800m 

line labeled. ................................................................................................................................. 253 

  



xxii 

List of Tables 

 

Table 2.1: The Evolution of NCEP GEFS, CMC, and ECMWF model configurations during 

November 2007 and March 2015. Note the date in red means major updates. ............................ 34 

Table 4.1: Member-pairs assignment .......................................................................................... 130 

Table 4.2: The RI between cluster results of 2015 January winter storm case using MSLP, 24-h 

total precipitation, 850-hPa moisture flux and Z500 for EOF/fuzzy clustering, respectively. ... 131 

Table 4.3: The number of cyclone cases used for each forecast day. ......................................... 141 

Table 4.4: The number of predicted cyclone cases used for each forecast day. ......................... 165 

Table A4.1: List of OOE cases for 16-day lead times in this study, their forecast lead time, 

initial/verification time, and the verified weather event summarized by NOAA/WPC forecasters. 

N/A denotes that the case is not a significant large-scale storm event and not included in the 

NOAA WPC storm summary. Cases highlighted by bold and/or colored fonts represent events 

verified at the same valid time. ................................................................................................... 235 

  



xxiii 

List of Abbreviations 

 

Adv   advective flux 

AdvD   advective flux divergence 

AGF   ageostrophic flux 

AGFD   ageostrophic flux divergence 

CMC   Canadian Meteorological Center 

ECMWF   European Center for Medium-range Weather 

Forecasts 

EOF   Empirical Orthogonal Function 

ESA   ensemble sensitivity analysis 

EPS   ensemble prediction system 

ETKF   Ensemble Transform Kalman Filter 

GEFS   Global Ensemble Forecast System 

GFS   Global Forecast System 

IC   initial condition 

MSLP   mean sea level pressure 

NAM   North American Mesoscale 

NCEP   National Centers for Environmental Prediction 

RWP   Rossby wave packet 

RWPA   Rossby wave packet amplitude 

TIGGE   the Observing System Research and Predictability 



xxiv 

Experiment (THORPEX) Interactive Grand Global 

Ensemble  

Z500   geopotential height at 500 hPa  



xxv 

Acknowledgements 

 

First and foremost, I'd like to gratefully acknowledge my dissertation advisor, Dr. 

Edmund Chang, for his advisement, support, and encouragement. When I was deciding between 

two graduate school offers years ago, my MS advisor, Dr. Zuntao Fu at Peking University, told 

me "You will learn a lot from Dr. Chang". Taking his suggestion seriously, I chose to continue 

my Ph.D. study at SoMAS, and had a great opportunity to join Dr. Edmund Chang's group. After 

several years, I could say it was the wisest decision I have ever made. He has been teaching me 

the knowledge in my research field. I used to take one advanced dynamic course he taught, and it 

proved to be the best dynamical course I have attended. He has been no only providing advice to 

solve the problems I met in my research but also strengthening my ability to solve the scientific 

problems independently, and gradually I have learned his way to think of science questions. 

Besides, he is a role model with very responsible personality and is known to be a scientist of 

integrity. I am in particular appreciative of all the opportunities he has given me to attend 

conferences and workshops, so I was able to improve my presentation and communication skills 

and participated in the atmospheric community. Every rehearsal he attended and every comment 

he gave for my PPT/papers/dissertation are greatly appreciated. Because there are intelligent and 

responsible people like him, atmospheric sciences are making progress.  

I would also like to acknowledge Dr. Brian Colle for his guidance, support, and help. He 

provided a lot of useful comments and suggestions to my research and my paper writing. I have 

benefited a lot from his ideas and discussions. In particular, his operational experience helped me 

to interpret the ensemble sensitivity and fuzzy clustering results. I have also learned a lot from 

him on how to communicate science. Special thanks to him for helping me during my job search. 



xxvi 

He and Dr. Edmund Chang are advisors who really care about the future of students. It has been 

a true privilege for me to work with them both. 

I greatly thank my Ph.D. committee: Dr. Sultan Hameed, Dr. Minghua Zhang, and Dr. 

Sharan Majumdar at RSMAS, University of Miami. Dr. Sultan Hameed taught me the statistical 

methods on his class, which were very useful for my dissertation. He has always encouraged me 

to do good research and to be more confident. Dr. Minghua Zhang provided valuable advice and 

useful comments on my dissertation. Dr. Sharan Majumdar offered me specific and constructive 

feedback on this dissertation, which I believe will help me to complete our papers. 

I also thank Dr. Ping Liu and Mark Lang at SoMAS for their technical support. Dr. Ping 

Liu helped us to recover our disks and has always been helpful in solving Linux problems. Mark 

Lang helped me fix my PC and print my posters. I am also grateful to my group for 

communicating the research and discussions. Special thanks to Carol Dovi, Gina Gartin and 

Christina Fink for the paperwork and reminding me all the deadlines. Thank all my friends at 

SoMAS for their friendship. 

Finally, I thank my husband for his love, patience, and discussions. I am also grateful to 

my mother-in-law for taking care of our baby during the past year. Thank my parents for their 

endless love and support. Special thanks to my baby girl. She is the source of my greatest joy and 

happiness.



1 

Chapter 1 Introduction 

1.1 Background and motivations 

Extratropical cyclones are dominant feature of the mid-latitudes, as their passage is 

associated with the day-to-day variability in weather and responsible for a substantial portion of 

mid-latitude climate. Thus cyclone activity represents an important measure of the state of the 

atmosphere, and plays important roles in global heat transport, energy redistributions, and 

regional hydrological cycle. The east coast of the U.S. and the surrounding ocean is one of the 

regions favorable for cool-season cyclone activity in the Northern Hemisphere. Intense 

extratropical cyclones along the coast often have large socioeconomic impacts on transportation 

(e.g., road, aviation, and marine), human health, and property with their strong winds and heavy 

precipitation. For example, on 2628 December 2010, one major extratropical cyclone impacted 

the northeastern U.S., resulting in blizzard conditions across the region, including the New York 

metropolitan area, New Jersey, and portions of New England (Zheng et al. 2013). The northern 

part of New Jersey received around 82 cm (32 in.) of snow, while snowfall in excess of 51 cm 

(20 in.) fell in many places, which, in conjunction with 2227 m s
-1

 winds, crippled the 

transportation system from New Jersey to New England during the busy traffic period just after 

Christmas. A more recent example is the “January 2015 blizzard” that occurred on 2628 

January 2015 (Zheng et al. 2016), which impacted the northeastern U.S., resulting in snowfall 

accumulations of 30 cm (12 in.) to 91 cm (36 in.) over the central part of Massachusetts, and 

blizzard conditions were prevalent from Long Island to southern and eastern New England 

(Winkler 2015). This storm caused thousands of flight cancellations, travel bans enacted in five 

states, and two related deaths. Considering the high population density of the eastern U.S., 
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accurate forecasts of these storms are very important to reduce their impact, including both 

human and economic losses. 

The skill of numerical weather prediction models in forecasting winter storms has varied 

in different lead times and regions. Some storms, such as the Superstorm of 1993 along the east 

coast of the U.S., have been relatively well forecasted several days in advance (Uccellini et al. 

1995). In contrast, operational models have poorly predicted other cyclones 12 days in advance, 

such as the 25 January 2000 cyclone event along the North Carolina coast (Zhang et al. 2002), 

and the aforementioned 2628 December 2010 blizzard event along the east coast (Zheng et al. 

2013). Several poorly predicted cyclone events over the U.S. west coast were found to result 

from the poor initial conditions (ICs) over the relatively data-sparse upstream Pacific Ocean 

(McMurdie and Mass 2004). The performance of operational models in forecasting these storms 

has also varied. For example, Charles and Colle (2009a) found that for the short-term forecast 

the North American Mesoscale (NAM) model had a larger error in cyclone central pressure than 

the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model 

in forecasting cool season cyclones for the eastern U.S. and western Atlantic Ocean during 

200207. Meanwhile, Charles and Colle (2009b) found that the 15-member Short Range 

Ensemble Forecast (SREF) means for both cyclone position and central pressure on average have 

smaller errors than its subgroups and the NAM model in many regions, but not the NCEP GFS 

for many forecast times. 

The forecast skills are associated with the predictability in the atmospheric flow. Previous 

studies on predictability are often associated with two types of predictability: one is the intrinsic 

predictability defined as “the extent to which prediction is possible if an optimal procedure is 

used” (Lorenz 1963; Lorenz 1969; Lorenz 1996), which places an upper bound upon the 
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atmosphere’s predictability; the other is practical predictability defined as “the extent to which 

we ourselves are able to predict by the best-known procedures, either currently or in the 

foreseeable future” (Lorenz 1982; Lorenz 1996), which is the actually achievable forecast skill in 

a given  imperfect NWP, or the lower bound of the predictability. Lorenz (1982) proposed an 

approach to quantify the upper and lower bounds of predictability. The difference between upper 

and lower bounds was employed to determine how much predictions can be improved. 

Following this approach, Froude et al. (2013) revisited the predictability of large-scale 

atmospheric flow. Their results again confirmed the upper limit of two weeks (Lorenz 1963) still 

applied to the forecasts from the updated ECMWF model. They also pointed out that the forecast 

skill of the ECMWF system at that time was close to the maximum skill for a deterministic 

forecast without further reducing the errors in the initial conditions. However, the large 

differences in the potential predictability curves for the ensemble forecasts indicated that 

ensemble system has substantial potential in supporting the deterministic system. The above 

results suggest that ensemble forecasting is an area with enormous potential with respect to the 

practical predictability especially during the medium and extended range. Given the huge 

societal impact cyclones can bring to the middle latitudes, it is important to assess the skill of 

ensemble systems to predict winter storms in order to improve the forecasting models. 

The predictability of extratropical cyclones, like other mid-latitude weather systems, has 

an upper limit, thus prediction of the sufficiently distant future is impossible by any method, 

unless the present conditions are known exactly. Within the upper limit, the forecast skills rely 

on a number of factors, including the initial state affected by observing system and data 

assimilation methods, the forecasting models, and physical parameterizations of unresolved 

scales. Therefore, the forecast errors and uncertainty for extratropical cyclones result from the 
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forecast model itself (e.g., resolution, physics) and the ICs. Ensemble approach has been 

demonstrated to improve forecast skills in general when compared with a single-model 

(deterministic) approach (Toth and Kalnay 1993; Tracton and Kalnay 1993; Molteni et al. 1996; 

Buizza 1997) because of a variety of ICs, as well as physical parameterizations or models (Toth 

and Kalnay 1993; Molteni et al. 1996; Buizza 1999). Several recent studies have demonstrated 

the value of probabilistic information for medium-range forecasts of severe weather events, 

including the high-impact winter storms (Hewson et al. 2014; Matsueda and Nakazawa 2014; 

Swinbank et al. 2016). For example, Hewson et al. (2014) investigated two high-impact 

windstorms affecting northwestern Europe from 28 October 2013 (Christian) and 5 December 

2013 (Xaver). For both storms, the probabilistic metrics provided an indication of extreme wind 

gusts 56 days in advance, although the finer details regarding the timing and strength of 

Christian were not well predicted. 

There have been a number of studies to investigate the forecast errors and uncertainties of 

extratropical cyclone along the east coast of U.S. and the reasons (e.g., model deficiency; rapid 

error growth; sparse observational data; flow patterns) for them in both deterministic and 

ensemble models. Silberberg and Bosart (1982) analyzed the cyclone errors over North America 

and the adjacent oceans during the 19781979 cool season in the National Meteorological Center 

(NMC) Limited Finite Mesh model, and found that the cyclones over western Atlantic Ocean 

and southeastern U.S. were underpredicted. Corresponding 1000500 hPa thickness showed a 

cold error. They emphasized the importance of IC errors over the Pacific in degrading the 

downstream skills of 12-day forecasts for five cyclone cases. Grumm et al. (1992) examined the 

overall systematic cyclone forecast errors of the Nested Grid Model (NGM) and found that the 

model cyclones tended to be too deep and moved too slowly in winter mainly due to the model’s 
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inability to fill cyclone properly where it was observed to fill. They also indicated that the NGM 

model had difficulties in simulating orographic effects. Langland et al. (2002) investigated the 

short- and medium-range (2496-h) forecasts of the 2425 January 2000 U.S. east coast 

snowstorm using the U.S. Navy global forecast model and an adjoint system. They concluded 

that the substantial loss of predictive skill in the 72- and 96-h forecasts were due to the rapid 

growth and propagation of small IC errors over a large upstream area, including part of the 

eastern Pacific and western and central North America. The low predictability regimes during the 

22 January-2 February 2000 were characterized by enhanced ridging in the average 500-hPa 

height field over western North America. Zhang et al. (2002) found that the 12-day forecast 

errors for the same snowstorm case were associated with the rapid growth of error at scales 

below 500 km in association with moist processes. They also found that the fifth-generation 

Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) 

Mesoscale Model (MM5) better resolved the precipitation patterns for the storm with increasing 

horizontal resolution. Elmore et al. (2006) found that the initialization error of upper-level short-

wave troughs along the west coast of the U.S. tends to persist with the short wave as it crosses 

the continental U.S. . Large negative bias observed in the Eta and EtaKF models over the 

southeast U.S. was due to an error in the longwave radiation scheme interacting with water vapor 

and clouds. 

Previous studies have suggested that the upstream forecast errors over the Pacific impact 

medium-range predictions associated with cyclone events over the eastern U.S. (Langland et al. 

2002; Hakim 2005; Chang 2005; Elmore et al. 2006; Sellwood et al. 2008; Swanson and 

Roebber 2008; Majumdar et al. 2010; Zheng et al. 2013). However, most of these studies were 

limited to a small number of case studies, and used old versions of deterministic models or 
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ensemble models for a specific short forecast period. Specifically, there is a lack of 

comprehensive studies of the source of the forecast errors/uncertainties and the characteristics of 

them in the current generation of ensemble models. Issues such as the most preferable regions 

associated with East Coast cyclone intensity and position uncertainties, as well as the growth and 

propagation speed of forecast uncertainties in the multi-model ensemble, are critical to improve 

the understanding of the East Coast dynamical relations, to help forecasters to better use 

ensemble outputs, to server as a guidance for deploying adaptive observations, and to improve 

ensemble models. Meanwhile, there are also needs to evaluate the performance of operational 

models in forecasting the high-impact East Coast storms while the ensemble verifications have 

been very difficult due to the extra dimension of ensemble member.  

In order to help fill these needs and improve our knowledge of the predictability of winter 

storms, this dissertation has three objectives. The first objective is to investigate the development 

of uncertainties in cyclone intensity and position in the medium range within a multi-model 

ensemble by employing an ensemble sensitivity approach, which quantifies the sensitivity of a 

forecast metric at the verification time to the ICs or the ensemble forecast at an earlier forecast 

time. More details about this approach will be presented later. Quantification of the ensemble 

sensitivity enables the identification of the spread of the metrics among the ensemble members 

and the association of the metrics with the characteristics of the ICs or earlier forecasts. The 

climatologically preferred areas of ensemble sensitivity will be examined. The growth and 

propagation speed of the ensemble sensitivity will be statistically explored. Understanding of the 

ensemble sensitivity enables the forecasters to judge which ensemble members are more likely 

than others after new observations become available or the forecasting cycle is updated or 

forecaster’s personal experiences are considered. It is often flow dependent. The goodness of 
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ensemble sensitivity signals will also be explored by using the leave-one-out cross validation 

(LOOCV) method. 

Ensemble sensitivity provides an overall linear relation between the forecast metrics and 

the initial conditions. However, the development scenarios may vary especially in a combination 

of multiple ensemble models. In the operational forecasting process, forecasters need to 

anticipate and evaluate the potential of the worst case scenario. Given a large dataset of many 

ensemble members, effective tools to extract the ensemble information and provide different 

development scenarios of a potential storm will benefit both the forecasters and the decision 

makers. Meanwhile, systematic evaluations of model biases with respect to winter storm forecast 

scenarios could be employed as guidance to benefit the forecasters and model developers.  

Therefore, the second objective of this dissertation is to apply a fuzzy clustering tool to 

operational ensemble forecasts for East Coast cyclones to separate scenarios related with cyclone 

intensity and position uncertainties. Building on the successful applications of the fuzzy 

clustering tool to case studies and operational daily ensemble forecasts, we have proposed a 

scenario-based ensemble verification approach to evaluate the performance of the different 

models in simulating East Coast winter storms. Important ensemble properties, such as position 

and location biases, as well as the error-spread relation, will also be investigated. 

In our study of the ensemble sensitivity signals of extratropical cyclones, we have found 

that the ensemble sensitivity signals, which are closely associated with forecast uncertainty/error 

development, resemble the development and propagation of Rossby wave packets (RWPs). 

Other studies have also suggested that extratropical cyclones are often associated with an RWP 

in the middle and upper troposphere. Orlanski and Sheldon (1995) proposed an energetic 
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framework of downstream baroclinic evolution, and examined the trough formation over the east 

coast of North America associated with the “Blizzard of 93”. They concluded that the formation 

of the trough was primarily due to downstream propagation of Rossby wave energy from 

disturbances over the northeast Pacific. Moreover, they pointed out that under environmental 

conditions in which downstream development leads to packets of eddies with a life span much 

longer than individual eddies; the detection of such packets and energy transfer processes may 

impact the longer range predictability of such systems. Chang and Yu (1999) showed that there 

were downstream-developing wave trains propagating from the eastern end of the Pacific storm 

track across North America toward the Atlantic, suggesting that wave developments near the 

entrance of the Atlantic storm track are influenced by waves from the Pacific. Hakim (2003) 

showed that the Atlantic storm track is often seeded by wave packets that originate over the 

western North Pacific Ocean by studying a sample of North Atlantic storm track events.  

Forecast errors also tend to develop wave-packet-like structures (Hakim 2005) and propagate 

rapidly downstream with the group velocity (at least as fast as the upper-level flow). Model 

errors during the “surprise” January 2000 East Coast snowstorm also propagated with an RWP 

from eastern Pacific (Langland et al. 2002). Moreover, when a coherent RWP was present and 

the flow was zonal, distinctive targeted regions, which are associated with maximum forecast 

error reduction within the verification regions over U.S., could be traced upstream to near Japan 

at lead times of 4–7 days (Majumdar et al. 2010). 

Thus, the third goal of this dissertation is to investigate the connection between RWPs 

and the forecast uncertainties and errors of winter weather over eastern U.S. and western Atlantic 

Ocean in the GFS and GEFS forecasts. The role of downstream development of RWPs in the 

growth and propagation of forecast errors will be explored. This part of work will help to 
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improve the understanding of the source of forecast errors and uncertainties and diagnose the 

rapid downstream error propagation. 

The remainder of this chapter will proceed as follows. An overview of East Coast 

cyclone climatology and dynamics will be presented in section 1.2. A brief introduction of 

numerical weather prediction and ensemble forecasting will be given in section 1.3. Section 1.4 

will give a short review of the application of ensemble forecasting to East Coast cyclones. 

Section 1.5 will discuss the useful tools to examine the forecast sensitivity to initial conditions. 

Section 1.6 will present the detailed science questions that this dissertation will try to answer. 

The outline of this dissertation will be given in section 1.7. 

1.2 East Coast cyclone climatology and dynamics 

The U.S. East Coast and its adjacent ocean is a favorable region for cool-season 

cyclogenesis mainly due to the strong thermal and moisture contrasts between land and ocean. 

There have been numerous studies that documented the principal features of East Coast storms 

with respect to their development and classification. The studies by Austin (1941) and Miller 

(1946) laid the groundwork for the climatology and dynamics of the East Coast winter storms. 

Miller (1946) classified the East Coast storms into two basic categories according to their 

formation mechanisms. Type A cyclones often emerge as cyclone waves along cold fronts, 

typically over the southern U.S. or the Gulf of Mexico. The cold fronts are often of Polar or 

Arctic origin, separating cold continental air mass from maritime tropical Gulf or Atlantic air 

mass. The developing surface lows track northeastward out of the Gulf of Mexico, in some cases 

paralleling the Atlantic coastline and intensifying further. Miller Type A cyclogenesis is a 

common occurrence in regions where cold air outbreaks occur frequently, but it is most often 



10 

observed along east coasts in the cool seasons. Miller Type B cyclones originate near the 

coastline to the southeast of a preexisting cyclone over the region of the Great Lakes. The 

preexisting cyclone or the primary cyclone occludes west of the Appalachians. As it dissipates in 

the Ohio Valley, a secondary low begins to develop along the warm front of the older cyclone. 

Typically, the warm front extends to the coastal waters where it connects with shallow 

boundaries that form locally near the coast. The secondary low and associated fronts separate the 

shallow wedge of cold air east of the Appalachians, usually as a result of cold-air damming, from 

the warmer air over the Atlantic Ocean. This type is not as common in other parts of the world 

and owes its frequency to the peculiar topography of North America. The Miller classification 

scheme remains to this day a useful means of cataloging many cyclogenesis events according to 

the surface features. Reitan (1974) estimated the most frequent paths of cyclones during the time 

period of 1951 to 1970. For the cool seasons, they distinguished the paths for storms over the 

northeastern U.S. as from the west, from the southwest, from the southeast and over the western 

Atlantic oceans. Zishka and Smith (1980) studied the climatology of cyclones and anticyclones 

over North America and the surrounding oceans for January and July, 195077. Three preferred 

cyclone tracks for January were found to impact the eastern U.S. and western Atlantic. Two 

begin in Alberta and Colorado, continue east-southeast and northeast respectively, and then 

merge over the Great Lakes before taking a more northward track into Canada. The third 

generally begins off the Virginia-North Carolina coast, although some cyclones originate as far 

south as the Gulf of Mexico. This track often moves parallel to the eastern seaboard of North 

America and then turns northward toward Greenland. Kocin and Uccellini (1990) showed that 

most of their major East Coast snowstorms originate to the south of 35°N. Since the average 

position of the Gulf Stream veers sharply away from the coast near 35°N, the interaction of cold 
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air mass over the coastal plain and the warm Gulf Stream waters might promote explosive 

cyclogenesis to the south of 35°N. They also found that strong anticyclones often precede East 

Coast winter storms. 

Mather et al. (1964) analyzed the temporal climatology of eastern U.S. cyclones by 

investigating records of coastal storms and water damage included in weather summaries, 

newspapers, and periodicals. They found that coastal storms of moderate or severe intensity 

affected the New Jersey and New York coast on average once every 1.4 yr. Davis and Dolan 

(1993) examined the synoptic characteristics of East Coast winter storms including wave data as 

a criterion. They defined storms producing deep-water waves greater than 1.6 m at Cape 

Hatteras, North Carolina from 1943 to 1984 as coastal storms. They found that the most 

dangerous storms are cyclones which originate either over Florida or north of Cuba from October 

to April, traveling northward, and are blocked by a stagnating anticyclone over Near England or 

the North Atlantic. They also found that coastal storm annual frequencies declined from the mid-

1960s through the mid-1970s and then increased through 1984, but the frequency of potentially 

damaging storms had increased since 1965. Hirsch et al. (2001) developed the climatology of 

East Coast winter storms using an automated procedure for the NCEP-NCAR reanalysis dataset 

(1948, 195197). They included a strong wind threshold (>10.3m/s for at least 6 h) in their 

criteria for defining the storms. The East Coast winter storms were found to be relatively intense 

compared with other storms over the continental U.S. On average, 11.8 East Coast winter storms 

were found per season (OctApr) and storms count peaks from December to February. They also 

found that the inter-annual variations are associated with ENSO, with the El Nino favoring the 

East Coast winter storms. Bernhardt and DeGaetano (2012) investigated the speeds of historical 

cool-season extratropical cyclones along the U.S. east coast during the period from 1951 to 2006. 
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The average storm speed was found to be 13.8 m s
-1

 with stronger storms generally moving 

faster than weaker storms. They also concluded that the coexistence of a strong El Nino and the 

negative NAO phase favors a slower propagation speed of the cyclones. Booth et al. (2015) 

analyzed the wintertime high-wind events in the northeastern U.S. associated with extratropical 

cyclones for 19792012. Booth et al. (2015) analyzed the wintertime high-wind events in the 

d that the 

storms associated with multi-station high-wind events are most likely to approach the 

northeastern U.S. from the southwest based on the frequency of the tracks in each of the 

pathways. They concluded that the extratropical cyclones that are associated with the strongest 

wind events often occur over land instead of the Atlantic Ocean, suggesting that they are not The 

same as those that cause storm surge (i.e., Nor’easters, Davis and Dolan 1993). 

To sum up, cyclones affecting the eastern U.S. generally propagate along four tracks: 

Alberta Clippers that form over western Canada and track first east-southeastward across 

southern Canada before turning northward, Colorado lows that form over the southwest of the 

U.S. and track northeastward towards the Great Lakes, Gulf lows that form over the Gulf of 

Mexico that track either northward along the Mississippi-Ohio river valley or east-northeastward  

across southeastern U.S. before turning north-northeastward along the east coast, and the 

Hatteras lows that  form off the Carolinas and track north-northeastward along the coast (Colle et 

al. 2015). Most of the severe winter weather event (e.g., high winds, heavy snowfall, coastal 

storm surge) over the eastern U.S. are associated with them. 

There exists a rich literature that studied the detailed dynamical mechanisms associated 

with East Coast winter storms. The early work on extratropical cyclone self-development 

mechanism by Sutcliffle (1947) and Petterssen (1956) emphasized the positive feedback 
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mechanism in which an approaching upper-level wave to a lower baroclinic zone acts to 

intensify surface features, while the pattern of thermal advection associated with the low-level 

circulation intensifies the upper-level features. Shapiro and Keyser (1990) updated the 

Norwegian frontal-cyclone model (Bjerknes 1919; Bjerknes and Solberg 1922) by using data 

from various observational and numerical modeling studies. The Shapiro-Keyser conceptual 

model includes four stages of the life cycle of a marine extratropical frontal cyclone:  it starts as 

an incipient frontal cyclone, developing toward a frontal fracture near the cyclone center and 

becoming a frontal T-bone and bent-back warm front, and ultimately takes on a warm-core 

seclusion. The lifecycle of many Northeast cool-season cyclones takes place off the east coast of 

the U.S., and thus evolve in a similar manner as that proposed by Shapiro and Keyser (1990). 

Orlanski and Sheldon (1995) proposed another conceptual model of “downstream baroclinic 

evolution” from an energetics standpoint based on the results from case studies and idealized 

model experiments. They considered the transfer of kinetic energy between individual synoptic-

scale systems due to an ageostrophic geopotential flux and divided the system into three stages. 

In stage 1, a pre-existing disturbance well upstream of an incipient trough weakens as it radiates 

energy via ageostrophic geopotential fluxes through a downstream ridge. The convergence of 

these fluxes downstream generates a new energy center on the western side of the trough. 

In Stage 2, this new energy center grows robustly, at first due to the convergence of these fluxes, 

and later by baroclinic conversion of eddy available potential energy (cold air sinks into the base 

of the trough). As the center matures, it begins to radiate energy via geopotential fluxes through 

the trough to the downstream side of the trough, initiating yet another energy center. In Stage 3, 

this new energy center continues to grow owing to the baroclinic conversion from eddy available 

potential energy to eddy kinetic energy (warm air rise), while that on the western side of the 
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trough decays because of a decreasing supply of energy through fluxes from the older upstream 

system as well as its own export of energy downstream. As the eastern energy center matures, it 

may radiate energy further through the downstream ridge, and the sequence begins to repeat. The 

development of the trough associated with the U.S. “Blizzard of 93” fitted the conceptual picture 

of downstream baroclinic evolution quite well, with geopotential fluxes playing a critical role. 

Uccellini and Kocin (1987) investigated the role of vertical transverse jet streak 

circulations in East Coast snowstorm events. They showed a link between the configuration of 

the surface and upper-level features, demonstrating that ageostrophic circulations associated with 

coupled jet streaks can connect the upper-level troughs and jet streaks to the orientation of 

surface cyclones, temperature advection patterns, moisture transport and the vertical motion 

pattern needed to produce heavy precipitation in East Coast snowstorms. A typical scheme for an 

East Coast snowstorm often develops both indirect and direct transverse circulations that span 

the entire troposphere in the exit and entrance regions of the southern and northern jet streaks, 

respectively. The advection of cold Canadian air southward in the lower branch of the direct 

circulation across the northeastern U.S. maintains the cold lower-tropospheric temperatures 

needed for snowfall along the East Coast. Meanwhile, the development of low-level jet streak 

(LLJ) within the lower branch of an indirect circulation can significantly increase the moisture 

transport into the region of heavy snowfall, such as for the Presidents’ Day storm in 1979 

(Uccellini et al., 1984). The LLJ also contributed to the decreasing sea level pressure that marked 

the secondary cyclogenesis along the coast for that case. 

Kocin and Uccellini (2004) later described the evolution of surface and upper-level 

features associated with thirty northeastern U.S. snowstorms. For the typical jet streak circulation 

patterns common during Northeast snowstorms, the coupling between the thermally direct 
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transverse circulation in the entrance region of the northern jet streak and thermally indirect 

transverse circulation in the exit area of the southern jet streak serves as enhanced forcing for 

surface cyclogenesis. Lupo et al. (1992) and Rolfson and Smith (1996) showed that cyclone 

development takes place during cyclonic vorticity advection and vertically integrated horizontal 

warm air advection, often accompanied by latent heat release. The above features usually lead to 

an increase in surface geostrophic vorticity and a decrease in central MSLP. Warm air advection 

will be especially effective if the cyclone lies downstream from a stratospheric warm pool 

associated with a stratospheric-level trough, while cyclonic vorticity advection usually occurs in 

association with an upstream mid- to upper-level trough and a jet streak (Sanders 1986). 

As for the intense cyclones over eastern U.S., meteorologists employ “explosive 

cyclogenesis” to describe the rapid deepening of a low pressure center during cyclone formation. 

A meteorological bomb was defined by Sanders and Gyakum (1980) as an extratropical surface 

cyclone whose central pressure dropped an average of at least 1 hPa h
-1

 for 24 h at 60°N, 

normalized geostrophically at other latitudes. The “self development” mechanism is considered 

to be closely associated with the most intense cyclones (Sutcliffe 1947; Petterssen 1956; and 

Kocin and Uccellini 2004). Kocin and Uccellini (2004) noted that the most intense cyclones tend 

to be associated with the evolution of a 500-hPa trough into a closed vortex accompanied by self-

development features, while the longest duration cyclones consist of a closed, or cutoff, 500-hPa 

circulation prior to cyclogenesis. Some studies also emphasized the importance of trough 

mergers, which is defined as the amalgamation of two separate 500-hPa vorticity centers, or 

shortwaves, into one coherent system (Gaza and Bosart 1990; Hakim et al. 1995, 1996; and 

Strahl and Smith 2001). Gaza and Bosart (1990) showed that trough mergers can lead to the 

development of a negatively tilted (northwest-southeast) upper-level trough, enhanced thermal 
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and differential vorticity advection, and ultimately intense surface cyclogenesis using 21 merger 

events across North America during 19781985. The phasing of the northern and the southern 

stream shortwaves was observed in numerous historical cases such as the Cleveland 

“Superbomb” (Salmon and Smith 1980; Hakim et al. 1995, 1996). A southern stream shortwave 

and its embedded vorticity maximum that phases with a northern stream shortwave will produce 

more favorable dynamics for rapid surface cyclogenesis than a southern stream shortwave that 

damps the northern stream shortwave or ejects around its periphery. Winters and Martin (2016) 

suggested that certain trough merger cases may be simultaneously characterized by 

polar/subtropical jet superposition, which plays a primary role in the development of a surface 

cyclone during 18–20 December 2009 Mid-Atlantic Blizzard. 

1.3 Numerical weather predictions and ensemble forecasts 

Current numerical weather prediction models basically employ ensemble forecasting, the 

idea of which dates back to Lorenz (1963). Lorenz chose three ordinary differential equations to 

represent a convective process and found that all numerical solutions of the equations turned out 

to be unstable. When applying the instability of the non-periodic flow to the atmosphere, it 

indicates that prediction of the sufficiently distant future is impossible by any method, unless the 

present conditions are known accurately. Lorenz (1969) further concluded that the atmosphere is 

chaotically unstable with respect to perturbations of even small amplitudes and impacts as 

seemingly trivial as a butterfly flapping its wings will potentially determine whether or not a 

tornado forms in another part of the world. Since the atmospheric flow is sensitive to small 

perturbations, weather forecast skill is associated with the proper specification of the conditions 

used to initialize the model forecast equations. Judd and Smith (2001) further demonstrated that 

even under the ideal conditions of a perfect model and infinite past observations, it is impossible 
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to make exact state estimations of a deterministic nonlinear system due to the uncertainty in the 

observations. Consistent with the noisy observations there is a set of states indistinguishable 

from the true state. Their result implies that an accurate forecast must be based on a probability 

density function (PDF) on the indistinguishable states. Accordingly, probabilistic approaches that 

recognize the unavoidable uncertainty of the true atmospheric state were gradually developed 

and applied to weather forecasting. 

As indicated previously, numerical weather prediction is an initial-value problem: given 

an estimate of the present state of the atmosphere, the model simulates (forecasts) its evolution. 

Thus, either deterministic or probabilistic model requires a proper determination of the initial 

condition. To tackle the problem that the atmosphere is sensitively dependent to initial 

conditions, ensemble forecasts were proposed by launching a set of forecasts from different 

initial states instead of a single deterministic forecast from a single state (Leith 1974, Molteni et 

al. 1996). These studies showed that even a small ensemble size yields adequate approximation 

thereby providing a sufficiently accurate and computationally feasible approximation to the 

primitive equations. The accuracy of ensemble forecasting depends on whether initial members 

are drawn from the PDF that best approximated the uncertainty of the initial time state. Thus, the 

application of Monte Carlo ensemble forecasting requires an estimate of the current atmospheric 

state and its associated uncertainty. Variational assimilation (e.g., Talagrand and Courtier 1987) 

or Kalman filter approach (e.g. Welch and Bishop 2001; Houtekamer and Mitchell 1998) have 

been employed to approximate the state of current atmosphere and its associated uncertainty. 

Subsequently, the estimate of the current atmospheric state and its associated uncertainty are 

used to provide the initial conditions for the ensemble forecasts that yield the flow dependent 

output statistics. 
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Once an ensemble is initialized by one of the initialization methods (such as random 

perturbation, bred vector, or singular vector techniques), each ensemble member is used as the 

initial conditions for an NWP model run. Assuming that the initial ensemble correctly samples 

the initial uncertainty distribution, each individual ensemble forecast state defines an equally 

likely realization of the future atmospheric state and the joint distribution of ensemble forecasts 

defines the forecast uncertainty distribution (e.g. Kalnay 2003).  

The value of ensemble forecasting and the related probabilistic information for high-

impact weather events has been demonstrated in some recent studies using TIGGE data (Hewson 

et al. 2014; Matsueda and Nakazawa 2015; Swinbank et al. 2016). Matsueda and Nakazawa 

(2015) have developed a prototype suite of ensemble-based early warning products for severe 

weather events, using both single-model (ECMWF, JMA, NCEP, and Met Office) and 

multimodel grand ensembles. Several case studies (Swinbank et al. 2016) have demonstrated the 

ability of the products to successfully predict severe weather events, including the Russian 

heatwave in 2010, the 2010 Pakistan floods, and Hurricane Sandy in 2012. They showed that the 

grand ensemble provides more reliable forecasts than single-center ensembles, particularly with 

respect to strong wind speeds and severe temperature, aiding the advance detection of severe 

weather events to help mitigate the associated catastrophic damage. 

1.4 Ensemble forecasts of East Coast cyclones 

Cyclone forecasts using ensemble modeling have also been investigated in a number of 

studies (Du et al. 1997; Stensrud et al. 1999; Froude 2007; Charles and Colle 2009b; Froude 

2009; Froude 2010). Froude et al. (2007) investigated the cyclone tracks in the 50-member 

ECMWF ensemble prediction system (EPS) and 10-member NCEP EPSs between 6 January and 
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5 April 2005 using an objective feature tracking methodology to identify and track cyclones 

along the forecast trajectories. They found that the ECMWF ensemble on average had a higher 

forecast skill than the NCEP ensemble for cyclones in the NH while in the SH the NCEP 

ensemble had smaller errors. Both EPSs show a higher level of forecast skill for the cyclone 

positon than their intensity. The propagation speed of cyclones is generally too slow in the 

ECMWF EPS. Both ECMWF ensemble mean and the best ensemble member have greater 

accuracy than control forecast for both the position and intensity of the cyclones although the 

ECMWF ensemble is underdispersed. Froude (2010) further analyzed the predictions of 

extratropical cyclones in the NH by nine EPSs from the TIGGE archive between 1 February 

2008 and 31 July 2008. They again showed that the ECMWF ensemble has a higher predictive 

skill for all aforementioned cyclone properties. However, the ECMWF model consistently over-

predicts cyclone intensity, although the bias is small. The JMA, UKMO, NCEP, and CMC have 

1 day less skill for the position of cyclones throughout the forecast lead times. The NCEP model 

has larger errors for cyclone intensity than for position. It was also found that cyclones in all 

EPSs propagate too slowly.  

As for extratropical cyclones over the eastern U.S. and the surrounding ocean, Charles 

and Colle (2009b) comprehensively verified the strengths and positions of storms around North 

America and the adjacent oceans within the SREF system of NCEP during 200407. They found 

that the SREF has slightly more accuracy over the eastern U.S. and western Atlantic Ocean than 

the western U.S. for the cyclone central pressure. The 15-member SREF mean for both cyclone 

position and central pressure on average has a smaller error than its subgroups and the NAM 

model in many regions, but not the GFS for many forecast times. The SREF probabilities are 

fairly reliable, although it is overconfident at higher probabilities in all regions. Colle and 
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Charles (2011) further examined the spatial distribution and evolution of sea level pressure (SLP) 

forecast errors across North America and its adjacent oceans in the NCEP GFS model in short- to 

medium-range. The forecast cyclones during 72120 h are too weak on average by 2-3 hPa near 

the U.S. east coast. These cyclones move too fast in the GFS model at the medium range while 

being too slow and too far west for the short range.  

Several studies have investigated the forecast errors and uncertainties related to high-

impact East Coast winter storm cases in ensemble forecasts. For example, Zhang et al. (2002) 

showed that the 12-day forecast errors for the 2425 January 2002 snowstorm case are 

associated with the rapid growth of errors at scales below 500 km associated with moist 

processes. They initialized the MM5 with several different initial conditions and found that an IC 

ensemble significantly improved the forecast. Novak and Colle (2011) compared the forecast 

uncertainty of mesoscale snowband formation and evolution based on predictions from a 16-

member multimodel ensemble at 12-km grid horizontal spacing for the 25 December 2002, 12 

February 2006, and 14 February 2007 northeastern U.S. snowstorms. They showed that even for 

very short range forecast considerable uncertainty in the timing and location of band formation 

and subsequent evolution existed. Among the three cases, large (small) initial differences in the 

upper-level PV and MSLP of the incipient cyclone were associated with large (small) differences 

in predicting snowband locations, which suggests that case-to-case differences in predictability 

may be related to the quality of the ICs. They also noted the complexity of the initial flow may 

also be a discriminator. Zheng et al. (2013) investigated the ECMWF ensemble forecast of the 

2628 December 2010 winter storm and found that the differences in initializing the short-wave 

trough over Texas led to the forecast jump with respect to cyclone position at the verification 

time. 
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Overall, there has been a lack of systematic studies on ensemble forecasts of East Coast 

storms in the literature mainly due to the difficulty for the research community in obtaining 

ensemble data and conduct numerical experiments with sufficient members. Ensemble data has 

one more dimension than other data, making it even harder to process and verify. However, 

given the prevalence of storms over the U.S. East Coast and the strong connections between the 

extratropical cyclones and extreme weather, a comprehensive understanding of the growth of 

errors and uncertainties in ensemble forecasts are necessary to improve the forecast accuracy and 

models. 

1.5 Tools to examine forecast sensitivity to initial conditions   

A small error in a meteorologically active region can be more significant than a major 

error in an inactive region for a short-term forecast. One method of improving forecasts is to 

identify where small changes to the initial conditions can have a significant impact on the 

subsequent forecast and assimilate additional observations in that area. Several objective 

techniques, such as singular vectors, adjoint sensitivity, Ensemble Transform Kalman Filter 

(ETKF) and ensemble sensitivity, have been used to quantify how small changes to the initial 

conditions will affect a forecast metric. We will review them in this section. 

1.5.1 Singular vector, adjoint sensitivity and ETKF analysis 

Singular vectors are a set of orthogonal structures that have different growth rates over a 

finite forecast time period for a given forecast metric, where the leading singular vectors 

represent the directions of fastest error growth in the forecast model optimized for a specific 

verification time (Molteni and Palmer 1993; Buizza and Palmer 1995; Molteni et al. 1996; 

Buizza et al. 1997; Palmer et al. 1998). Ensemble forecasting needs initial perturbations which 
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grow with the evolution of atmospheric flow. The optimal perturbations are achieved from the 

singular vector decomposition of a propagator, which maps small perturbations from initial time 

to a later time. The structures of singular vectors depend on the choice of forecast metric. Palmer 

et al. (1998) showed that initial time singular vectors based on the total energy norm can 

represent the analysis-error variance better than the entropy and streamfunction variance, thus 

making it the norm of choice for ensemble forecasting. Buizza and Palmer (1995) have identified 

three preferred regions for singular vector growth: the East Asian/west Pacific sector, the 

northeast U.S./western Atlantic sector, and subtropical North Africa. The first two are familiar 

regions of cyclogenesis, corresponding to areas where high-pass transient variances are 

maximized. The ensemble forecasting systems at ECMWF has been based on linear 

combinations of initial-time singular vectors (Molteni and Palmer1993, Molteni et al. 1996). The 

singular vectors have also been used to determine the targeting regions for adaptive observations 

(Buizza and Montani 1998; Cardinali and Buizza 2003). The initial condition ensemble 

constructed by Barkmeijer et al. (1998), based on the analysis-error covariance norm, lead to 

initial time singular vectors whose amplitude varies with the density of the observational 

network. Buizza and Montani (1998) used the singular vectors with maximum energy at the final 

time inside a verification region to identify the target area where adaptive observations should be 

taken, at an earlier time, to reduce the forecast error over the verification area. Their results 

suggest that both the singular vectors and the target area are not only sensitive to the choice of 

the verification region, but also to the choice of the trajectory along which the singular vectors 

are evolved. The results based on the first 4 or 10 singular vectors are very similar. They also 

found that the root-mean-square errors over the verification area could be reduced by up to 13% 

by adding targeted observations. 
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Several authors have also applied adjoint technique to determine the initial condition 

sensitivity of mid-latitude cyclogenesis. In order to calculate adjoint sensitivity, the ensemble 

mean initial condition is first integrated forward with the nonlinear model; this trajectory is 

considered as the basic state for the adjoint sensitivity calculations. Next, the adjoint model is 

integrated backward in time from the gradient of the forecast metric at the forecast time. The 

adjoint sensitivity can be used to infer the importance of various synoptic-scale features of the 

cyclone’s environment to the intensity of that cyclone. Errico and Vukicevic (1992) used the 

adjoint of the MM4 mesoscale model to determine the sensitivity of the 36-hour forecasts of 

several mid-latitude cyclones. The largest sensitivities were associated with sub-synoptic scale 

structures that tilted upstream with height and are maximized in the middle troposphere. 

Langland et al. (1995) used the adjoint model to examine the sensitivity of an idealized dry 

extratropical cyclogenesis simulation to perturbations of predictive variables and parameters 

during the cyclone life cycle. They found that the largest sensitivity for both temperature and 

wind perturbations is located between 600 and 900 hPa within the baroclinic zone above the 

developing cyclone. Zou et al. (1998) showed that five-day forecasts of an eastern U.S. cyclone 

were most sensitive to the lower-tropospheric temperature over the Rocky Mountains and an 

upper-level PV anomaly in the Gulf of Alaska, though the distribution was quite complicated. 

Langland et al. (2002) found that for an explosively deepening cyclone along the east coast of 

the U.S., the vertically integrated adjoint sensitivities for a 72-hour Navy Operational Global 

Analysis and Prediction System (NOGAPS) forecast are largest in a broad region well upstream 

in a zonally-propagating wave packet.  

ETKF is another technique to infer the relation between ICs and a forecast metric over a 

given verification area and provide targeting guidance (Bishop et al. 2001; Majumdar et al. 2002). 
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The ETKF determines a transformation matrix that maps a short-term forecast ensemble into an 

analysis ensemble based on the observations that would be assimilated at analysis time. Rather 

than describing how the forecast metric value responds to initial condition errors, this technique 

shows how the forecast error variance within a given verification region at a verification time 

responds to assimilating observations at an analysis time. Regions where large variance 

reduction could be achieved by assimilating additional data suggest where additional targeted 

observations should be deployed. Majumdar et al. (2001) found a  linear, increasing statistical 

relationship between the ETKF predicted signal variance and the variance of NCEP 

signals produced during the 2000 Winter Storm Reconnaissance (WSR) program at both the 

targeting and verification times. The ETKF method was used in NOAA operations to plan WSR 

missions, and proved to be an effective technique for short-range forecasts (Majumdar et al. 2001; 

Majumdar et al. 2002). Szunyogh et al. (2000, 2002) reported that in 70% of the WSR cases, the 

forecast errors are reduced, though the average improvement in the forecasts is only about 10%, 

or a 12 hour gain in forecast skill. Frequently, the optimal target area for forecasts is a single 

region where strong mid- and upper-tropospheric winds exist or a region of baroclinic instability 

(Petersen et al. 2007). Sellwood et al. (2008) investigated the capability of the ETKF approach to 

predict the impact of WSR dropwindsonde data released over northeastern Pacific Ocean on 

medium-range forecasts downstream. Employing a 51-member ECMWF ensemble, they 

concluded that the ETKF is capable of discriminating between observation locations that are 

effective or ineffective for 3–6-day NCEP GFS forecasts of 200-hPa winds within a verification 

region based on Rossby wave dispersion, if the flow was predominantly zonal. The ETKF 

performed poorly in blocked flows. Majumdar et al. (2010) used the ETKF to investigate 

medium-range forecasts for 20 cases of potential high-impact weather over the continental U.S. 

http://journals.ametsoc.org/doi/full/10.1175/2010MWR3106.1
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using a 145-member ensemble comprising perturbations from NCEP, ECMWF, and the 

Canadian Meteorological Centre (CMC). They showed that when a coherent RWP was present 

and the flow was zonal, distinctive targeted regions determined by ETKF, which are associated 

with maximum forecast error reduction within the verification regions, could be traced upstream 

to near Japan at lead times of 4–7 days. 

1.5.2 Ensemble sensitivity analysis 

Both singular vector and adjoint sensitivity involve the linearization of the forecast model, 

and thus they may not work well in highly non-linear flow. Also, both methodologies are 

computationally expensive. Besides, the ETKF is only perfect when linear dynamics hold and 

the model and error covariance specification are perfect. An alternative and inexpensive 

approach is thus necessary to quantify the relation between a forecast and initial conditions. 

A computational inexpensive ensemble error-covariance approach to sensitivity analysis 

was proposed by Zhang (2005) to investigate the dynamics and structure of mesoscale systems in 

the intensive extratropical cyclogenesis event that occurred on 24–25 January 2000. Zhang et al. 

(2006) tested the significance and effectiveness of the error covariance estimated from the 

ensemble forecasts in an EnKF data assimilation system based on MM5 for this event. They 

found that the EnKF was most effective in reducing larger-scale errors but less effective in 

reducing errors at smaller, marginally resolvable scales. Hawblitzel et al. (2007) employed the 

ensemble correlation on the base of error-covariance study to examine the dynamical relations 

and predictability of the mesoscale convective vortex (MCV) of 10–13 June 2003 through 

ensemble forecasting. The above work demonstrated the value of covariability techniques in 

inferring the dynamical linkage and couplings of initial state vector and forecast state vector in 

mesoscale systems. 
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Torn and Hakim (2008) further developed ensemble sensitivity analysis (ESA) as a 

practical co-variability technique, which uses both analysis and forecast ensemble data from an 

ensemble forecasting system, and thus combines ensemble forecasting, data assimilation, and 

sensitivity analysis. Initial condition sensitivity is computed via linear regression of the ensemble 

estimate of a forecast metric and each element of the analysis state vector, thus unlike adjoint 

and singular vector methods, the computation is straightforward and inexpensive. Ancell and 

Hakim (2007) showed that ensemble sensitivity is related to the adjoint sensitivity through the 

analysis-error covariance matrix. Furthermore, ensemble sensitivity can be used to compute the 

impact of observations, and the optimal observation locations for an EnKF system. Unlike 

singular vectors and adjoint sensitivity, this technique provided an optimal strategy for 

observation targeting because it incorporates information on the analysis error, observation error, 

dynamical error growth and data assimilation. 

Ancell and Hakim (2007) compared ensemble and adjoint-based sensitivity for a 

wintertime flow pattern near the west coast of North America. Adjoint-based sensitivity is 

characterized by mesoscale lower-tropospheric structures that tilt strongly upshear with height. 

In contrast, ensemble sensitivities emphasize synoptic-scale features that have modest tilt and 

correspond to the significant weather features at the analysis time. Chang et al. (2013) applied 

the ensemble sensitivity to medium range forecasts for two explosive Pacific cyclone and found 

the ensemble sensitivity can be very effective in predicting cyclone central pressure and position 

differences in ensemble members. Ensemble sensitivity has been used in a number of studies to 

infer the dynamical relation between a forecast metric and the state variables for weather systems 

of different scales (Hakim and Torn 2008; Torn 2010; Matsueda et al. 2011; Chang et al. 2013; 

Zheng et al. 2013; McMurdie and Ancell 2014; Bednarczyk and Ancell 2015). Whereas the 



27 

above studies mainly explored ensemble sensitivities for case studies, this dissertation will apply 

this technique to a combined ensemble of operational models from the TIGGE archive to 

illustrate how ensemble sensitivities can be used to compute climatological sensitivities of the 

intensity and position forecast for East Coast cyclone. Meanwhile, there has been only a limited 

study to verify the robustness of ESA signals. The initial conditions derived based on ESA are 

used to perform perturbed ensemble experiment in a few case studies (Torn and Hakim 2009; 

Chang et al. 2013). While their results from the perturbed model experiments have verified the 

ESA relations in the corresponding case studies, it could be computationally very expensive and 

inefficient to perform ensemble experiments to verify a large number of cases in practice. Thus 

this study will use an alternative method (LOOCV) to verify the robustness of the ESA signals in 

ensemble members.  

1.6 Science questions 

One of the benefits of an ensemble forecast has when compared with a deterministic 

forecast is the additional probabilistic information provided by the ensemble envelope. This can 

provide a measure of the predictability of the atmosphere at a particular location and time. Large 

ensemble spread often indicates that different weather developments are possible. Forecasters 

have increasing ensemble guidance available, but ensemble data is often not used effectively 

since (1) ensembles have not been comprehensively verified and evaluated; (2) ensemble under-

dispersion and biases limit ensemble skill; (3) forecasters lack tools to understand the origin of 

ensemble spread and errors in real time (Novak et al. 2008).   

Though there is an increase in the availability of ensemble output from different centers, 

there is a lack of comprehensive studies on the model climatology of ensemble forecast 

uncertainty and error growth in medium-range forecasts for extratropical cyclones over eastern 
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U.S. and western Atlantic Ocean. Meanwhile, there are only limited studies on the evaluations of 

the performance of different models for predicting winter storms. These studies are only for a 

short, specific time period and mainly based on matching cyclone tracks, a process in which 

many ensemble members are not verified because a match could not be made. It is necessary to 

find an alternative way to evaluate cyclones and compare the results between different models as 

well as between the matching Lagrange method and other methods (e.g. Eulerian perspective). 

The role of large-scale flow regimes (e.g. RWPs) needs to be determined in improving the 

understanding of medium-range forecast of winter storms. 

This dissertation will address the following science questions: 

1) Can an ensemble sensitivity approach provide robust indications of the upstream uncertainties 

related with cyclone amplitude and position separately out to the medium range?  

2) How to verify the goodness of ensemble sensitivity signals associated with the change of 

forecast metrics?  

3) What is the model climatology (e.g., geographic preference) of ensemble sensitivity regarding 

to the cyclone intensity and position for medium range forecast in a multi-model ensemble from 

ECMWF, NCEP and CMC? 

 4) Can the fuzzy clustering method efficiently separate forecast scenarios associated with 

extratropical cyclones and thus condense the useful information from the large ensemble? 

5) How can fuzzy clustering method be used as an ensemble verification tool for the prediction 

of winter storms? 

6) What are the systematic errors and biases in forecasting winter storms in different models in 
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all significant storm cases? 

7) What are the benefits of using multi-model ensembles over single model ensembles? 

8) How do upper-level Rossby wave packets affect the development of forecast errors and 

uncertainties?  

9) Under what flow regimes, the analyses are outside of the multi-model ensembles? 

1.7 Outline of the dissertation 

The motivational questions in section 1.6 will be explored in this dissertation. The outline 

of this dissertation is as follows. Chapter 2 will describe the data and methodologies used. It will 

also discuss how cyclone cases for the climatology of ensemble sensitivity study and evaluation 

of extratropical cyclone forecast in the multi-model ensemble from the three centers were 

selected. The application of ESA to medium-range forecast and its model climatology and 

verification using LOOCV will be presented in Chapter 3. The application of fuzzy clustering to 

separate ensemble forecast scenarios in multi-model ensembles will be introduced in Chapter 4. 

Chapter 4 will also present the evaluations of the different models in predicting East Coast 

winter storms using a scenario-based ensemble verification approach. The linkage between 

RWPs and forecast errors/uncertainties of East Coast winter storms will be discussed in Chapter 

5. A concluding summary is given in Chapter 6.  
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Chapter 2 Data and Methodologies 

The focus of this work is the investigation of ensemble forecasts for extratropical cyclone 

events over the eastern U.S. and the surrounding oceans under the application of different 

ensemble tools. The ensemble data and techniques employed for this dissertation are described in 

this section. This work also involves cyclone cases for calculating model statistics and bias/errors; 

therefore how the cases were selected will be briefly presented. 

2.1 Data 

2.1.1 Deterministic and ensemble data: TIGGE 

The Observing System Research and Predictability Experiment (THORPEX) Interactive 

Grand Global Ensemble (TIGGE) project was established since 2005 to support a range of 

THORPEX research activities by providing operational ensemble forecast data to the 

international research community (Bougeault et al. 2010; Swinbank et al. 2016). One of the 

objectives of the project was to enhance collaboration on the development of EPSs between 

universities and operational centers by increasing the availability of ensemble data for research. 

Since 2008, ten operational weather forecasting centers, including EPSs from Australia, Brazil, 

Canada, China, ECMWF, Japan, Korean (KMA), Meteo France, U.K. (UKMet), and U.S. 

(NCEP), have been delivering near-real-time ensemble forecasting data to three TIGGE data 

archives located at the ECMWF, the National Center for Atmospheric Research (NCAR), and 

the Chinese Meteorological Administration (CMA). During a post processing at these archive 

centers, the individual ensemble forecasts are converted to a common grid/data format and are 

interpolated onto the same pressure levels. Meanwhile, the control forecast and deterministic 

forecast data from each of the 10 meteorological centers are also post-processed the same way 

and archived as part of the TIGGE data. After two days, these products are freely available for 
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research and educational purpose, which form a valuable dataset to support research on 

predictability and dynamical processes and the development of ensemble-based forecast product 

(Swinbank et al. 2016). One particular benefit for research is that the individual ensemble 

forecasts can be arbitrarily combined to form a multimodel ensemble. This multimodel ensemble 

then provides the basis for various investigations, from single case studies to predictability 

investigations for the whole period. Standard meteorological parameters, such as the geopotential 

height, MSLP, temperature, etc., are available from all EPSs. Such a wealth of data from 

operational NWP systems, which has not previously been accessible to the research community, 

provides new opportunities to advance our knowledge of the predictability of specific weather 

systems like the high-impact East Coast winter storms. 

This study will mainly analyze the ensemble forecasts in cool seasons (November to 

March in the following year) from 2007/08 to 2014/15 from three centers retrieved from the 

TIGGE archive, namely CMC, NCEP, and ECMWF. We chose these three because they are the 

ensembles used most by NWS forecasters. This multi-model ensemble facilitates exploration of 

uncertainties in NWP due to differences in initial uncertainties, model physics and 

parameterization methods among the different EPS. The three EPSs comprise a large set of 

ensemble forecast with 90 members in 12 h forecast steps and interpolated onto 1° latitude x 1° 

longitude grid. Note that the control and deterministic forecasts are not included in the multi-

model ensemble. The details of updates and configurations of the three EPSs from 2007 to 2015 

are listed in Table 2.1. Two major updates of GEFS model occurred in February 2010 and 

February 2012. CMC model had two major updates during August 2011 and November 2014. 

ECMWF model experienced three major updates in September 2009, January 2010, and 

November 2013, respectively. 
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Models 

Configuration 

GEFS CMC ECMWF 

Model version 

Nov 2007-Feb 2010: 

v.8 .0 

Feb 2010-Feb 2012: 

v.9.0 

Feb 2012-Mar 2015: 

v.10.0 

Nov 2007-Aug 2011: 

CMC global ensemble 

model (GEM) 

Aug 2011-Feb 2013 

GEPS2.0.2 

Feb 2013-Dec 2013 

GEPS 3.0.0 

Dec 2013-Nov 2014 

GEPS3.1.0 

Nov 2014-Mar 2015: 

GEPS4.0.0 

Nov2007-Mar 2008 

Cycle 32r3 

Mar 2008-Sep 2008 

Cycle 33r1 

Sep 2008-Sep 2009 

Cycle 33r2 

Sep 2009-Jan 2010 

Cycle 35r3 

Jan 2010-Mar 2015 

Cycle 36r1 

 

 

Initial uncertainty 

Breeding Vector 

method with 

Ensemble Transform 

and Rescaling (BV-

ETR) 

Dec 2007-Aug 2011: 

Ensemble Kalman Filter 

Assimilation (EnKF); 96 

members 

Aug 2011-Nov 2014: 

EnKF, 192 mem 

Nov 2014-Mar 2015: 

EnKF: 256 members 

Nov 2007-Nov 2013: 

Singular Vectors 

(SVs) 

Nov 2013-Mar 2015” 

SVs+Perturbations 

from the Ensembles of 

Data Assimilation 

(EDA) 

Model uncertainty 

Nov 2007Feb 2010: 

None 

Mar 2010Mar 2015: 

Stochastic total 

tendency perturbation 

(STTP) 

 

STTP, SKEB 

backscattering schemes 

 

Nov 2007-Sep 2009: 

no stochastic physics 

Sep 2009-Mar 2015: 

Revisited Stochastic 

Physics 

STTP 

SKEB backscattering 

schemes 

Data Assimilation 
GSI 3D-Var 

Nov 2007-Nov 2014: 

4D-Var 

Nov 2014-Mar 2015: 

Coupling with 4D-En 

VAR 

4D-Var 

Resolution 

Nov 2007-Feb 2010: 

T126 L28 

Feb 2010-Feb 2012: 

T190 L28 

Feb 2012-Mar 2015: 

T254 L42 (0-8) 

T190 L42 (8-16) 

 

Nov 2007-Aug 2011: 

100km(horizontal)/L28 

(vertical, to 10hPa)/45 

min (time step) 

Aug 2011-Feb 2013 

66 km/L40 (to 2hPa)/30 

min 

Feb 2013-Dec 2013 

66km/L40(to 

2hPa)/20min 

Dec 2013-Nov 2014: 

Nov 2007-Jan 2010  

T399(0-10day), 

T255(10-15/32day) 

Jan 2010-Nov 2013 

T639L62 (0-10day) 

T319L62 (10-15day) 

Nov 2013-Mar 2015 

T639L91 (0-10day), 

T319L91(10-

15/32day) 
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66 km/L40 (to 

1.78hPa)/20min 

Nov 2014-Mar 2015 

50km/L48(to 1.45hPa)/ 

15 min 

Forecast length 

(days) 
0-16 0-16 0-15, 0-32 

Ensemble 

members 
20+1 20+1 50+1 

Daily frequency 

(UTC) 

0000, 0600, 1200, 

1800 
0000, 1200 0000, 1200 

Output Time Steps 6-hourly: 000h to 

384h 
6-hourly: 000h to 384h 6 hourly: 000h to 384h 

Table 2.1: The Evolution of NCEP GEFS, CMC, and ECMWF model configurations during 

November 2007 and March 2015. Note the date in red means major updates. 

 

2.1.2 Variables, forecasting, and analysis data used for each chapter 

Here, I will summarize the data used for the main result of each chapter in this 

dissertation. 

For the ensemble sensitivity calculations in Chapter 3, the following forecasting data and 

analysis data are used: 

i. Fifty member ensemble forecasts of MSLP and Z500 from the ECMWF for the 

2010 December case study, three runs are used with the initialization time at 0000UTC 

22 December 2010, 0000 UTC 24 December 2010, and 0000 UTC 25 December 2010, 

respectively. 

ii. A multi-model ensemble is used to calculate the climatology for ensemble 

sensitivity associated with cyclone intensity and position forecasts as well as to verify 

sensitivity signals using LOOCV. The details of the multi-model ensembles with 90 

members from CMC, NCEP, and  ECMWF are as follows: 

 Forecast length used: 3 days and 6 days 
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 Forecast variables: MSLP, Z500 

 Initialization time: 0000 or 1200 UTC 

 Time period: 102 unique cyclone cases during 2007/082014/15 cool 

seasons 

 Resolution: 1° longitude x 1° latitude 

Note that the MSLP and Z500 are used to represent the surface and upper-level features, 

respectively. 

iii. NCEP operational analysis data for MSLP and  Z500 

For the fuzzy clustering calculations in Chapter 4, the following forecasting data and 

analysis data are used: 

i. Ninety member multi-model ensemble from the CMC, NCEP and ECMWF 

centers. MSLP , Z500, total precipitation for the 2015 January blizzard case, two runs 

with the initialization time at 1200UTC 21 January 2015 and 1200 UTC 24 January 2015. 

ii. The 90-member multi-model ensembles from CMC, NCEP, and ECMWF are 

used for ensemble verification. The details of the multi-model ensembles are as follows: 

 Forecast length used: 19-day forecast 

 Forecast variables: MSLP, Z500 

 Initialization time: 0000 or 1200 UTC 

 Time period: cyclone cases (the case number will be given in Table 4.3 of 

Chapter 4) in the analysis during 2007/082014/15 cool seasons 

 Resolution: 1° longitude x 1° latitude 

iii. NCEP operational analysis data for MSLP and  Z500 
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iv. Climate Prediction Center (CPC) unified gauge-based daily pre precipitation data 

over CONUS during 2628 January 2015 on a 0.25° longitude x 0.25° latitude grid 

To study the predictability of winter large-error events over eastern U.S. and western 

Atlantic Ocean associated with RWPs, the following data at 2.5°longitude x2.5°latitude grid are 

used in Chapter 5: 

i. GFS deterministic 7-day forecast of Z300 during 2007/08 and 2013/14 cool 

seasons. 

ii. NCEP operational analysis data for U wind and V wind at 300 hPa level to 

calculate RWP amplitude 

iii. GEFS 20-member ensemble data for MSLP, U300, V300, and Z300 to calculate 

ensemble spread and ensemble wave packet amplitude 

By studying the large set of TIGGE ensemble data, ensemble sensitivity analysis can 

make inference about the dynamical linkage between forecast metrics and antecedent forecasts at 

earlier forecast times or initial conditions. Different forecast scenarios can be evaluated using 

fuzzy clustering tool, which will shed light on understanding the development and propagation of 

forecast uncertainties. Meanwhile, it will provide a means to investigate the physical and 

dynamical processes responsible for the variability among EPS members and to connect these 

mechanisms to the predictability of the investigated cyclone events. In addition, large-error cases 

selected from the deterministic forecast data set will be investigated, to determine detailed major 

dynamical features affecting large forecast errors during the dropout cases. These techniques will 

be discussed further below. 

2.2 Winter storm case selection 
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As mentioned in previous subsection, cyclone cases will be selected to study their 

predictability in ensemble forecasts. This section will briefly describe the criteria to select those 

cases. 

2.2.1 Analyzed cyclone cases 

To calculate ensemble sensitivity and evaluate the performance of different operational 

models in forecasting East Coast cyclones, we first tracked cyclones across two primary regions 

(Figure 2.1): region 1 and region 2. Region 1 is a bigger region including part of the central 

U.S.as well as the East Coast of the U.S.; region 2 is a relatively smaller region including the 

East Coast and part of the western Atlantic. The cyclone cases include verified significant 

cyclones with the minimum central pressure less than 1005 hPa crossing these two regions 

determined by the tracking scheme developed by Hodges (Hodges 1994, 1995, 1999). A 

minimum pressure of 1005 hPa is chosen because a climatological study of East Coast winter 

study by (Hirsch 2001) showed that over two third of the cyclones had minimum pressure less 

than 1005 hPa using NCEP/NCAR reanalysis data during 1951-1997. A choice of 1005 hPa as a 

threshold for minimum pressure will include most of the significant cyclones.  

A total of 130 (120) cyclone tracks were found for region 1 (2). Among them, 63(82) 

cases are classified by NOAA WPC as significant storms, which “Impact large population areas, 

or major transportation systems, or otherwise make a significant impact upon the nation’s or a 

region’s commerce” (Reference: 

http://www.wpc.ncep.noaa.gov/winter_storm_summaries/winter_storm_summaries.shtml). 

To compute the ensemble sensitivity as well as the LOOCV, we only use one verification 

time to avoid redundant count of cyclones. For each cyclone track, the verification time is 

http://www.wpc.ncep.noaa.gov/winter_storm_summaries/winter_storm_summaries.shtml)
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selected using the time point with the maximum past 12 h MSLP change within each region. 

Therefore, 130 (120) cyclone cases for region 1 (2) were pre-selected. However, there are 

missing ensemble data in TIGGE archive. We finally used the 3-day and 6-day ensemble 

forecast from 115 (102) cyclone cases for region 1 (2) to compute the ensemble sensitivity 

climatology and LOOCV. 

 

Figure 2.1: Region 1 (red box) and region 2 (blue box). The red box includes an area from 95°W 

to 65°W, and 30°N to 50°N; and the blue box includes an area from 79°W to 68°W, and 32°N to 

45°N. 

To perform the model evaluations for cyclone forecasts, the same 130 (120) cyclone 

tracks were selected. To increase sample size for model evaluations, one or two verification 

times were included as long as they are within the verified region. I evaluated the 19-day 

forecasts for the observed cyclones. Again, due to the missing members for some cases in 

TIGGE archive, I have chosen 158 to 185 cases (Table 4.3) for the scenario-based model 
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evaluation calculations. I have also tested similar calculations using fewer cases (102 to 135) for 

3- and 6-day forecasts; the results are very consistent.  

2.2.2 Predicted cyclone cases 

To evaluate model bias in forecasting cyclones, we also selected forecast cyclone cases 

for different forecast times. The NCEP deterministic forecasts from 2007/08 to 2014/15 cool 

seasons are chosen to track forecast cyclones. If the forecast cyclone at a forecast time of day N  

(N=1,...,9) crossed the verification region with a central pressure less than 1005 hPa, this cyclone 

will be a candidate for forecast cyclone case on day N forecast. If the initialization times of two 

candidate cases for the same verification time are very close (no more than one day), only one of 

them will be selected based on the criterion of its cyclone position closer to the center of 

verification region. The number of cases will be summarized in Table 4.4. Note that the 

evaluation of predicted cyclone cases is a complementary calculation for observed cyclone cases.  

2.2.3 Dropout cases selection 

In Chapter 5, large error cases or dropout cases will be investigated to explore the 

potential impacts of RWPs on the predictability of winter weather. Dropout cases are selected 

based on the NCEP deterministic forecast of geopotential height at 300 hPa (Z300). Root-mean-

square errors of 7-day forecast for Z300 over a verification region (Figure 2.2) were calculated. 

The cases with the RMSE greater than 1.5 standard deviations are chosen as dropout cases. 

When two cases are very close (< 2day), only one case will be kept to avoid redundant cases. As 

a comparison, the small RMSE cases (< Mean1.1 standard deviations) are also selected to 

represent good forecasts. Eighty-three dropouts and 85 small-error cases were selected. 
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Figure 2.2: Region (red box) for calculating RMSE and selecting large error cases. The red box 

includes an area from 99°W to 47°W, and 22°N to 63°N. 

2.3 Empirical Orthogonal Function analysis 

The Empirical Orthogonal Function (EOF) analysis is a statistical method to condense the 

information of a large dataset without losing valuable information expressed by the original 

dataset. It was introduced to atmospheric sciences by Lorenz (1956) in the 1950s. Since then, it 

has become a popular method in atmospheric sciences to examine the variability of 

meteorological data due to its simplicity and analytic derivation (Hannachi et al. 2004; Hannachi 

et al. 2007; Wilks 2011). In terms of ensemble forecast, there exist regions of low forecast 

uncertainty where most members show nearly identical fields as well as regions of high forecast 

uncertainty where large disagreements in individual members appear. The EOF method can 

summarize the information or the dominant differences provided by the individual members 
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while removing the redundant information among them. Basically, the EOF analysis defines a 

new set of variables that permits the expression of dominant parts of the variance contained in 

the original data set at one investigation time, but has a lower dimensionality. This new set of 

variables are determined by identifying a new set of vectors ei onto which the original data 

matrix X explains the maximum variability, thus they can best describe the synoptic patterns in 

the ensemble members. 

To be more specific, here the EOF analysis is calculated to determine the dominant 

patterns of variations in ensemble MSLP forecasts over a verification region at an investigation 

time. Following Hannachi et al. (2004, 2007) and Keller (2012), the formulation of EOF analysis 

will be summarized as below. 

Assume the original MSLP data over a verification box at a verification time is a two-

dimensional M×P matrix X, where M and P represents the number of ensemble members and 

grid points, respectively. The value of MSLP for an ensemble member i at a grid point j is noted 

xij for i=1,…, M and j=1,…, P. 

If we denote by jx. the ensemble mean of the MSLP at the jth grid point, i.e. 




 
M

k

kjj x
M

x
1

1
        (2.1) 

Then the ensemble mean of all grids are defined by 

)( ,,1 pxx  x         (2.2) 

The anomaly or the deviation of an ensemble member i from the ensemble mean at the jth 

grid point is defined by: 

jijij xxx '
        (2.3) 

or in matrix form: 
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xΙXX '
,         (2.4) 

here I is the column vector containing M  ones.  

The anomaly matrix Xˊ can be expressed as:  
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The covariance matrix is then defined by: 
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 ,        (2.6) 

which contains the covariance between any pair of grid points. The aim of an EOF analysis is to 

find the linear combination of all the variables that explains the maximum variance. That is to 

find a direction e=(e1,e2,…,eP)
T
 such that Xˊe has maximum variability. The variance of Xˊe is 
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Under the constraint that e has unit length, the maximization-variance problem yields: 

1 s.t. ),(max eeΣee
e

TT
       (2.8) 

The solution to eq. (2.8) is to solve the eigenvalue problem: 

eΣe  ,   `      (2.9) 

where e and λ are referred to as the eigenvector and its corresponding eigenvalue of the 

covariance matrix Σ. The kth eigenvalue λk for the kth eigenvector gives a measure of the 

explained variance by ek with k=1,…,P. The explained variance percentage can be defined as: 

%
100

1 

P

k k

k




         (2.10) 
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The projection of the anomaly field X’ onto the kth EOF ek, i.e., k=Xˈek is the kth 

principal components (PCs) as expressed by: 





P

j

kjijik ex
1

'         (2.11) 

where i=1,…, M, k=1,…, P. 

The normalized PCs of ensemble members for the leading two EOF patterns will be used 

as forecast metrics to calculate ensemble sensitivity in chapter 3 and the basis to perform fuzzy 

clustering analysis in chapter 4. They represent the projections of each of the ensemble members 

onto the two dominant EOF patterns. Since the PCs are normalized to have unit variance, the 

EOF patterns carry the magnitude and dimensions of MSLP anomalies (Chang et al. 2013). As 

will be shown later, we find that typical EOF patterns represent two types of uncertainties in the 

forecast: amplitude and position uncertainties, consistent with the results of Gombos et al. (2012). 

We will also show in Chapter 4 that for East Coast cyclone cases, in the majority of cases most 

of the forecast error projects onto the two leading EOFs, justifying our focus on the two leading 

EOFs. 

2.4 Sensitivity analysis 

To relate the forecast uncertainty of a forecast at investigation time with the initial 

conditions or earlier forecasts, ensemble sensitivity analysis will be applied to the multi-model 

ensemble forecast of MSLP. This section briefly introduces the ensemble sensitivity method. 

Since ETKF method is also an efficient sensitivity analysis approach and will be used to 

compare the results from ensemble sensitivity in a case study, a brief introduction of the ETKF 

method will also be given here.   

2.4.1 Ensemble sensitivity method 
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Ensemble sensitivity analysis can quantify the relationship between either initial 

conditions or forecasts at earlier forecast times and the forecasts at verification time, thus it can 

improve our understanding of the development and propagation of forecast uncertainties.   

The calculation of ensemble sensitivity follows that of Torn and Hakim (2009). Given an 

ensemble with M members, the sensitivity of any forecast metric J to a state variable Xi can be 

expressed as  

          

(2.12) 

here J and Xi are the 1×M ensemble estimates of the forecast metric J and the ith state variable 

Xi, respectively. Cov denotes the covariance between J and Xi across the ensemble, and Var is 

the variance. The “Sensitivity” defined by equation (2.12) carries the dimension of the forecast 

metric and describes the change in the forecast metric corresponding to one standard deviation 

change in the uncertainties of the selected state variable.  

Figure 2.3 shows one illustrative example to interpret the ensemble sensitivity. The 

regression slope, which is the covariance between two variables (J and Xi) divided by the 

variance of Xi, is 11.3 Pa m
-1

, which means a change of 1 m Z500 corresponds to a change of 

11.3 Pa minimum pressure. Since the standard deviation of Z500 (or Xi in eq. 2.12) is 107.65 m, 

the ensemble sensitivity, which equals to the regression times the standard deviation based on eq. 

2.12, is 107.65 m x 11.3 Pa m
-1

, or 12.18 hPa. One standard deviation change of Z500 at the grid 

point of interest is associated with 12.18 hPa change of minimum pressure. Thus, the sensitivity 

using eq. 2.12 keeps the unit of forecast metric. 
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Figure 2.3: One illustrative example to interpret the ensemble sensitivity. The abscissas and 

ordinates are Z500 at one grid point within the verification region and the minimum pressure 

forecast from 90-member ensemble within the same verification region. 

A forecast metric using EOF analysis is defined on a box over selected model grids to 

calculate the dominant EOF patterns in the ensemble MSLP forecast at a particular forecast hour. 

The EOF patterns basically represent the dominant forecast uncertainties within the box. This 

approach was used rather than identifying forecast metric for cyclone parameters directly, since 

the cyclones in each ensemble member with similar parameters (minimum pressure, longitude, or 

latitude) may not have a similar structure (Gombos et al. 2012; Chang et al. 2013). The 

corresponding PCs of each of the leading EOF patterns (which are the projection of the EOF 

pattern onto the difference between each ensemble member and the ensemble mean) can be 

employed as forecast metric (J). Therefore, using the PCs of an EOF as the forecast metric, 

ensemble sensitivity analysis can objectively evaluate the relationship between that uncertainty 

pattern and the state variables at initial time or other forecast times. 
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 In our application, the PCs are dimensionless and normalized to unit variance, while the 

EOF patterns carry the dimension of the forecast variable, and the amplitude of the patterns 

reflects the square root of the amount of variance explained by each EOF. Thus, the forecast 

metric employed here has unit variance and is non-dimensional. To make this point more 

explicit, Chang et al. (2013) redefined “sensitivity” by dividing the RHS of equation (2.12) by 

the standard deviation of J, as follows: 

     

(2.13) 

thus “sensitivity” in eq. 2.13 is dimensionless and is equal to the correlation between the 

ensemble estimates of J and Xi. Basically, “sensitivity” corresponds to a weighted average of the 

state vectors of the ensemble members; with the weight (J) reflecting how much the difference 

between each ensemble member and the ensemble mean resembles the EOF pattern.  

With the knowledge of sensitivity signals within different ensemble forecast cycles, the 

forecasters can have better understanding of what kinds of antecedent atmospheric features are 

associated with a particular synoptic system at the verification time. The development and 

propagation of forecast uncertainties can be intuitively illustrated by examining the time 

evolution of sensitivity signals. 

2.4.2 LOOCV: the verification of ensemble sensitivity signals 

The accuracy of sensitivity regions identified by ensemble sensitivity can be evaluated by 

the leave-one-out cross validation method (Wilks 2011, Gombos et al. 2012). Cross validation is 

often employed to validate different ensemble forecasts by reserving an independent verification 

data set. Cross validation simulates prediction for future, unknown data by repeating the entire 
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fitting procedure on data subsets, and then examining the predictions made for the data portions 

left out of each subset. A frequently used procedure is known as leave-one-out cross validation 

(LOOCV), in which the fitting procedure is repeated n times, each time with a sample of size n-

1, because one of the predictand observations and its corresponding predictor set are left out in 

each replication of the fitting process. The result is n slightly different prediction equations. 

The cross-validation estimate of the prediction mean squared error (MSE) is computed by 

forecasting each omitted observation using the equation developed from the remaining N-1 data 

values, computing the squared difference between the prediction and predictand for each of these 

equations, and averaging the N squared differences. Thus, LOOCV uses all N observations of the 

predictand to estimate the prediction MSE in a way that allows each observation to be treated 

one at a time, as independent data. 

When applying the LOOCV to this dissertation, it will be performed by 1) removing a 

single ensemble member (member of interest, mp, 1<p<,nens) from the ensemble (nens); 2) 

calculating the ensemble sensitivity for the leading two EOF PCs at verification time tv using the 

remaining nens-1 members; 3) calculating the leading nx EOF PCs of the state vector X over the 

selected sensitivity region at another time (ti, i≤v), which is the predictor 1

~

ensx nn X ; and choosing 

one of the leading two EOF PCs ( 11 ensnJ  and 12 ensnJ ) at verification time as the predictand; 4) 

computing ensemble regression based on the predictor ( 1

~

ensx nn X ) and predictand (
1

11 ensnJ  or

2

11 ensnJ  ); 5) projecting  the forecast anomaly of member of interest at ti to the leading nx EOF 

patterns to the same sensitivity region and recoding the corresponding coefficient ( '1

~

X
xn  ); and 

projecting the forecast anomaly for the same member at tv to the leading two EOF patterns at tv 

and recording the corresponding coefficient (
1

11 J  or 
2

11 J ); 6) applying the ensemble regression 



48 

relation to the predictor '1

~

X
xn and calculate the corresponding predictand (

1

11 J  or 
2

11 J ) for the 

member of interest, and then 7) comparing the ensemble regression-estimated predictand (
1

11 J  

or 
2

11 J ) to the actual value (
1

11 J  or 
2

11 J ) and computing the ratio rp of the estimated value and 

the actual value of J. After repeating the above 7 steps for each ensemble member, the median of 

the rp together with the correlation ρ between the predicted and the actual value for J will be 

measures of the robustness of the ensemble sensitivity signals. This method has been 

demonstrated to be effective in quantifying how well the ensemble sensitivity signals can predict 

the change in the forecast metric J (Gombos et al. 2012; Gombos and Hoffman. 2013). Chapter 3 

will give more details of its application in verifying ensemble sensitivity signals. 

2.4.3 An introduction to the ETKF method 

The ETKF technique (Bishop et al 2001; Majumdar et al. 2002) was used to identify the 

potential upstream sensitive areas, where the assimilations of targeted observations are expected 

to maximize the improvement of the forecast over a verification area. In other words, given an 

ensemble run with a specified initialization time ti, the ETKF uses the ensemble perturbations 

relative to the ensemble mean to predict the change of forecast error covariance within an 

investigation region at verification time tv due to the assimilation of adaptive observations at time 

ta (ti<ta<tv).  The impact of the targeted observations is expressed by using a difference total 

energy metric, or the variance of the “signal”.  It is predicted and mapped as a composite 

“summary map” that depicts sensitive areas for sampling (Majumdar et al. 2002, Majumdar et al. 

2010). 

The process for calculating ETKF is as follows: 

Step 1: define the error covariance for perturbations at initial time: 
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wherein H
r 
and R

r
 are the “routine” operator and  error covariance matrix, and Z

i
(ta|H

i
)  and T

r 

are the raw ensemble perturbation at analysis time and linear transformation matrix. 

 Step 3: using serial assimilation theory, calculate the error covariance update due to the 

qth deployment of targeted observations at analysis time: 
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wherein H
q 

and R
q
 are the qth adaptive operator and  error covariance matrix. 

Step 4: the forecast error covariance at time tv can be expressed as: 
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S
q
(tv|H

q
) is the “signal covariance”. Following Majumdar et al. (2010), the diagonal of S

q
(tv|H

q
) 

localized within the verification region can be plotted as a function of the qth targeted 

observation on the ETKF guidance. The “pseudo sounding” of (u,v,T) at 850, 500, and 200 

pressure levels are used as the adaptive observations, which are sampled at the model grid point 
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at 1° resolution. Therefore, the summary map of the normalized signal represents the reduction in 

forecast variance within the fixed verification region. The regions with largest values represent 

the sensitive areas contributing most to the error variance reduction. For more details of this 

method, the reader is referred to papers by Majumdar et al. (2001, 2002), Langland (2005), and 

Majumdar et al. (2010, 2011). The ETKF code used for the case study in Chapter 3 was provided 

by Dr. Sharan Majumdar from University of Miami. 

2.5 Fuzzy clustering method 

To quantify the variability within an ensemble of forecasts and recognize different 

scenarios among different operational models, a Fuzzy cluster analysis will be applied to group 

ensemble members with similar forecast scenarios. The clusters of forecast scenarios will be 

used to understand different forecast scenarios among models and to evaluate models.  Harr et al. 

(2008) suggested that once the EOF analysis on the ensemble within the region of interest was 

completed, the first and second principal components (PCs) for the collection of all ensemble 

members can be used as input to a Fuzzy clustering routine. To start the iterative procedure, a 

previously specified number of clusters or initial guess was randomly placed in the EOF PC1-

PC2 phase space. Each ensemble member denoted by the pair of PCs is then assigned to the 

nearest group center. New centers are computed by minimizing an objective function that 

represents the distance from each point to each new cluster center. Each point is examined again 

relative to the updated cluster centers. If no points can be reassigned because they lie closer to 

another center, the iterations stop. Each member is assigned a weight value that identifies their 

relative strength of membership to their cluster (Harr et al. 2008). For a point k, the weight 

associated with the ith cluster is defined as  
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such that di,k  is the distance between point k and the centroid of cluster i, and dj,k is the distance 

between point k and the other cluster centers j. The fuzziness coefficient q determines the level 

of cluster fuzziness. A large q results in smaller memberships wi,k  and hence, fuzzier clusters. In 

the limit q=1, the memberships converge to 0 or 1, which implies a crisp partitioning. In the 

absence of experimentation or domain knowledge, q is commonly set to 2. Harr et al. (2008) set 

q to be 1.5. A total of C clusters can be calculated using equation (2.18) and the above procedure. 

 

In this dissertation, fuzzy clustering will be applied to the PCs corresponding to the 

leading two EOF patterns. Conceptually, there should be an optimal number of population 

clusters associated with different synoptic-scale patterns. However, as pointed out by Harr et al. 

(2008), it is often very difficult to determine this number objectively. Keller et al. (2011) tested a 

range of the cluster number C from 2 to 8 and found that 6 was the suitable cluster number for 

their study. We have also tested 2–8-cluster solutions for both 3- and 6-day forecasts of the 

historical cyclone cases and found that 5 clusters tend to be optimal in most cases. One way to 

determine the optimal number of clusters is to find the stable solution with the highest adjusted 

Rand index (Yeung and Ruzzo 2001) based on 100 clustering results using random seeding 

points. When two or more cluster results are stable, the largest number of clusters is chosen. One 

reason is that we would like the clustering procedure to produce a group that can represent the 

ensemble mean, which is often hypothesized to be a good estimation of the truth (Du and Zhou 

2011). Our experience suggests that a group clustered around the ensemble mean is more likely 

for larger number of clusters. Note that the ensemble mean (the origin on a PC1-PC2 coordinate) 

is used in clustering. 



52 

When examining past cases, after we have grouped forecast ensemble members based on 

their EOF PCs at VT, the difference between the analysis field and the ensemble mean at VT can 

be projected onto the leading EOF patterns and hence occupies one point on the EOF PC1-PC2 

space just like one extra ensemble member, and this can be used to verify the scenarios in the 

ensemble forecasts (see Chapter 4). 

The clusters of forecast scenarios, together with the ensemble sensitivity signals, will 

provide a more complete picture of the variability of forecast scenarios among ensemble 

members. We will also apply them to assess how the different NWP models perform in capturing 

the real scenario. 

2.6 Rossby wave packet: detection and tracking 

The relation between RWPs and large error cases will be investigated in chapter 5. The 

first step is to compute RWP amplitude, which is a representation of wave packet intensity. To 

investigate more details regarding to coherent RWP, the tracking of RWPs is necessary. So, an 

objective way to track RWPs will also be briefly introduced here. 

2.6.1 Rossby wave packet amplitude  

The calculation of Rossby wave packet amplitude (RWPA) follows Zimin et al. (2006), 

which involves the horizontal wind at 300 hPa on 2.5°x2.5° horizontal resolution from 

NCEP/NAR reanalysis. Zimin et al. (2006) demonstrate that when using a streamline, instead of 

a latitude circle line, the shape of the RWPA envelope is smoother and more contiguous in a 

non-zonal flow regime. 
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Given an atmospheric variable ϕ(x,y), and the basic flow with zonal components u(x,y) 

and meridional components v(x,y),the following algorithm summarizes how to calculate RWPA 

based on Zimin et al. (2003, 2006). 

Step 1: At each grid point (x0,y0), a piecewise-linear approximation of a stream line is 

defined by (u,v) in the neighborhood of (x0,y0).  If x, y are measured in units of longitude and 

latitude, respectively, the point (x1,y1) that lies a distance δ in the direction of the streamline from 

(x0,y0) is 
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Here δ has the units of latitude while cos y0 compensates for the decreasing zonal distance 

between grid points near poles. Other points, (x2, y2), (x3, y3), … , (xN, yN), can be determined 

iteratively using the same formula with shifted indices. On the opposite direction, points (x-1, y-

1),(x-2, y-2), …, (x-N, y-N) can be calculated similarly, working backward: 
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Where, N is chose to keep Nδ roughly the length of a latitude circle. 

Step 2: With known coordinates (xj,yj), j=-N, …, +N for points, the atmospheric variable 

of interest is then interpolated onto each such point (xj,yj). The ϕ(xj,yj) is then localized using a 

Gaussian filter function centered at j=0: 
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The 1/ is chosen to be roughly the length of the wave packet, as a fraction of the length of the 

latitude circle. 

Step 3: Replace    (xj,yj)  with  (xj,yj)  and define ϕ(s) given s=jδ for |s|≤δN. 

Step 4: The Fourier transform of the variable ϕ(s) is computed by 
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Step 5: The inverse Fourier transform is calculated with respect to a selected band 

(0<kmin≤k≤kmax) of the positive wavenumber half of the Fourier spectrum: 
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Step 6: The wave packet envelope is computed by 

|)/(|)/2( NlwNA         (2.24) 

For each original point (x0, y0), the above steps are repeated to compute wave packet amplitude 

A(x0, y0). 

2.6.2 An objective way to track RWPs 

Souders et al. (2014a, b) proposed a feature-based RWP tracking approach. The method 

used a hybrid approach to track RWPs by combining a point-based object identification method 
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and a feature-based tracking approach together. This tracking approach is applied here to track 

RWPs in NCEP/NCAR analysis from 2007 to 2014 cool seasons (November to March). 

The tracking approach starts by selecting significant local maxima in WPA (≥14 m s
−1

). 

The object is then defined by setting the minimum size to be 40 grid points at 2.5° resolution.  

The algorithm tracks the objects by searching for significant overlap across a single time interval 

within a search range (20°N/S, 30°W, and 90°E). Two objects in consecutive time steps will be 

given the same track ID if the overlap between them covers at least 50% of the area in either 

object. When multiple objects are related to one existing RWP at the same time, or the 

merging/splitting happens, the more intense object keeps the existing track ID while the 

smaller/weaker object will be given a new track ID. Readers are referred to Souders et al. (2014a, 

b) for more details of this tracking approach. Their results have been shown to have good 

agreement for most of the characteristics of RWPs with other studies (Grazzini and Vitart 2015). 

2.7 Chapter summary 

This chapter summarized the data and methodology used throughout this dissertation. 

The TIGGE data provides a great opportunity to investigate the predictability of high-impact 

East Coast winter storms. By using different ensemble tools, i.e., ensemble sensitivity, 

EOF/fuzzy clustering, the model statistics and model bias/errors will be computed and presented. 

Results from ensemble sensitivity and Fuzzy clustering analyses will assist forecasters to better 

understand and appreciate forecast uncertainty, while the evaluation of model performance will 

provide insights to improve forecast accuracy and models. The investigation of predictability 

associated with RWPs explores the role that large-scale flow regime plays in the forecasts of 

downstream cyclones. 
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Chapter 3 Ensemble sensitivity and its applications to ensemble forecasting 

As previously mentioned, ensemble sensitivity analysis (ESA) is employed to link the 

ensemble forecast uncertainties with the initial conditions or earlier forecasts, and thus it 

provides a guidance for adaptive observing strategies as well as interpreting daily ensemble runs 

(Ancell and Hakim 2007; Hakim and Torn 2008; Torn and Hakim 2009). ESA uses a linear 

correlation and regression between the chosen forecast metric at verification time and the state 

vector at the initial or earlier forecast times from the ensemble members to derive the sensitivity 

of any forecast metric to the state vector. 

Since the linear assumption for this sensitivity is expected to work better for short-range 

forecasts, ESA has mainly been employed for short range (13-day) forecasts. However, 

previous studies have shown that linearly derived sensitivity can still have value out to the 

medium range. For instance, Chang et al. (2013) showed that ESA signals for a forecast could be 

tracked backward at least 6 days when studying the evolution of two extreme extratropical 

cyclones over the Pacific. In this work, we will apply ESA for both short- and medium-range 

ensemble forecasts by summarizing three ways to assess the uncertainties in the forecasts of the 

intensity and track of extratropical cyclones. The verification of ensemble sensitivity signals 

using LOOCV will be given. The model climatology for ensemble sensitivity associated with 

cyclone intensity and position will also be presented.  

Section 3.1 of this chapter will briefly introduce the background of ensemble sensitivity.  

Section 3.2 discusses the formulation of ESA and different ways of applying it. In Section 3.3, 

the 2010 December East Coast winter storm will be investigated to illustrate the procedure of 

applying ESA to diagnose forecast uncertainty with different forecast metrics/state vectors. 
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Section 3.4 discusses the verification of ESA using LOOCV. The comparison of ESA with 

ETKF method in a case study will be presented in section 3.5. Section 3.6 will present the 

climatology of ESA based on historical winter storms. Section 3.7 will briefly discuss the linkage 

between sensitivity signals and RWPs. The chapter summary will be given in section 3.8.  

3.1 Ensemble sensitivity analysis background 

Ensemble sensitivity was developed by Hakim and Torn (2008) and further explored in a 

couple of follow-up papers (Ancell and Hakim 2007; Torn and Hakim 2008).  Basically, a scalar 

forecast metric (a response function J) at the verification time is linearly regressed onto a model 

state variable within an ensemble of forecast at either the verification time or other earlier 

forecast time (including the initial time). The slope of these linear regressions at a given time is 

defined as the ensemble sensitivity, which is an N×1 vector ( XJ  / ) with X representing the 

model state with state-space dimension N. While a univariate linear regression within a complex 

multivariate system would seemingly have its limitations, ensemble sensitivities have been 

demonstrated to possess a deep dynamical meaning in a number of studies for different 

applications. Ancell and Hakim (2007) demonstrated that the ensemble sensitivity is proportional 

to the projection of the analysis-error covariance onto the adjoint-sensitivity field. The sensitivity 

results from adjoint and ensemble sensitivity were compared in a winter Pacific Northwest 

cyclone for a forecast metric of near surface pressure at a point in the state of Washington. 

Adjoint sensitivity patterns mainly revealed lower-tropospheric structures that were more 

localized with small magnitudes and had a strong upshear tilt with height. In contrast, ensemble 

sensitivity patterns were mostly troposphere-deep structures that represented more synoptic scale 

with larger magnitudes and tilted modestly with height. Ensemble sensitivities can more 

efficiently pick out coherent features in the flow (e.g., upper-level troughs; mid-level 
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temperature gradients) that are dynamically relevant to the forecast metric as compared with the 

adjoint sensitivity method.  

ESA has been successfully applied to a variety of ensemble forecast problems. Torn and 

Hakim (2009) employed ensemble sensitivity to study two extratropical transition (ET) events 

associated with two typhoons in the western Pacific Ocean. The forecasts of minimum SLP were 

highly sensitive to the tropical cyclone (TC) position as well as the upstream midlatitude troughs 

that interacted with the TC during ET. The variability of the latter impacted the timing of the 

interaction with the TC, which affected its extratropical transition and ultimately the magnitude 

of forecast errors at later times. Torn (2010) also applied ESA to evaluate the impacts of initial 

condition errors on the amplitude and position forecast of a strong African Easterly Waves 

(AEW) in 2006. Short-term forecasts of wave strength were found to be most sensitive to the 

thermodynamic profile near the AEW and the initial mid-troposphere circulation strength 

whereas longer-range forecasts were most sensitive to the thermodynamic environment (potential 

temperature or θe). The AEW longitude forecasts were more sensitive to the downstream 

thermodynamic environment (θe) which suggests the area the wave moves into matters more than 

the initial circulation.  

A series of studies have applied ESA to very short term (≤6 hours) wind speed forecasts 

for wind farms (Zack et al. 2010a,b) in California and along the Washington-Oregon border. 

Results of Zack et al. (2010a) showed that sensitivity tended to be mainly localized around the 

response function but still revealed specific areas upwind around a mountain pass, indicating the 

importance of diurnal mesoscale flows in Tehachapi Pass over southwest California. In contrast, 

Zack et al. (2010b) showed that the Mid-Columbia Basin region over Washington-Oregon border 

was affected by larger scale flow regimes and resulted in less defined and weaker sensitivity 
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patterns. Several other studies applied ESA to convection (Hanley et al. 2013; Bednarczyk and 

Ancell 2015; Torn and Romine 2015). For example, Bednarczyk and Ancell (2015) showed that 

ESA could be successfully applied to high-resolution forecast of convection, with its most 

important features related to the synoptic scale flow such as the positioning of upper-level low 

and the low-level thermodynamic characteristics of the air mass. 

Instead of describing the slope of the linear regression, another form of ensemble 

sensitivity using correlation evaluates how strong the linear relationship is between extended and 

early forecasts by dividing the covariance of J and X by the standard deviation of each variable 

(Sippel and Zhang 2010; Schumacher 2011; Chang et al. 2013). Schumacher (2011) showed that 

both sensitivity and correlation analysis highlighted the synoptic-scale features in the Z500 field, 

indicating that the strength variability in a closed anticyclone in the southern plains and a ridge in 

the southwestern U.S. controlled the maintenance and movement of a warm-core vortex that 

brought heavy rain to the southern plains. Sippel and Zhang (2010) used the ensemble 

correlation to study the predictability of a rapidly intensifying hurricane within an EnKF 

ensemble. The growth in ensemble spread of the storm was found to be related to the variations 

in midlevel moisture and low-level convective instability as well as the strength of a nearby 

front. 

Ancell and McMurdie (2014) applied ESA to explore the predictability of North Pacific 

land-falling cyclones. Predictability was defined as the ensemble spread of surface pressure at 

the verification time, where large spread indicated low predictability. They found that storms that 

were deepening and tracked from the southwest exhibited the largest ensemble IC sensitivity and 

highest ensemble spread. The slow-moving storms from the northwest and ending south of 40°N 

exhibited higher predictability no matter whether they were decaying or deepening. Cyclones 
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with large ensemble spread and low sensitivity were mature cyclones whose low predictability 

likely resulted from large IC spread instead of large perturbation growth. Their results have 

highlighted particular cyclone characteristics and synoptic situations those are associated with 

low predictability and can potentially be utilized to improve forecasts through improved 

observational coverage. 

While the aforementioned studies generally employed ESA to examine the predictability 

at the short range (03 days), Chang et al. (2013) used ensemble correlation analysis in the 

medium range to study two Pacific extratropical cyclones. The initial conditions derived based 

on ESA are used to perform perturbed ensemble experiment. Their results suggested that while 

the development of these cyclones may be highly nonlinear, error growth during their 

development may still be quasi-linear in nature out to the medium range. The ensemble 

sensitivity analyses can show coherent sensitivity patterns in the medium range. Meanwhile, the 

initial condition perturbations derived based on ESA do succeed in modifying cyclone evolution, 

with the caveats that PCs derived from EOF analyses of forecast SLP variations should be used 

as forecast metrics instead of cyclone parameters themselves, and that the changes achieved in 

the perturbed ensembles have amplitudes smaller than those predicted by the ensemble 

sensitivity analyses. Zheng et al. (2013) further extended the sensitivity study to the operational 

medium-range forecasts and summarized three ways for applying ESA to diagnose the important 

features relevant to both cyclone track and intensity forecasts. 

Since ESA has been shown to be successful in identifying important features relating to 

the predictability of weather systems at different time and spatial scales, it is employed in this 

study to systematically investigate the forecast uncertainty of high-impact winter storms and to 

establish a model climatology of ensemble sensitivity with respect to the intensity and position of 
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winter storms. While most previous applications of ensemble sensitivity have been to short-range 

forecasts, this study will mainly discuss the value of ESA to medium-range forecast in global 

models. The robustness of ensemble sensitivity will be explored by using LOOCV. 

3.2 Formulating ensemble sensitivity 

The calculation of ensemble sensitivity follows that of Torn and Hakim (2009). The 

initial formulation of ensemble sensitivity here is a repeat of equation 2.12. Given an ensemble 

with M members, the sensitivity of any forecast metric J to a state variable Xi can be expressed 

as  
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here J and Xi are the 1×M ensemble estimates of the forecast metric J and the ith state variable 

Xi, respectively. Cov denotes the covariance between J and Xi across the ensemble; and Var is 

the variance. The “Sensitivity” defined by equation (3.1) carries the dimension of the forecast 

metric J and describes the change in the forecast metric corresponding to one standard deviation 

change in the uncertainties of the selected state variable Xi.  

Ensemble sensitivity analysis can be applied in three different ways based on the choice 

of forecast metrics: sensitivity using the EOF approach, sensitivity using run cycle difference, 

and forward sensitivity regression using short-range forecast errors. I will explain the details of 

these three formulations in the following subsections. 

3.2.1 Ensemble sensitivity using the EOF approach 

To perform the ensemble sensitivity, we first define the forecast metric using an EOF 

analysis (Hannachi  et al. 2007; Wilks 2011). In this study, the EOF analysis is carried out on 
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perturbations across an ensemble of forecasts at the verification time, i.e. perturbations defined 

as deviations from the ensemble mean. A box around the forecast cyclone is defined on the 

model grid to calculate the dominant EOF patterns in the ensemble MSLP forecast at a particular 

forecast hour. The EOF patterns basically represent the dominant forecast uncertainties within 

the box. This approach was used rather than identifying forecast metric for cyclone parameters 

directly, since the cyclones in each ensemble member with similar parameters (minimum 

pressure, longitude, or latitude) may not have a similar structure (Gombos et al. 2012; Chang et 

al. 2013). The corresponding PCs of each of the leading EOF patterns (which are the projection 

of the difference between each ensemble member and the ensemble mean onto the EOF patterns) 

can be employed as the forecast metrics (J). If the approach is applied with a cyclone within the 

specified box, the EOF patterns typically represent the amplitude and position uncertainties of 

the cyclone (Gombos et al. 2012; Chang et al. 2013). Therefore, using the PCs of an EOF as the 

forecast metric, ESA can objectively evaluate the relationship between that uncertainty pattern 

and the state variables at initial time or other forecast times. Sometimes the dominant patterns 

represent a combination of both amplitude and position uncertainties in the forecasts, so the 

ensemble sensitivity should be interpreted accordingly. 

In the applications to this dissertation, the PCs are dimensionless and normalized to unit 

variance, while the EOF patterns carry the dimension of the forecast variable, and the amplitude 

of the patterns reflects the square root of the amount of variance explained by each EOF. In other 

words, the forecast metric employed here has unit variance and is non-dimensional. Recall the 

definition of correlation: 
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the expression for “sensitivity” in (3.1) using metrics with unit variance is identical to the 

correlation between the ensemble estimates of J and Xi. In the discussions below, this definition 

will be used for “sensitivity” (see also Chang et al. 2013).  

3.2.2 Sensitivity using run cycle differences 

The second application of ESA is to study the shift in the model forecast of a particular 

feature (e.g. cyclone) between two close forecast cycles. Forecasters often refer to this as the 

“d(model)/dt” of the forecast cycles. This shift in the forecast pattern P can be defined by the 

difference in the ensemble mean forecasts at the same valid time between two forecasts 

initialized at two different times. The anomaly pattern Ym, which is the difference between the 

mth ensemble member and the ensemble mean at the forecast valid time, can be projected onto 

the shift (forecast difference) pattern P as follows: 
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where N is the number of total grid points over the boxed verification region, and m = 1, …, M 

identifies the ensemble member. This alternative forecast metric dif

mJ   in equation (3.3) can be 

used to calculate the sensitivity (correlation) in equation (3.2) to objectively determine what may 

have caused the shift in the forecast between two forecast cycles. 

3.2.3 Forward sensitivity regression using short-range forecast errors 

The previous two approaches calculate the sensitivity backward in time, but the ESA can 

also be applied to study the forward impact of a short-term error early in the forecast on some 

later forecast hour. First, the difference pattern Q is calculated between the analysis valid at T0 
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and the short-term forecast initialized at (T0-ΔT) and also valid at T0. This difference is The same 

as the forecast errors at time T0 but with opposite signs. Then the pattern Zm, which is the 

difference between the mth ensemble member and the ensemble mean at time T0, for the 

ensemble initialized at time (T0-ΔT), can be projected onto the pattern Q, and the projection 

coefficient is defined as the forecast metric, as follows: 
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here N is again the total number of grid points over the region we are interested in at time T0. 

Finally, the projection coefficient 
fwd

mJ  (m = 1, …, M) can be regressed onto the forecasts of 

cyclone state variables at analysis time T0 as well as each future forecast time and thus used to 

evaluate the impact of the short-range error on the subsequent forecast evolution of the cyclone. 

The regression can be interpreted as another form of sensitivity, which is called “forward 

ensemble regression” here and expressed as 
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“forward ensemble regression” in (3.5) has the dimension of the state variable Xi. α in (3.5) is a 

scaling factor, which is defined such that the amplitudes of Q and the forward ensemble 

regression at time T0 are the same. Both Zm in equation (3.4) and Xi in equation (3.5) are 

calculated using the earlier forecast cycle since it has larger variations among ensemble members 

and thus give less noisy signals especially at earlier times. The ensemble sensitivity or regression 

in equation (3.5) is complementary to the usual way of ESA and can assess how forecast errors at 

earlier times affect the forecasts of later times within the same forecast cycle.  
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3.3 A case study applying ensemble sensitivity to an East Coast winter storm 

This section will briefly illustrate how ensemble sensitivity can be applied to diagnose 

ensemble forecasts of East Coast winter storms by using one high-impact storm in December 

2010. Interested readers are referred to Zheng et al. (2013) for more details of this case study.   

On 2628 December 2010, a powerful winter storm impacted the Northeast of the U.S., 

resulting in blizzard conditions across the region, including the New York metropolitan area, 

New Jersey, and portions of New England. The northern part of New Jersey received around 82 

cm (32 inches) of snow, while snowfall total in excess of 51 cm (20 inches) fell in many places 

of New York City, which, in conjunction with 22 to 27 m s
-1

 winds, crippled the transportation 

from New Jersey to New England during the busy traffic period just after Christmas day.  

Though the forecasts based on the ECMWF model indicated a potential East Coast 

snowstorm a week in advance, the ensemble mean position of the storm was too far east 

(Figures.3.1a-b, e-f). The cyclone track shifted back and forth in the forecasts before 0000 UTC 

24 December. The NCEP model correctly forecasted the cyclone position half a day in advance 

of the ECMWF model.  Finally, at 0000 UTC 25 December, operational models converged on 

the storm track and indicated the New York City-Boston corridor was in line with the potential 

for the heaviest snow and strong winds associated with a rapidly deepening surface low (Figures 

3.1d, h). This consensus for this snowstorm event emerged only 36 to 48 h before the onset 

(1200 UTC 26 December to 0000 UTC 27 December) of the heaviest snows.  
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Figure 3.1: (left, a-d)  Surface cyclone tracks starting from 0000 UTC 26 December to 1200 

UTC 28 December initialized at 1200 UTC 20, 0000 UTC 22, 0000 UTC 24, and 0000 UTC 25 

December 2010; (right, e-h) ensemble forecasts of 996 hPa MSLP for 50 ECMWF (red) 

members valid at 1200 UTC 27 December initialized at 1200 UTC 20, 0000 UTC 22, 0000 UTC 

24, 0000 UTC 25 December 2010; black and blue thick line represent analysis and ensemble 

mean of 996 hPa MSLP contour; red and black dots represent ensemble mean positions of 

surface cyclone for ECMWF and analysis, respectively.  

All the forecast models had difficulties in forecasting this event, but the primary model 

used in this case study is the ECMWF EPS. The ECMWF data was retrieved from the 

THORPEX TIGGE archive. The ECMWF EPS was chosen because of its relatively large 
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number of members (50 members) and its superior performance compared to other EPSs based 

on several verification methods (Park et al. 2008). The initial conditions for the EPS are created 

by adding to the operational ECMWF analysis perturbations using the singular vector technique 

that produce the fastest energy growth during the first two days of the forecast period. The 

separation between the ensemble members is further enhanced by the use of stochastic physics. 

The ECMWF analysis, which is generated by the high-resolution deterministic model 

(T1279/N640, ~16-km horizontal grid spacing) and interpolated onto 1° latitude × 1° longitude 

grid, is used to compare with the ensemble forecasts. The four ECMWF ensemble forecasts used 

were initialized at 7, 5.5, 3.5 and 2.5 days before the verification time (1200 UTC 27 December 

2010). The main forecasting parameters used are MSLP, Z500, and meridional velocity at 300 

hPa pressure level.  

3.3.1 Synoptic overview of the case 

Figures 3.2 and 3.3 showed the evolution of the MSLP with 2-m temperature and the 

geopotential height with absolute vorticity at 500 hPa in the ECMWF analysis. At 0000 UTC 25 

December (Figure 3.2a), there was a surface frontal boundary from southern Texas extending 

eastward along the Gulf Coast. At 500 hPa, there were a trough and an absolute vorticity 

maximum over central Texas and another short-wave trough over the central Plains (Figure 

3.3a). Surface cyclogenesis occurred at 1200 UTC 25 December (Figure 3.2b) over southeastern 

Louisiana with a central pressure of 1013 hPa. The northern and southern stream upper-level 

troughs merged between 12Z/25 and 00Z/26 (Figures. 3.3b, c). The surface cyclone over the 

Gulf of Mexico deepened and moved first eastward across northern Florida, then northward to 

the east coast of South Carolina at 12Z/26 (Figures 3.2c, d),  while the upper-level trough 

deepened and was situated over the southeast U.S. (Figure 3.3d). The surface 
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Figure 3.2: (a-f) Surface weather charts: MSLP (black contours, [hPa]), 2-meter air temperature 

(Shading, [°C]) starting from 0000 UTC 25 December to 1200 UTC 27 December 2010. Contour 

interval: 4 hPa. 

cyclone tracked northeast of Cape Hatteras from 06Z/26 to 18Z/26 (Figure 3.1). Meanwhile, the 

central pressure dropped from 1002 hPa to 986 hPa (not shown). After 18Z/26, the main low 
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quickly tracked more northward along the mid-Atlantic Coast and then northeastward along the 

New England Coast. Between 18Z/26 and 00Z/27 the central pressure dropped 12 hPa (not 

shown). 

 
Figure 3.3: (a-f) Geopotential height (thick black contour, [m]) and absolute vorticity [×10-5 s-1] 

at 500 hPa level starting from 0000 UTC 25 December to 1200 UTC 27 December 2010. 

Contour interval: 50 m. The grey dot in each panel denotes the corresponding surface cyclone 

position. 

By 00Z/27, the intense low pressure system was centered ~160 km to the southeast of 

Long Island, New York, with a central pressure of 976 hPa (Figure 3.2e). The positions of the 
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surface cyclone and the 500 hPa trough show strong vertical phase tilt (Figures 3.3c, d, e), 

indicating that between 26/00z and 27/00z, there was a strongly baroclinic situation under which 

the surface low could strengthen rapidly. The associated 500 hPa trough rotated northeastward 

along the East coast between 00Z/27 and 12Z/27 (Figures 3.3e, f). By 12Z/27, the surface low 

has moved to near Cape Cod of Massachusetts (Figure 3.3f). From 00Z/27 to 18Z/27, the surface 

low continued moving along the coast to eastern New England, with the central pressure 

dropping from 976 hPa to 962 hPa. 

3.3.2 Ensemble sensitivity results 

ESA is applied in three different ways based on the choice of forecast metrics as 

discussed in section 3.2. First, we define forecast metric (J) using the PCs of each of the leading 

EOF patterns over a region around the forecast cyclone at a fixed investigation time. The MSLP 

and Z500 at different forecast time are chosen as the state vectors. The calculations of ensemble 

sensitivity are based on equation (3.1). Given 50 ensemble members, a “sensitivity” value of 

0.28 is statistically significant at the 95% confidence level based on a two-tailed t-test. The 

second application of ESA here is to study the shift in the model forecast of cyclone between two 

close forecast cycles by employing equations (3.2)-(3.3). The third application is to study the 

forward impact of a short-term error early in the forecast on some later forecast hour. Equations 

(3.4) and (3.5) are used to evaluate the impact of short-range error on the subsequent forecast 

evolution of the cyclone. 

3.3.2.1 ENSEMBLE SENSITIVITY USING THE EOF APPROACH BASED ON A 5.5-DAY FORECAST 

As discussed in section 3.2, the EOF method can determine the dominant patterns of 

forecast variability that explain most of the variance within the ensemble spread. For the 5.5-day 
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MSLP forecast initialized at 0000 UTC 22 December, the ensemble mean cyclone is centered at 

(66.75°W, 39.25°N) and the maximum of the ensemble variance is ~300 km to the northwest of 

the cyclone center (Figure 3.4a).  Figures 3.4b, c show the leading two EOF patterns for this 5.5-

day MSLP forecast. Note that the sign of each EOF is arbitrary; the values of the PC just take the 

opposite sign if the opposite sign of the EOF is taken. The first EOF (EOF1) is a monopole 

pattern centered slightly north of the ensemble mean position of the surface cyclone (Figure 

3.4b). Therefore, one can interpret the EOF1 pattern as a deeper and a slight northward shift of 

the ensemble predicted cyclone on day 5.5. Meanwhile, EOF2 is a dipole pattern that has a 

negative center west-southwest of the ensemble mean cyclone position and a positive center to 

the east-northeast (Figure 3.4c), representing more of the east-west position uncertainty on day 

5.5. This pattern suggests the west-southwestward (as well as east-northeastward) shifted 

cyclone in a subset of ensemble members at the verification time. 

To study the relation between each of these two forecast uncertainty patterns on day 5.5 

and the upstream initial condition and forecasts, the PC of each EOF pattern was used as the 

forecast metric, and the sensitivity in equation (3.1) was calculated using Z500 as the state vector 

at different forecast/analysis times. Positive (negative) sensitivity indicates areas that an increase 

(decrease) in geopotential height is associated with an increase in the PCs and therefore an 

enhancement of each of the two EOF patterns.  

The sensitivity for PC1 (PC for EOF1 pattern) at the forecast valid time, 0 h or the day 

5.5 forecast (Figure 3.5a), shows a large negative sensitivity (< -0.9) near the center of a trough 

(<540 dm) along the eastern U.S. coast. Meanwhile, there is large positive sensitivity (> 0.7) that 

spreads from the upper-level ridge located over the western North Atlantic northward and 

westward towards the ridge upstream of the trough. The distribution of the sensitivity suggests 
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that a deepening of the upper level trough and amplification of its upstream and downstream 

ridges corresponds to an increase in PC1 or an enhancement of EOF1 pattern, which is the 

strengthening of the surface cyclone at the verification time.  

 

 

Figure 3.4: (a) Ensemble mean MSLP (contours, [hPa]) and spread (shading, [hPa]); (b) EOF 1 

MSLP pattern, unit: [hPa]; (c) EOF 2 MSLP pattern, unit: [hPa]. Valid time (VT): 1200 UTC 27 

December2010; Initial time (IT): 0000 UTC 22 December 2010. 

At -36 h (day 4 forecast, Figure 3.5b), the sensitivities weaken and shift westward along 
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with the synoptic weather systems. There are two minima (< -0.7) for the negative sensitivity, 

one northwest of the Great Lakes, and the other centered near Kentucky and Tennessee with the 

eastern U.S. trough. The positive sensitivity has two maxima, one near the northern part of the 

upstream ridge over central and northwestern Canada, and the other with the downstream ridge 

over the western Atlantic. At -60 h (day 3 forecast, Figure 3.5c), there are two short wave 

troughs, one over the northern Great Plains and another over Texas and Oklahoma. The negative 

sensitivity (< -0.7) is still centered within the northern stream trough, while the largest positive 

sensitivity is located downstream within the weak ridge along the East Coast. This pair of 

sensitivity regions indicates that the intensification of the northern trough and its downstream 

ridge are closely associated with the amplification of the surface cyclone at valid time.  

At even earlier times (-84h to -108h, or day 2 to day 1 forecast, Figures 3.5d, e), the 

sensitivity areas shift westward, with some indications of upstream sensitivity developing over 

the northeastern North Pacific, western Canada, and southern Alaska, and this oscillating pattern 

of sensitivity signals resembles the structure of a Rossby wave train.  

The sensitivity using the PCs of EOF2 is shown in the right panels in Figure 3.5. At valid 

time, 0h (Figure 3.5f), there is negative sensitivity (< -0.5) located over the base of the trough 

over the southeast U.S. coast. Meanwhile, there is a positive sensitivity (> 0.9) area located just 

west of the downstream western Atlantic ridge. The distribution of sensitivity suggests that the 

west-southwest shift and strengthening of the East Coast upper level trough and its downstream 

ridge correspond to an enhancement of EOF2 pattern, which is the west-southwest shift of the 

potential cyclone at forecast valid time. 
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Figure 3.5: (left, a-e) Sensitivity (shading) of EOF PC1 to Z500; (right, f-j) Sensitivity (shading) 

of EOF PC2 to geopotential height. Contours are ensemble mean of Z500. VT (0 h): 1200 UTC 

27 December 2010; IT: 0000 UTC 22 December 2010. 

When going backward in time (Figures 3.5g-j), the sensitivity regions shift westward 

with the corresponding weather systems and are reduced in amplitude. The positive sensitivity 
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with the western Atlantic upper-level ridge decreases rapidly and splits into broad but weak 

pieces (<0.5). However, the negative sensitivity maintains its central value of ~-0.6 at -36 h and 

it is still less than -0.5 even at -60 h (Figure 3.5h). Even at earlier times (-84 h and -108h; Figures 

3.5i, j), there is still negative sensitivity around the southern stream trough, suggesting this 

negative sensitivity with this southern Plains short-wave trough is the most consistent and robust 

signal in affecting the west-southwest shift of the day-5.5 surface cyclone. Thus, accurate 

predictions of the southern short wave trough is very important for the potential cyclone position, 

i.e., onshore versus offshore solution, at the valid time. We will highlight similar results for this 

short-wave trough in the following two subsections. 

3.3.2.2 SENSITIVITY USING RUN CYCLE DIFFERENCES 

There were inconsistent short-term forecast predictions by the ECMWF ensemble for this 

case. For example, the ECMWF ensemble run cycles before 0000 UTC 25 December had the 

mean storm position valid at 1200 UTC 27 December ~550 km to the east of the U.S. East coast 

(Figure 3.1), but starting with the 0000 UTC 25 December run cycle the ECMWF ensemble 

positioned the cyclone within ~300 km of the coast (Figure 3.1). To determine what may have 

caused the sudden change in the forecast cyclone position, the difference between the ensemble 

MSLP forecasts valid at 1200 UTC 27 December, from 0000 UTC 24 December and 0000 UTC 

25 December (84-h and 60-h forecast), was computed. 

Figure 3.6 shows the ensemble mean and spread of MSLP for the two forecasts valid at 

1200 UTC 27 December as well as the difference between them. For the 0000 UTC 24  
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Figure 3.6: (a) Ensemble mean MSLP (contours, [hPa]) and spread (shading, [hPa]) for forecast 

initialized at 0000 UTC 24 DEC 2010; (b) Ensemble mean MSLP (contours, [hPa]) and spread 

(shading, [hPa]) for forecast initialized at 0000 UTC 25 DEC 2010; (c) Difference between 

ensemble mean MSLP initialized at 0000 UTC 25 DEC 2010 and that initialized at 0000 UTC 24 

DEC 2010 (shading, [hPa]). VT: 1200 UTC 27 2010. Solid black circle is the ensemble mean 

position of surface cyclone forecast by cycle 0000 UTC DEC 2010 and solid black square is that 

forecast by cycle 0000 UTC DEC 2010. In (a) and (b), dark yellow squares/dots represent 

cyclone positions forecast by 50 individual ensemble members and their sizes represent cyclone 

central pressure relative to ensemble mean central pressure with larger (smaller) size 

representing weaker (stronger) cyclone. 

December forecast (Figure 3.6a), the surface cyclone at the valid time is centered at (42.25 °N, 

66.25 °W) with a 978 hPa minimum pressure, while the cyclone forecast for the 0000 UTC 25 
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December cycle (Figure 3.6b) is centered ~250 km to the west-southwest with a minimum 

pressure of 974 hPa. Therefore, the forecast difference in the MSLP valid at 1200 UTC 27 

December shows a dipole pattern, with a negative difference to the west-southwest and the 

positive difference to the east-northeast over the western North Atlantic (Figure 3.6c). 
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Figure 3.7: Sensitivity (shading) of projection coefficients on forecast jump pattern to MSLP (a-

d, left) and Z500 (e-h, right). Contours are ensemble mean of MSLP and geopotential height, 

respectively. VT (0 h): 1200 UTC 27 DEC 2010; IT: 0000 UTC 24 DEC 2010. 

To determine the features that may have caused this run cycle shift, the sensitivity was 

computed using equations (3.1) and (3.3). Since the earlier cycle initialized at 0000 UTC 24 

December has larger spread (Figure 3.6a) and results based on these two run cycles are 

consistent, only the results for the earlier run will be shown. The forecast metric J for equation 

(3.3) is the projection coefficient of each member’s anomaly over the boxed region (32°N-52°N, 

78°W-55°W) onto the forecast shift pattern (Figure 3.6c) over the same region at forecast valid 

time.   

Figure 3.7 shows the sensitivity of the projection coefficient to MSLP and 500 hPa Z. 

Significant positive (negative) sensitivity (absolute value > 0.28) indicates areas that an increase 

(decrease) of MSLP/Z500 is associated with the enhancement of the cyclone difference pattern 

in Figure 3.6c. At forecast valid time, the sensitivity displays a dipole pattern at the surface (Fig. 

3.7a), which resembles the forecast difference pattern in Figure 3.6c. Meanwhile, there is large 

negative sensitivity over the southwestern part of the upper level low along the Northeast U.S. 

coast and positive sensitivity just west of the downstream ridge (Figure 3.7e). The sensitivity 

shifts westward with the major synoptic systems going backward in time. At -24 h, or the 60 h 

forecast (Figures 3.7b, f), the surface negative and positive sensitivities are still located at 

southwestern and northeastern parts of the surface cyclone, respectively, while at upper levels 

there is a large negative sensitivity over the southern base of the East Central U.S. trough and a 

positive sensitivity region to its northeast. At -48 h, or 36 h forecast (Figures 3.7c, g), surface 

negative sensitivity (< -0.5) is centered over Louisiana, while for the upper levels there is 

negative sensitivity along the U.S. Gulf coast and positive sensitivity over the eastern U.S. 
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Meanwhile, a weak negative sensitivity region can be seen in both surface and 500 hPa levels 

over parts of northwest Canada, indicating the fall of surface pressure and Z500 may also 

contribute to the shift in the cyclone forecast. At -60 h, or 24 h forecast (Figures 3.7d, h), which 

is also the initial time for the 0000 UTC 25 December forecast cycle, negative and weak 

sensitivity pieces are distributed over the southern Great Plains at the surface, which is 

associated with a negative sensitivity northwest of the short wave trough over Texas. In addition, 

some negative sensitivity is located over northern Canada. Results shown in Figure 3.7 suggest 

that the short wave over Texas may be the most important feature contributing to the forecast 

cyclone difference between the two run cycles.  

3.3.2.3. FORWARD SENSITIVITY REGRESSION USING SHORT-RANGE FORECAST ERRORS 

To further confirm the impact of the short wave trough over the southern Great Plains at 

early times (from 0000 UTC 24 December to 0000 UTC 25 December) on the surface cyclone 

forecast at 1200 UTC 27 December, the forward ensemble regression was computed forward in 

time using equations (3.4) and (3.5). This analysis used the difference between the 24-h forecast 

initialized at 0000 UTC 24 December and analysis at 0000 UTC 25 December. Figure 3.8 Shows 

the differences in ensemble mean MSLP/Z500 between the two runs. 

To assess the impact of the forecast error at 0000 UTC 25 December on forecasts of 

MSLP/Z at later times within the cycle, the forward ensemble regression on MSLP/geopotential 

height is computed based on equations 3.4 and 3.5, in which Zm is each member’s Z500 anomaly 

to ensemble mean within the red box (box1) over Texas in Figure 3.8h; Q is the negative 

ensemble mean forecast error of Z500 within the same box (Figures 3.8h and 3.9); J is the 

projection coefficient of Zm onto Q, and Xi is either the ensemble MSLP or Z500. Note that the 

forward ensemble regression shown in Figure 3.10 is computed based only on the ensemble 
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initialized on 0000 UTC 24 December, and the ensemble initialized on 0000 UTC 25 December 

is only used to derive the initial error pattern (Figure 3.9b). 

 

Figure 3.8: Difference between ensemble mean MSLP (a-d, shading, [hPa]) or Z500 (e-h, 

shading, [dm]) initialized at 0000 UTC 25 DEC 2010 and that initialized at 0000 UTC 24 DEC 

2010. VT (0 h): 1200 UTC 27 DEC 2010. Contours are ensemble mean MSLP and Z500 
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initialized at 0000 UTC 24 DEC 2010, respectively. Boxes 1 and 2 will be used in forward 

ensemble regression calculations. 

 

Figure 3.9: (a) 500 hPa Geopotential height analysis at 0000 UTC 25 DEC 2010 (red contours, 

[dm]) and 24-hr forecast of 500 hPa geopotential height initialized at 0000 UTC 24 DEC 2010 

(blue contours, [dm]); (b) difference (shading) of Z between analysis [red contours in (a)] and 

24-h forecast [blue contours in (a)], unit: [dm]. Note, the region is the solid red box (box 1) in 

Figure 3.8h. 

The left and right panels in Figure 3.10 show the forward ensemble regression for MSLP 

and Z500, respectively, which can be considered to be the weighted mean of ensemble members 

that have anomalies resembling the chosen forecast error pattern (Figure 3.9b). At the initial time, 

-60h or 0000 UTC 25 December, there is a dipole pattern with the short wave trough over Texas 

(Figure 3.10), which is consistent with the forecast error over that region (Figure 3.10h), while 

the MSLP regression shows negative value over eastern Texas (Figure 3.10d). Subsequently, 

both the MSLP and Z500 sensitivity develop and propagate northeastward with the major 

synoptic systems. At -48 h (Figure 3.10c), a dipole forms on the surface over the southwestern 

Gulf coast. At 500 hPa (Figure 3.10g), the dipole over Texas is more enhanced with the negative 

part spreading to the northwest of the trough. 
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Figure 3.10: Sensitivity regression (shading) of projection coefficients on forecast error pattern 

in Fig.3.9b over box 1 to MSLP (a-d; [hPa]) and Z500  (e-h; [dm]). Contours are ensemble mean 

of MSLP and Z500, respectively. VT (0 h): 1200 UTC 27 DEC 2010; IT: 0000 UTC 24 DEC 

2010. 

From -24h (1200 UTC 26 December) to the valid time (1200 UTC 27 December) in 

Figures 3.10b and a, the surface negative part of the dipole over the U.S. Gulf coast develops and 
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moves northeastward. During this process, a downstream positive anomaly develops to the east 

of New England. Meanwhile, at 500 hPa, the negative forward ensemble regression has two 

minima, with one over the upper level low and the other southwest of the East Coast trough, 

while the positive forward ensemble regression is first located over the mid-Atlantic coast and 

then over Nova Scotia (Figures 3.10f, e).  

The regressed MSLP and Z500 at the valid time (1200 UTC 27 December) display a shift 

and intensification of both the surface cyclone and the upper level trough (Figures 3.10a, e). 

These patterns show strong resemblances to the actual forecast differences (Figures 3.8a, e) 

between the two forecast cycles, with pattern correlations within the valid box of 0.82 and 0.61 

for MSLP and Z500, respectively. These results suggest that the initial time forecast error at 

0000 UTC 25 December over the southern stream trough led to a majority of the forecast 

uncertainties of the surface cyclone and upper level trough positions as well as their amplitudes. 

The forward ensemble regression was also calculated using the forecast difference in 

Z500 over northern Canada (Figure 3.8h, box 2), where the geopotential height in the analysis at 

0000 UTC 25 December is lower for the northern part of the ridge from northern Canada to the 

central U.S. The regression result based on the error within box 2 over northern Canada showed 

that the initial forecast error spreads eastward across northern Canada and amplifies gradually at 

both the surface and upper levels (not shown). At -48 h, a positive signal starts developing at 500 

hPa to the southeast of this negative signal. Over the next 48 h, this positive signal spreads and 

amplifies both at the upper level and at the surface. At valid time, the regressed patterns resemble 

the forecast difference at higher latitudes (north of ~45°N), and contribute to the positive part of 

the MSLP dipole over the northeastern portion of the boxed region at the forecast valid time 

(Figure 3.8a).  
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The above case study illustrated the 3 ways that ESA can be employed in interpreting 

ensemble forecast uncertainties. The readers are referred to Zheng et al. (2013) for discussions 

regarding to the utility of ensemble sensitivity analysis in operational ensemble forecasting. 

3.4 The verification of ESA signals using LOOCV 

The sensitivity calculated using ESA in this study shows the covarying relation between a 

grid point and the forecast metrics (e.g. EOF PCs). However, it is hard to verify the sensitivity 

signals and determine how robust they are in modifying the forecast metrics. As an extension of 

ESA, Gombos et al. (2012) proposed to use multivariate ensemble regression (ER) to investigate 

the relation between a perturbed domain and a forecast metric. Basically, they use the leading np 

EOF patterns over a prescribed area to predict the leading ny EOF patterns of a forecast field. 

They used the ER method to relate the 1000-h potential vorticity forecast for Supertyphoon 

Separt (2007) with the Z500 field from the Japan Meteorological Agency’s 50-member 

ensemble. Their results clearly showed that the sensitive areas determined by ensemble 

regression are quite similar with the areas using ensemble correlation. Their work also suggested 

that the LOOCV can be used to estimate the error of ER. 

Given the similarity between the ER and ESA, we will use the LOOCV method to verify 

the sensitivity areas. The LOOCV will be employed the way as introduced in Chapter 2 to 

illustrate the robustness of ensemble sensitivity (or ER) signals for multi-model ensemble 

forecasting in the medium range. The 3- and 6-day forecasts are used to represent the medium 

range ensemble forecasts in the 90-member multi-model ensemble for East Coast cyclone 

forecasts. The forecast metrics (J) are the PCs corresponding to each of the leading two EOF 

patterns of ensemble MSLP over the east coast of U.S. and western Atlantic (Region 2, Figure 

2.1). 
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The LOOCV employed here begins by removing one member from the ensemble and 

define this member as the member of interest mi. The remaining 89 members are used to 

calculate the ensemble sensitivity of the forecast metric to the state vectors. The region with 

maximum area-averaged absolute ensemble sensitivity at earlier forecast (or analysis) time is 

chosen to perform EOF analysis of Z500. The area of the sensitive area is defined to be a 

56°longitude x 36°latitude box at the verification region. Because of the dispersive nature of 

mid-latitude weather systems, the box is increasing by 4°longitude and latitude per day when 

going back in time, and reaches 80°longitude x 60°latitude on -6 day and 68°longitude x 

48°latitude on -3 day. Note that the sensitive region  is not very sensitive to the choice of 

longitudes/latitudes as long as it contains the largest ensemble sensitivities and is within a 

>30°longitude and <100°longitude bands. The resultant leading 9 EOF PCs over the sensitive 

region are used as predictors. Nine PCs are chosen because in the test cases, >10 leading EOF 

PCs often lead to the overfitting problem while a smaller number of EOF PCs cannot explain 

enough ensemble variance (<80%). The leading two EOF PCs for the 89 members are computed 

over the verification region (Region 2, Figure 2.1) at the verification time. Either EOF PC1 or 

PC2 is chosen as the predictand. The 89-member predictor and predictand are used to establish 

an ensemble regression relation (LM-i).  The corresponding linear regression model is used to 

predict the value of forecast metric for the member of interest based on the projection of its 

anomaly onto the leading 9 EOF patterns over the sensitive area. The predicted value for forecast 

metric J’i, is compared with the original value Ji, which is a projection of the anomaly for the 

member of interest to the corresponding EOF pattern over the verification region at the verified 

time.  The above procedure is repeated for each ensemble member, each time leaving out a 
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different member. Finally a predictand forecast scalar vector '

901xJ , which can be compared with 

original vector 
901xJ used as the forecast metric. 

By employing LOOCV, the goodness of ensemble sensitivity can be estimated via the 

correlation coefficient or the median of the ratio (Wilks 2011) between the ESA-computed 

predictand field '

901xJ and the actual ensemble predictand field
901xJ . The ability of ESA to 

correctly forecast the forecast metric will represent its ability to derive the dynamical relation 

between the initial perturbed conditions and the forecast anomaly pattern. 

Figure 3.11 illustrate one example for the ensemble correlation and median ratio between 

the predicted and actual forecast metric using EOF PC1. Note that the sensitive areas for each 

time step are most likely different. The correlation varies from 0.73 to 0.98 while the median 

ratio varies from 0.69 to 1.02. Both the correlation and median ratio decrease with the increasing  

lead time with respect to the VT due to the decreasing contemporaneousness between the 

forecast metrics and the state vectors. The high correlation and high ratio suggest that the ESA is 

highly capable of capturing the majority of the gross features associated with the leading EOF 

pattern in this example. 

Figure 3.12 compares the cross validated correlations for PC1 and PC2 using another 

example. For this case, the correlation drops quickly from forecast times of 36 h to 30 h (with 

lead times of 36 h to 42 h relative to the VT, respectively). Also, the correlation for PC2 is 

overall smaller than that for PC1, suggesting the ensemble sensitivity relation based on PC1 is 

more robust in this example. 

Figure 3.13 shows the correlation for 3-day forecasts of all 102 cyclone cases. The 

correlation for both EOF PC1 and PC2 decrease with reduced forecast hours (or increasing lead 

time relative to VT), suggesting the ESA relations worsen closer to the initial time, which is 
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consistent with Gombos et al. (2012). However, statistically significant correlations are found in 

most cases (75
th

 percentile for PC1, and >50
th

 percentile for PC2) even at initialization time (a 

lead time of 72 h), demonstrating the ability of ESA to forecast the gross relation between the 

state vector and the forecast metrics using PCs. Meanwhile, the same plot for the median ratio at 

each forecast time (not shown) showed consistent result, with median values >0.2 for PC1, and 

>0.15 for PC2 at initialization time, showing the forecasted value of forecast metrics in most 

cases have the same sign with the actual value though the amplitude can be smaller close to 

initialization time. 

 

 

Figure 3.11: One example comparing leave-one-out cross validated correlation (red dotted solid) 

and median ratio (blue squared dashed) of predicted EOF PC1 and actual EOF PC1 for 3-day 

forecast initialized at 1200 Dec 09 2008. VT is the 72 h on the plot. Note that the x-axis is the 

forecast hours, not the lead times for the LOOCV calculations. The lead time can be inferred by 

subtracting the forecast hour from VT (see text). 
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Figure 3.12: Leave-one-out cross validated correlation using EOF PC1 and PC2 for 3-day 

forecast initialized at 1200 Dec 24 2010. VT is 72 h on the plot. Note that the x-axis is the 

forecast hours, not the lead times for the LOOCV calculations. The lead ti me can be inferred by 

subtracting the forecast hour from VT (see text). 
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Figure 3.13: Boxplot of leave-one-out cross validated correlation for PC1 (a), and PC2 (b) using 

3-day forecast for all 102 verified cyclone cases over region 2.  VT is 72 h on the plot. Note that 

the x-axis is the forecast hours, not the lead times for the LOOCV calculations. The lead time 

can be inferred by subtracting the forecast hour from VT (see text). 

The LOOCV has also been calculated using 6-day forecasts (Figure 3.14). The spread of 

correlation becomes large prior to 96-h forecast (a lead time of 48 h relative to VT) and the 75
th

 

percentile drops to below the significant line at 30 h (a lead time of 114 h) for PC1 and 60 h (a 

lead time of 84 h) for PC2. Nevertheless, the median correlations are above the significant line 

through the entire 6-day forecast for PC1, and between day 1 (a lead time of 5 days) and day 6 

(VT) for PC2. The median ratios are greater than 0.15 through the 6-day forecast for PC1, and 

are positive for PC2 through the 6-day forecast. 
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Figure 3.14: The same as Figure 3.13 but for 6-day forecast. VT is 144 h on the plot. Note that 

the x-axis is the forecast hours, not the lead times for the LOOCV calculations. The lead time 

can be inferred by subtracting the forecast hour from VT (see text). 

Both 3-day and 6-day LOOCV results demonstrated the forecast skill of ESA in the 

medium range is significant for most of the cyclone cases, although the relations worsen close to 

the initialization time. Note that the LOOCV here only validates the goodness of using 

sensitivity to predict the forecast of an independent member of the ensemble. When applying 

sensitivity to forecast the analyzed field, we expect that the forecast skills will decrease. 

However, some preliminary results suggest that it can forecast significant correlation and 

positive ratios for PC1 at least back to 18 h (a lead time of 54 h) for 3-day forecasts, and back to 

36 h (a lead time of 108 h) for 6-day forecasts. 
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3.5 An alternative way of verifying the robustness of medium range ESA signals 

Ancell and Hakim (2007) has derived the relation between ETKF and ESA and suggested 

that in the appropriate norm, ESA is equivalent to the ETKF, but does not require the 

determination of a transformation matrix, and also allows straightforward inclusion of statistical 

confidence measures to address sampling error. The difference between two is that ETKF 

involves the determination of the transformation matrix. As an alternate way to quantify the 

relation between the forecast metric and the initial conditions, the application of ESA can be 

compared with ETKF signals as a complementary way to verify sensitivity signals. Therefore, 

we have selected a few cases to compare the ensemble sensitivity analysis and ETKF method in 

quantifying the distribution and development of sensitive regions at the initial time and earlier 

forecast steps associated with forecast uncertainties and errors at the verification time. Here the 

results for one case, corresponding to the case 15 discussed in Majumdar et al. (2010), will be 

presented.   

The ensemble mean shows a clear cyclone in 850-hPa at verification time (not shown) 

using a 10-day forecast initialized at 0000 UTC 15 Feb; accordingly, the EOF1 dipole pattern 

represents a southwestern shift of this cyclone (not shown), which explains 44.2% forecast 

variance of 850Z. 

Ensemble sensitivity of EOF PC1 to 500-hPa Z at different forecast times is shown in 

Figure 3.15. The shades denote ensemble sensitivity signals, while the contours display the 

ensemble mean of 500-hPa Z. Here we only show four forecast times: 0 h, -36 h, -72 h and -108 

h (Figures 3.15a-d).  At -108 h, there are a series of sensitivity signals starting from western 

India (marked by “X”), crossing south or central Asia (“C+”, “C-1” and “C-2”) and Japan (“B+”) 

into the north of Bering Sea (“B-1”).  At -72 h, sensitivity signals “C+”, “C-2” and “B+” move 
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eastward along synoptic systems. However, signals “X” stays in place. Signals “C-1” and “B-1” 

fade out. Meanwhile, a few downstream signals (i.e., “B-2”, “A+” and “A-”) are generated. At -

36 h, most sensitivity signals move eastward along synoptic systems. However, signals “X” and 

part of “C+” have stayed around the same place. Upstream signals (i.e., “C+”, “C-2”, and “B+”) 

either remain the same amplitude or weaken, while downstream signals (i.e., “A+”, “B-” and “A-

”) intensify. The easternmost downstream signal “A-” has developed most. At the same time, 

new signals (“D+” and “D-”) downstream of signal “A-” are generated. At 0 h (verification 

time), the strongest signals “A-” and “D+” are within the central and eastern U.S., which is 

associated with the major trough over central U.S. Downstream signal “D-” has also got 

strengthened. Upstream signals either disappear (“C-2” and “A+”) or become much weaker 

(“B+” and “B-”). Signals “X” and “C+” remains more or less the same places.  

Figure 3.16 shows the ETKF signals, which represents the predicted reduction of wind 

forecast error variance due to the adaptive observation of u,v,T at three levels (850, 500, and 200 

hPa). The largest value suggests the best place for extra observation because these observations 

will help reducing forecast error most. The black contours are for the ensemble mean of 500-hPa 

Z. To compare with ensemble sensitivity signals, we will also only show four forecast steps: 0 h 

(verification time), -36 h, -72 h and -108 h (Figures 3.16a-d). Since ETKF uses an energy norm 

as forecast metric, the ETKF signals only display positive values. At -108 h, there are four larger 

signals from west to east marked by “X”, “C”, “B” and “Y”, which are generally consistent with 

ensemble signals in Figure 3.15d except for signal “Y”. At -72 h, except for the above four 

signals, there is another large signal (marked by “A”) downstream of signal “B”, which also 

matches with sensitivity signal “A+” in Figure 3.16c. However, the strong ETKF signal “Y” 

again doesn’t exist in ensemble sensitivity plots in Figure 3.15c. At -36 h, ETKF signal “X” is 
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sort of stationary. Upstream signals “C” and “B” become weaker, while downstream signal “A” 

is the strongest signal at this time. There is a new signal “D” downstream of signal “A”. The 

ETKF signals are generally consistent with the sensitivity signals in Figure 3.16b, except that 

signal “Y”, which doesn’t exist in the sensitivity plots, has moved to the east of the verification 

region. At 0 h, upstream ETKF signals “C” and “B” fade out. The most robust signal is the 

combination of signals “A” and “D” within verification region, which is consistent with the 

sensitivity signals in Figure 3.15a. However, “D-” signal in Figure 3.15a is not present in the 

ETKF signals plot. 

Based on the results from ensemble sensitivity and ETKF methods, ETKF 

signals/sensitivity signals (“D”/ “D+”, “A”/ “A+”, “A-”) that develop and propagate into 

verification region can be shown using both methods. The important feature of downstream 

development (the upstream signals become weaker while the downstream signals get 

strengthened) can also be seen in both kinds of plots. Some stationary signals (i.e., “X”) can also 

be determined using both methods. However, these two methods are different at some forecast 

times in showing remote signals. For instance, ETKF method suggests a signal “Y” close to 

verification region at -108 h, -72 h and -32 h, while the sensitivity method doesn’t show this 

signal. Initial condition experiment is required to distinguish significant signals from spurious 

signals. One thing worth nothing is that since ESA provides phase information of signals, it can 

clearly show downstream development related with wave packet while ETKF may sometimes 

either miss or not show clearly this important feature. Note that the case study here only 

qualitatively compares the two signals. Further studies need to be done to objectively compare 

these two methods. The related numerical experiment will also be necessary to further study the 

robustness of signals identified by these two methods. 
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Figure 3.15: Ensemble sensitivity (shades)of EOF PC 1 to 500 hPa Z at verification time (a), -36 

h (b), -72 h (c) and -108 h (d). Ensemble forecasts are based on 50 ECMWF members initialized 

at 0000  UTC 15 FEB 2007. Verification time: 0000 UTC 25 FEB 2007. 
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Figure 3.16: ETKF reduction of wind forecast error variance due to adaptive obs of (u,v,T) 

at850/500/200hPa for verification time (a), -36 h (b), -72 h (c) and -108 h (d). Ensemble 

forecasts are based on 50 ECMWF members initialized at 0000 UTC 15 FEB 2007. Verification 

time: 0000 UTC 25 FEB 2007. Orange frame shows verification region. 

 

3.6 Climatology of ensemble sensitivity   

Ensemble sensitivity provides a way to investigate the sensitive regions where the 

perturbations can have significant impacts on the selected forecast metrics.  In Section 3.4 it has 

been demonstrated by LOOCV that the sensitive areas are overall effective in modifying the 

forecast areas. In this section, we will examine the climatology of ensemble sensitivity signals 

and investigate different evolutions of sensitivity for different development scenarios of 

cyclones. 

The ensemble data used is a combination of the NCEP, CMC and ECMWF ensemble 

data from the TIGGE archive. Cyclone cases (102) are defined as minimum pressure <1005 hPa 

in GFS analysis at verification time over a verification box (32°N-45°N, 78°W-62°W). We chose 

3-day and 6-day MSLP and Z500 forecast to represent medium range forecast. The methods 

include ESA using EOF PCs of MSLP as forecast metrics (equation (3.1)), composite analysis, 

and Extended EOF method (Wilks 2011). 

Sensitivity analysis has proven to efficiently determine the region most significantly 

associated with a forecast metric (Torn and Hakim 2008; Ancell and Hakim 2007; Chang et al. 

2013). Garcies and Homar (2009) applied ESA based on the ECMWF ERA-40 data and derived 

climatologically sensitivity regions for Mediterranean intense cyclones. This work follows our 

previous studies on applying ensemble sensitivity analysis to the operational ensemble, and 
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derives the model climatological sensitivity regions for U.S. East Coast cyclones to provide 

insights into the forecast uncertainty of winter storms in medium range forecast.  

Figure 3.17 shows the averaged absolute sensitivity of EOF PC1 of MSLP to MSLP and 

Z500 based on 3-day forecast for all cyclone cases. At 24h, the surface sensitivity maxima are 

associated with the eastern and the southeastern side of a surface high over the Rocky 

Mountains. Meanwhile, the upper-level sensitivities are mainly over the trough downstream of 

the ridge over the west coast of the North America. The initial condition uncertainty in MSLP 

could be partly due to the mountain topography. At 48 h, the sensitivity to MSLP increased from 

<0.3 at 24h to 0.5 on the surface, and tended to be maximized with the development of the 

surface low pressure area over the Ohio Valley, as well as the upper level trough over the central 

part of the U.S. From 48 h to 72 h, the composite surface low developed and moved 

northeastward across the South-Atlantic coast. It had a minimum pressure <1004hPa and 

centered at (40°N, 69°W). The maximum surface sensitivity followed the surface cyclone center 

and reached 0.8 at 72 h. The sensitivity for Z500 followed the aforementioned trough as well as 

its downstream ridge from the west and reached 0.6 at 72 h. Therefore, the sensitivity at 

verification time (72 h) is more like a monopole centered with the averaged cyclone, suggesting 

the dominant uncertainty pattern for EOF1 sensitivity is associated with the cyclone intensity 

uncertainty. The Z500 characteristics suggest that practically in all cases the corresponding 

upper-level trough and its downstream ridge are important to the forecast uncertainty in cyclone 

intensity, which originates from the ridge along western coast of North America. 

Figure 3.18 shows the averaged sensitivity for EOF PC2. At 24 h, the averaged 

sensitivities are smaller than using EOF PC1.The upper-level sensitivity is associated with the 

central part of the ridge over the west coast of North America and its downstream trough. At 
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48h, the surface sensitivity showed two maxima associated with the low area over the Ohio 

Valley, with one over its southwest and the other to its northeast. This indicated the sensitivity 

could represent the shifting of this surface low system. Meanwhile, the upper-level sensitivity 

also showed two maxima, one over the western Ohio Valley and the other over the east of the 

Great Lakes. From 48h to 72h, the surface sensitivity developed and continued to have two 

maxima, one over the west-southwest and the other over the east-northeast of the surface 

cyclone. At the upper level, the sensitivity formed one center over the east of the East Coast 

trough. The surface and upper-level structure suggested that the sensitivity for EOF2 is 

associated with the uncertainty in cyclone position and its upper-level trough position. 
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Figure 3.17: Mean of absolute ensemble sensitivity using EOF PC1 for MSLP (left, shaded) and 

Z500 (right, shaded) over 102 cyclone cases, and ensemble mean MSLP (left, black contours) 

and Z500 (right, black contours) at different lead times. The verification time is 72h. 
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Figure 3.18: Mean of absolute ensemble sensitivity using EOF PC2 for MSLP (left, shaded) and 

Z500 (right, shaded) over 102 cyclone cases and ensemble mean MSLP (left, black contours) and 

Z500 (right, black contours) at different forecast times. The verification time is 72h. 

The climatological sensitivity for 6-day forecast is also examined. Figure 3.19 shows the 

6-day averaged absolute forecast sensitivity using EOF PC1 of MSLP on day 6 (144 h). Before 

96 h, the ensemble sensitivity was mainly over the North and East Pacific oceans, associated 

with the Aleutian low over the northeastern Pacific. From 96 h to 144 h, the surface sensitivity 

was associated with the cyclone originating from the U.S. South, increasing from <0.3 at 96 h to 

>0.8 at 144 h. The surface sensitivity was mainly a monopole at 144 h, indicating that it was 

associated with the cyclone intensity uncertainty. Meanwhile, the upper-level sensitivity showed 

a dipole around the East Coast trough and its downstream ridge at 144 h, again suggesting the 

strength of this trough and its downstream ridge have an impact on the surface cyclone intensity 

forecast. 
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Figure 3.19: The same as Figure 3.17 but for 6-day forecast with the verification times at 144h. 

The ensemble sensitivity for EOF PC2 (Figure 3.20) shows scattered signals at 24 h 

associated with short wave troughs over central Pacific at both surface and upper levels. These 

sensitivity signals seemed to propagate eastward across the west coast of the U.S. at 72 h. From 

96 h to 144 h, the surface sensitivity signals showed a dipole associated with the surface cyclone, 

suggesting the EOF2 pattern is on average associated with the forecast uncertainty in cyclone 

positon. Meanwhile, the upper-level sensitivity showed a triple-center structure, suggesting the 

shift of the East Coast trough and its adjacent systems could impact the cyclone position forecast 

uncertainty. 
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Figure 3.20: The same as Figure 3.19 but for EOF PC2. 

 

To investigate the propagation of medium-range ensemble sensitivity signals, the 

absolute sensitivity to Z500 was averaged from 30°N to 60°N and plotted against forecast time 

using 6-day forecast as a Hovmoller plot (Hovmoller 1949). At verification time, the sensitivity 
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for PC1 was maximized around 77.5°W (282.5°E on Figure 3.21). It spreads westward and 

decreases in amplitude when going backward with time. On day 1, the sensitivity value dropped 

to 0.15, and showed two weaker centers: one is around 175°W and the other around 122.5W. So 

the propagation speed could range between ~10° and ~20° longitude day
-1

, which is typically a 

bit faster than the synoptic weather system and slower than the group speed of Rossby wave 

packets. Note that this result is an average over cases and latitudes, indicating the propagation 

speed can vary with different cyclone case.  

The Hovmoller plot of sensitivity for PC2 is shown in Figure 3.22. When compared with 

Figure 3.21, the sensitivity for PC2 overall is weaker than for PC1, which dropped to 0.15 on day 

2. Another difference is that the averaged sensitivity on day 6 has three centers, which is 

consistent with its triple-center structure in Figure 3.20, again indicating the shift of Z500 trough 

and its adjacent systems. Until day 3.5, the division of centers is still clear to observe. The 

sensitivity center shifted from 70°W on day 6 to around 130°W on day 2 (or 162.5°W on day 

2.5); thus the propagation speed is ~15° longitude day
-1

.  

To investigate the horizontal scale of ensemble sensitivity, the sensitivity at a central 

longitude is used for each forecast day to correlate with the sensitivity at all longitudes. Figure 

3.23 showed the correlation for each central longitude on each day. A 0.5 horizontal line is also 

plotted as a reference line to denote where the correlation drops to half. The width at which 

reference line crosses the sensitivity correlation curve is used to roughly represent the coherent 

sensitivity signal centered at the central longitude.  On day 6 and day 5 (black line and green 

line), the sensitivity scale is around 15.5°longitudes. However, it increases to ~20°longitudes on 

day 4, ~38.9°longitude on day 3, ~44.4°longitude on day 2, and ~61.1° longitude on day 1. The 

increase in width is due to the dispersive nature of the middle latitude waves. 
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Figure 3.21: ESA using PC1 averaged in the mid-latitudes from day 0 to day 6. 

 

Figure 3.22: The same as Figure 3.21 but for PC2. 
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Figure 3.23: Correlation of sensitivity for PC1 at the central longitude of each day with 

sensitivity average over other longitude. Red, blue, cyan, magenta, green and blue represent day 

1 to day 6 average. The central longitudes are from 170°E to 282.5°E with an increase of 22.5° 

longitude. 
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Figure 3.24: The same as Figure 3.23 but for sensitivity using PC2. 

The width for sensitivity using PC2 (Black line, Figure 3.24) is 19.5° longitude at 

verification time, which is a bit larger than using PC1 and consistent with the triple-center 

pattern. It decreases a little bit on day 5 to 19° longitude, then increases to 24.4° longitude on day 

4, 33.3° longitude on day 3 and day 2, and >88.5° longitude on day 1. Note that the correlations 

for day 1 are very high, which may be due to the spurious sensitivities close to initial times. 

Nevertheless, the increasing with decreasing forecast time does indicate the dispersive features 

of midlatitude atmospheric waves.  

3.7 Possible link to RWPs via. Downstream development mechanism  

As discussed in Section 3.3, in the sensitivity plots using EOF PC1 based on 5.5-day 

forecast in December 2010 case, some indications of the wave packet like behavior can be seen 

in the sensitivity signals (Figure 3.5a-h). Chang (1993) showed that RWPs can be better 
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diagnosed using the meridional wind perturbations rather than the geopotential height, because 

the variations in geopotential height are dominated by low frequency variability. To examine 

whether the ensemble sensitivity signals for medium range forecast are associated with RWPs, 

the ECMWF ensemble forecast starting on 1200 UTC 20 December was used to produce a 

Hovmoller diagram (longitude-time plot) of the 300-hPa meridional wind averaged between 

30°N and 60°N (Figure 3.25a). A clear wave packet can be seen propagating eastward from the 

central North Pacific on 21 December to the western Atlantic on 27 December, with a group 

speed of around 29°longitude per day. The wave packet can be found in both the analysis (black 

lines) and the ensemble forecast (shades).   

For comparisons, a Hovmoller diagram of the averaged ensemble sensitivity signals 

computed based on EOF PC1 of meridional wind over a boxed region corresponding to the 

surface cyclone (Figure 3.26, the magenta box) is shown in Figure 3.25b. The ensemble 

sensitivity has a wave-packet-like structure, which can be traced back to the central Pacific on 

day -6 (21 December). Even though the sensitivity signals are not coincident with the Rossby 

wave packet regarding the structure and phases, both show clear wave packet behavior and 

comparable group speed. 

Apart from the above similarity, the sensitivity signals also exhibit clear characteristics of 

downstream development (Chang 1993), which can be seen not only in Figure 3.25b but also in 

Figure 3.26, which shows the sensitivity of EOF PC1 of meridional wind uncertainties over the 

boxed region to the meridional wind field. At -84 h, there is a small piece of positive sensitivity 

A+ located at (160°W, 36°N) and negative sensitivity A- at (142°W, 40°N). Another even 

smaller positive signal B+ is around (125°W, 45°N). All signals propagate eastward with time. 

At -60 h, the upstream signal A+ keeps the same intensity, but A- and B+ have strengthened.  
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New signals B-, C+ and D+ are generated over (98°W, 47°N), (98°W, 58°N) and (80°W, 44°N). 

At -36 h, the A+ signal becomes weaker; the A- remains the same intensity; while the B+, B-, 

C+, and D+ have further strengthened. At -12 h, the upstream A+ decays to pieces and A- 

becomes much weaker, the B+, B-, and C+ have strengthened moderately; the downstream 

signal D+ gets much stronger. Overall, this evolution resembles the behavior of an RWP’s 

downstream development. 

Considering the close link between ensemble sensitivity signals and RWPs, we speculate 

that the growth and propagation characteristics of the forecast uncertainties and errors are 

associated with the growth and propagation of Rossby wave packets with the presence of an 

RWP. Chapter 5 will discuss more on the influence of Rossby wave packets on forecast 

errors/uncertainties. 
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Figure 3.25: (a) Hovmoller diagram of ensemble mean forecast of meridional wind (shading, [m 

s-1]); (b) sensitivity signals (shading) averaged between 30°N and 60°N; IT: 1200 UTC 20 DEC 

2010; sensitivity forecast metric is PC1 of the meridinal wind over a boxed region (magenta box 

in Fig.3.26). Black contours are for Hovmoller diagram of analyzed meridional wind averaged 

over 30°N to 60°N with an interval of 10 m s
-1

. Thick black line shows the movement of 

analyzed Rossby wave packets. 
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Figure 3.26: Sensitivity (shading) of EOF PC1 to meridional wind from -84 h to -12 h (a-d). The 

magenta Box shows the verification region for EOF pattern 1. IT: 1200 UTC 20 DEC 2010; VT 

(0 h): 1200 UTC 27 DEC 2010. 

3.8 Chapter summary 

In this chapter, the application of ESA to interpret medium-range forecast uncertainties of 

East Coast cyclone based on a multi-model ensemble introduced in Chapter 2 has been presented.  

ESA has been applied in three different ways to diagnose a high-impact storm in 

December 2010 winter snowstorm based on the choice of forecast metrics: sensitivity using the 

EOF approach, sensitivity using run cycle difference, and forward sensitivity regression using 

short-range forecast errors. The 5.5-day forecast cyclone intensity uncertainty in the ECMWF 

ensemble was associated with the trough and ridge systems over the northeastern Pacific and 

central U.S., respectively, while the track uncertainty is associated with a short-wave trough over 

the southern Great Plains. Sensitivity based on the ensemble mean MSLP difference between 

two run cycles also suggests that the track’s shift between the two cycles was linked to the initial 
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errors in the short-wave trough over the southern Great Plains. The forward sensitivity approach 

based on short-range forecast errors further confirms that the short-term error associated with the 

short-wave trough over the southern plains developed and contributed significantly to the shift in 

cyclone position between two cycles.  

The LOOCV is used to verify the goodness of ESA. Both 3-day and 6-day LOOCV 

results demonstrated the forecast skill of ESA in the medium range is significant for most of the 

cyclone cases, although the relations worsen as the forecast time decreases. These results show 

that the sensitive areas are overall effective in modifying the forecast areas. The sensitivity using 

the leading two EOF PCs can be quite reliable in medium-range. 

The model climatology of ESA is displayed in section 3.6. It is shown that the ensemble 

sensitivities at the verification time for both 3-day and 6-day forecast are associated with the 

cyclone intensity forecast for PC1 and the cyclone position shift for PC2. For PC1, the Z500 

characteristics suggest that practically in all cases the corresponding upper-level trough and its 

downstream ridge are important to the forecast uncertainty in cyclone intensity, which originates 

from the ridge along western coast of North America. In contrast, the upper level sensitivity for 

PC2 showed a triple-center structure, suggesting the shift of the East Coast trough and its 

adjacent systems could impact the cyclone position forecast uncertainty.  

In the case study, a coherent RWP originated from the central North Pacific 6 days before 

this snowstorm event. The sensitivity signals behave like a wave packet and exhibit the same 

group velocity of ~29° longitude per day, indicating that RWPs may have also amplified 

uncertainty in both the cyclone amplitude and track forecast. The Hovmoller plot of ensemble 

sensitivity climatology also suggested that the propagation speed of sensitivities for both PC1 
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and PC2 are a bit faster than the phase speed of individual weather systems, indicating the 

propagating RWPs could have an impact on the evolution of ensemble sensitivity signals.  

The model climatology of ensemble sensitivities provides guidance for operational 

forecasters to interpret the preferable regions for forecast uncertainty of significant East Coast 

cyclone events. Though the exact location of maximum sensitivity varies case by case, it could 

still benefit the forecasters to build a conceptual model of forecast uncertainty development. 

More importantly, the ensemble sensitivity climatology highlights the regions where the model 

disagreement will impact the forecast most, and a further exploration of the reasons for the 

formation of the sensitive areas might help modelers to diagnose the models’ deficiency in 

forecasting East Coast winter storms.  
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Chapter 4 Fuzzy clustering and evaluations of multi-model ensemble 

The ensemble sensitivity tool discussed in Chapter 3 provides an overall linear relation to 

diagnose forecast uncertainty related to a particular feature. It works better in quasi-linear flow. 

However, given the chaotic and nonlinear nature of the atmosphere, the linear relation 

represented by ensemble sensitivity sometimes may miss part of the important information in the 

ensemble forecast. Meanwhile, the detailed development scenarios among an ensemble can also 

be important especially for high-impact East Coast winter storm events. Given a large dataset 

from an ensemble, effective tools to extract the ensemble information in a form that can provide 

the most important development scenarios could benefit the operational forecasters and decision 

makers. The development of different scenarios can be due to various ICs in different ensemble 

members. An investigation of these different development scenarios will also benefit modelers 

when diagnosing model deficiency in order to improve forecast skill. 

To quickly extract important information from a large ensemble and diagnose forecast 

uncertainty, this section will apply an EOF/fuzzy clustering tool to operational ensemble 

forecasts of East Coast winter storms. Forecast scenarios will be separated by dividing a multi-

model ensemble (NCEP+CMC+ECMWF) into N clusters, with each cluster representing one 

scenario. A scenario-based ensemble verification method will also be proposed to diagnose the 

cyclone forecasts in these three EPSs as a novel way to evaluate ensemble performance. 

Section 4.1 will briefly introduce some relevant previous studies on the EOF/fuzzy 

clustering method. Zheng et al. (2016) applies the EOF/fuzzy clustering method to an 

extratropical cyclone case, which brought high-impact weather to the U.S. East Coast on 26–28 

January 2015. Section 4.3 will compare the cluster results using different forecast metrics for the 
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aforementioned case. Section 4.4 introduces the procedure to apply EOF/fuzzy clustering to 

verify ensemble forecasting. Section 4.5 presents the scenario-based verification of the three 

EPSs in forecasting East Coast winter storms. Section 4.6 investigates the outlier cases 

determined from the EOF PC phase space. Section 4.7 provides the chapter summary. 

4.1 A brief introduction to fuzzy clustering method in ensemble studies 

Cluster analysis can be used to diagnose the variability among ensemble members for the 

short-range (0.5-2.5 day, Johnson et al. 2011), medium-range (Ferranti and Corti 2011) and 

extended-range (beyond 10 days; Palmer et al. 1990). Brill et al. (2015) introduced a new 

divisive clustering algorithm to medium-range forecasting based on the one-dimensional discrete 

Fourier transformation. The application of this method can provide meteorologically coherent 

pictures of outcomes not captured sharply by ensemble means or deterministic model 

output. However, this approach often excludes around a dozen of the combined 70 ensemble 

members by not including them in any cluster. Besides, this method reduces the geopotential 

data to one spatial dimension in large scale, which may miss a lot of two-dimensional 

information in complex weather systems. To take full advantage of the ensemble product and 

provide consistent guidance for National Centers and Weather Forecast Offices (WFOs), the 

U.S. National Weather Service (NWS) has developed a National Blend of Models (NBM) by 

postprocessing and combining (blending) guidance from models and EPSs from multiple centers 

(Gilbert et al. 2016; Tew et al. 2016). To get the best possible science, it is important to 

document the variability among different EPSs, and to evaluate the benefit of combining models 

especially in the sense of providing a sufficient variety of forecast scenarios.  

Harr et al. (2008) introduced the fuzzy clustering method to identify groupings of forecast 

scenarios during the extratropical transitioning (ET) of tropical cyclones within a collection of 
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ensemble members. Keller et al. (2011) compared the forecast scenarios associated with 10 ET 

cases in the TIGGE (Bougeault et al. 2010) data by applying fuzzy clustering analysis and found 

that some EPSs are confined to a few scenarios while others contribute to almost all scenarios. 

Other studies (e.g. Grams et al. 2011) have also shown that fuzzy clustering is a suitable 

diagnostic method to detect the physical processes associated with different weather systems. In 

this study, the fuzzy clustering method of Harr et al. (2008) is applied to winter storms cases 

over the U.S. East Coast to separate forecast scenarios in an objective and efficient way and to 

assess ensemble forecast output, with a goal of providing guidance to forecasters to improve the 

understanding of scenarios as well as interpreting model biases. 

4.2 Applying fuzzy clustering to winter storm forecast in a case study: 26-28 January 2015 

winter storm event 

The mid-Atlantic to Northeast major winter storm during January 26─28, 2015 is used to 

illustrate the application of fuzzy clustering. This storm impacted the northeastern U.S., resulting 

in snowfall accumulations of 30 cm (12 in.) to 91 cm (36 in.) over the central part of 

Massachusetts, and blizzard conditions were prevalent from Long Island to southern and eastern 

New England (Winkler 2015).  

4.2.1 Synoptic overview 

At 1200 UTC 25 January, a surface low pressure system was near the Iowa and Missouri 

border with an associated upper-level short wave trough approaching the Ohio Valley (Figure 

4.1a). The upper-level cyclonic potential vorticity (PV) anomaly (2 PVU dynamic tropopause < 

305K) was located over the central part of the Great Plains. During the following 12 h, the 

surface low progressed eastward along the Kentucky─Tennessee border and weakened as it 

approached a pre-existing ridge, as indicated by the warm potential temperature (PT) on the 
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tropopause (Figure 4.1b). At 1200 UTC 26 January (Figure 4.1c), the short wave trough and the 

associated surface low moved eastward across the central Appalachians. A new surface cyclone 

formed off the east coast of North Carolina at 1800 UTC 26 January, between the left exit of an 

upper level jet stream over the southeastern U.S. and the right entrance of a downstream jet east 

of New England (not shown). 

 Between 1200 UTC 26 January and 0000 UTC 27 January, the upper-level trough 

became negatively tilted as it approached the East Coast, and the surface low intensified just off 

the mid-Atlantic coast (Figure 4.1d). The upper-level PV maximum was over the northwest of 

the trough axis. Hence there was positive PV advection near the trough axis off the mid-Atlantic 

coast as well as the corresponding surface low pressure system. During the following 12 h 

(Figure 4.1e), a closed 500 hPa low developed and strengthened off eastern Long Island. The 

surface low continued tracking north-northeastward to the western Atlantic east of Long Island, 

and deepened rapidly from 992 hPa at 0000 UTC 27 to 980 hPa at 1200 UTC 27. Over the 24-h 

period between 12 UTC 26 and 12 UTC 27, heavy snow fell over southeastern New England 

with maximum precipitation near Boston (Figure 4.2a).  

At 0000 UTC 28 January (Figure 4.1f), the 500 hPa low was situated over Cape Cod and 

became neutrally tilted while the surface cyclone was centered east of Boston with a minimum 

pressure of 985 hPa (Figure 4.1f). An occluded front extended northeastward from the surface 

low into the Atlantic Ocean (not shown). The surface low weakened as the upper level closed 

low started to fill through 1200 UTC 28 January and snowfall intensity diminished to light and 

scattered nature over the Northeast (not shown). 
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Figure 4.1: (a)–(f) Z500 (gray solid contour), MSLP (black dashed contour) and potential 

temperature at 2PVU dynamical tropopause (shading, [K]) from 1200 UTC 25 January to 0000 

UTC 28 January 2015. Contour interval for geopotential height is 100 m, and the 5700 and 5500 

m lines are labeled. The MSLP contours start from 1008 hPa and decrease at 4 hPa intervals. The 

green solid box in (a) represents the verification region at valid time (1200 UTC 27 January 

2015). 
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Figure 4.2: (a) The CPC 24-h precipitation (shading and black contour), (b)–(d) 3-day ensemble 

mean forecasts (shading and red contour) from three models, and (e)–(f) the means (shading and 

red contour) from Group EM and Group ANA (or Group 2) for 3-day m ulti-model ensemble. 

The black contours in (b)–(f) are the same with the contours in (a) to represent the observed 

precipitation. Unit: [mm]. Time period is from 1200 UTC 26 January to 1200 UTC 27 January 

2015.  
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Figure 4.3: (a)–(f) Ensemble mean forecasts of MSLP from a lead time of 6 days to 1 days. The 

red, green and blue contours are the ensemble means from the CMC, NCEP, and ECMWF 

model, respectively. Black and gray are the multi-model mean and analysis. Contours for the 

ensemble means in (a)–(c) range from 1008 to 1000 hPa, and in (d)–(f) range from 1000 to 980 

hPa with a contour level of 4 hPa. 

4.2.2 Ensemble forecasts at different lead times 

Figure 4.3 shows the ensemble means from each of the models, the multi-model mean, 

and the analysis verifying at 1200 UTC 27 January 2015 for different lead times. Between days -

6 and -4, all 3 EPSs forecasted a mean cyclone that was east or southeast of the analyzed 

cyclone. Between days -5 and -4, the NCEP and ECMWF mean cyclone shifted west-

southwestward. This trend continued between days -4 and -3, and during that 24-h the CMC 

forecasted cyclone also shifted westward. From days -3 to -1, the ECMWF mean cyclone was 

the deepest and furthest west, while the CMC mean cyclone was the weakest and furthest east, 

with the NCEP mean cyclone located between the two. Overall, for the short-range forecasts the 
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multi-model ensemble mean indicated a closer to shore cyclone than the analysis, which led the 

forecasters at NWS to predict a major snowstorm and issue a blizzard warning for parts of seven 

states including New York City (Figure 4.3), which turned out to receive far less snow than 

expected (Fanning 2015; Flegenheimer 2015). 

In the following subsection, we will focus on the ensemble forecasts at the forecast  time 

of 3 days to illustrate how to apply the EOF/fuzzy clustering method to separate the forecast 

scenarios in the medium range associated with this blizzard case.  

4.2.3 Steps for applications to operational forecast 

The fuzzy clustering method has been introduced in Section 2.5. The steps to apply the 

EOF/fuzzy clustering method are as follows: 

STEP 1: compute the variability pattern among the multi-model ensemble using the 

EOF method 

Given a set of ensemble runs, an EOF analysis is first performed to find out the leading 

variability patterns or forecast uncertainty patterns among the ensemble members.  

Day 3 ensemble mean forecast (Figures 4.4a-b) predicts a cyclone centered at (39.0°N, 

69.5°W) with a minimum pressure of 985 hPa, ~120 km to the south-southwest of the analyzed 

cyclone. The maximum ensemble variance is ~400 km to the west-southwest of the ensemble 

mean cyclone center (Figure 4.4a). The spaghetti plot of the 996 hPa contour lines (Figure 4.4b) 

suggests that there is large forecast uncertainty regarding the position of the cyclone.  

Here, we perform EOF calculations on the 90-member 3-day MSLP forecast anomaly 

relative to the ensemble mean. The two leading EOF patterns for this 3-day MSLP forecast 

explain 42.9% and 28.7% of the variance, respectively. Positive (negative) EOF1 (Figure 4.4c) 
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pattern is a monopole centered ~260 km west of the ensemble mean cyclone, representing a 

deeper (weaker) as well as a westward (eastward) shifted cyclone. Positive (negative) EOF2 

(Figure 4.4d) pattern is a dipole, representing the northeastward (southwestward) shift of the 

cyclone, indicating that there is a subset of ensemble members shifted to the northeastward (as 

well as southwestward) at VT.  

 

Figure 4.4: (a) MSLP ensemble mean (contours, [hPa]) and spread (shading, [hPa]), (b) spaghetti 

plots of 996 hPa contour for 90 multi-model ensemble members (blue are for the ECMWF 

members; green are for the NCEP members; and orange are for the CMC members) with the 

dashed magenta lines and black lines to be the ensemble mean and the analysis. (c) EOF1 MSLP 

pattern (contours, [hPa]), and (d) EOF2 MSLP pattern (contours, [hPa]). The VT is 1200 UTC 

27 January 2015; IT: 1200 UTC 24 January 2015. The black/red dot in each panel denotes the 

analyzed/ensemble mean position of the surface cyclone at VT. 

STEP2: Determine forecast scenarios based on the leading two EOF PCs using fuzzy 
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clustering method  

With the corresponding EOF PCs for the ensemble forecast, fuzzy clustering can group 

them based on each pair of PC of the 90 members. 

 
Figure 4.5: The 5 clusters divided using fuzzy clustering method on the PC1-PC2 space from the 

90 ensemble members for 3-day forecast. The VT is 1200 UTC 27 January 2015, and IT is 1200 

UTC 24 January 2015. 

Figure 4.5 shows the 5 groups based on the fuzzy clustering method. Group EM is 

centered close to the ensemble mean represented by the origin on the PC1-PC2 coordinate. 

Group 2 represents positive EOF2 characteristicsthe northeastward shift of the cyclone position 

relative to the ensemble mean (Figure 4.4d). Group 3 represents mainly a negative EOF1 pattern, 

with the cyclone in this group anticipated to be weaker and more eastward than the ensemble 

mean. Group 4 has mainly a weak negative EOF1 anomaly and a negative EOF2 anomaly, 

suggesting a cyclone weaker and more southwestward relative to the ensemble mean. One of the 

CMC member in this group is at (-3.5, -3.0), seemingly an outlier with respect to the rest of the 



125 

ensemble. Group 5 indicates a combination of positive EOF1 and negative EOF2 anomalies. 

Therefore, the cyclone in this group should be more west-southwestward (more onshore) and 

deeper than the ensemble mean.  

To sum up, groups 2 and 4 represent the largest positive and negative EOF2 pattern, 

corresponding to more northeastward and southwestward shift, respectively. Meanwhile, groups 

3 and 5 represent the largest negative and positive EOF1 pattern, corresponding to weaker/off-

shore and deeper/on-shore cyclone scenarios, respectively. 

STEP3: Plot cluster means for different parameters 

With the partitions of five clusters, the cluster means can be plotted to show the 

differences between the clusters. 

Figure 4.6 shows the group means of the 5 clusters (partitioned based on the EOF PCs on 

day 3) from day 1 to day 3 using the 1008 hPa MSLP and 5400 m Z500 contour lines. On day 1 

(Figures 4.6a-b), the surface cyclone in all groups seem to be similar, but the cyclone for Group 

2 is more intense than that of the other 4 groups. The Z500 short wave trough shows more 

separations among the groups, with that of Group 2 being the strongest and most southeastward 

one. On day 2 (Figures 4.6c-d), the surface cyclone as well as the upper level trough in Group 2 

are still the most eastward among the 5 groups (Figures 4.6c-d). Group 5, on the other hand, has 

the cyclone being the most westward. Group 3 shows the weakest cyclone with the center 

splitting into two (Figure 4.6c). 

On day 3 (VT), Group 2 has both the surface cyclone and its associated upper level 

trough being 120 km more northeastward than that of Group EM (Figures 4.6e-f), which is 

consistent with the earlier forecast time steps. Group 5 has the cyclone deeper than that of Group  
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Figure 4.6: A summary of 5 cluster means using 1008hPa MSLP contour line (a, c, and e) and 

5400m Z500 contour line (b, d, and f) for 3-day forecast. The VT is 1200 UTC 27 January 2015; 

IT, 1200 UTC 24 January 2015. 

EM and is ~320 km more west-southwestward (Figure 4.6e). Its associated trough is the deepest 

one among the five groups and extends more west-southwestward than the ensemble mean 
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(Figure 4.6f). In contrast, both the surface cyclone and the upper level trough in Groups 3 and 4 

(Figures 4.6e-f) are weaker than that of Group EM. The cyclone of Group 3 continues to be the 

weakest one with the center ~320 km more northeastward than the ensemble mean. That of 

Group 4 is weaker by 3 hPa and ~170 km more southwestward than the ensemble mean. The 

synoptic features represented by both surface and upper level variables again match the 

interpretations of clusters of Figure 4.5 in the previous step. 

STEP4: Plot spaghetti plot for each cluster to show cluster details 

Spaghetti plots can provide more details of a variable from an ensemble forecast. If a 

forecaster sees a scenario he/she is interested in, spaghetti plots for that cluster can provide more 

details of each cluster member and often include most of the similar members corresponding to 

that cluster mean scenario. 

Figure 4.7 shows the spaghetti plots of the 1000 hPa MSLP contour lines for the 5 groups 

aforementioned. The ECMWF members are mainly contributing to groups EM, 4 and 5 (Figures 

4.7a, d, and e), forecasting a more close-to-shore cyclone. However, 3 ECMWF members also 

contribute to Group 2, together with 9 NCEP and 2 CMC members, forecasting a deeper and 

more east-northeastward scenario. Half of the CMC members contribute to Group 3, together 

with 5 NCEP members, forecasting the weakest and more northeastward cyclone (Figure 4.7c). 

The spaghetti plot confirms that the cluster method is able to find the members with similar 

forecast scenario not only from the same EPS but also different models. Figures 4.2b-d shows 

that the 24-h total precipitation in ECMWF mean is closer to shore than the other two models, 

with the heaviest precipitation regions including New York City and New Jersey. Figures 4.2e-f 

compares the mean precipitation for Group EM and Group 2, suggesting the heavy precipitation 

in Group 2 is more northeastward and closer to the analysis than Group EM. Figure 4.2 again 
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demonstrates the consistency of the cluster scenarios for different important weather elements. 

 

 

Figure 4.7: Spaghetti plot for the 5 groups (a)–(e) using 1000 hPa MSLP contour line. Red, green 

and blue contour lines are from CMC, NCEP and ECMWF members, respectively. The dashed 

magenta line is for the group mean. The black and purple lines are the multi-model mean and the 

analysis in all panels. The VT is 1200 UTC 27 January 2015; IT: 1200 UTC 24 January 2015. 
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4.3 Comparing different forecast metrics for clustering 

One important question about applying fuzzy clustering to ensemble forecast is how 

sensitive the results depend on the field used to conduct the clustering. One objective tool to 

verify cluster results from two different fields is the Rand index or RI (Rand 1971). As suggested 

by Keller et al. (2011), this index is very effective in determining whether the cluster solution for 

one forecast variable separates the members in the same way that the cluster solution for another 

forecast variable does. By using the RI to investigate the clusters between TIGGE ensemble and 

TIGGE-without-EC ensemble, they found that the RI ranges from 0.72 to 0.92 in the ten ET 

cases by using Z500 as the forecast variable. They indicated that >0.89 would indicate high 

agreement and <0.65 would indicate low agreement between two clustering approaches. Here the 

RI is applied to compare clusters using different variables.  

Here, we use a simple example to illustrate the computation of the RI. If we apply the 

fuzzy clustering approach to two distinct forecast variables (e.g. using MSLP and 24-h total 

precipitation as variables for EOF- and cluster- analysis, respectively) with, for example, N=6 

members, we will most likely get two distinct solutions Y and Y’ on how to group the ensemble 

members. Assuming that the clustering approach divides the members into two clusters, Y1,2 for 

using the first variable and Y
’
1,2 for using the other variable. Assume the N=6 ensemble members 

are assigned to the clusters as follows: 

Y1=1,2,6 Y2=3,4,5; and Y1’=1,2,3,6 Y2’=4,5. 

To compute the RI, we first count the number of members that are assigned together or 

separately in the two cluster solutions and that are mixed, i.e., assigned together in one, but 
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separately in the other solution. For the example stated above (adapted from Rand, 1971), the 

assignment for each pair out of 15 pairs of members is shown in Table 4.1. 

Member-pair Together in both Separate in both Mixed 

1&2 *   

1&3   * 

1&4  *  

1&5  *  

1&6 *   

2&3   * 

2&4  *  

2&5  *  

2&6 *   

3&4   * 

3&5   * 

3&6   * 

4&5 *   

4&6  *  

5&6  *  

Total 4 6 5 

Table 4.1: Member-pairs assignment 

Therefore, ten pairs of members are assigned similarly in both solutions (either together 

in both or separate in both), while the five remaining pairs are assigned differently. The RI is 

simply the ratio of the amount of member-pairs assigned to the same solution in both to the total 

possible member-pairs for assignment in the two solutions. In summary, this can be written as 

(Adapted from Rand, 1971) 
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Thus, RI ranges from 0 to 1. One represents two identical cluster solutions while 0 

represents that none of the member-pairs are assigned in the same manner in the two solutions. 

In the above example, RI equals to 0.67, which would be referred to as a rather moderate 

agreement. 

The cluster results for the 2015 January winter storm case (Figures. 4.5-4.7) discussed 

above are based on the MSLP forecast. However, it is important to verify and compare the 

cluster solutions with those based on other forecast variables. Here we employ RI to verify the 

cluster results using the MSLP, 24-h total precipitation (24-h TP), Z500, and 850-hPa moisture 

flux (850MF) as variables for EOF/fuzzy clustering, respectively. These three variables are 

chosen because together they represent the basic thermodynamic parameters to represent three 

vertical levels. Table 4.2 compares the RI for clustering using the four variables. 

RI MSLP 24-h TP 850MF Z500 

MSLP  0.756 0.713 0.659 

24-h TP 0.756  0.725 0.663 

850MF 0.713 0.725  0.680 

Z500 0.659 0.663 0.680  

Table 4.2: The RI between cluster results of 2015 January winter storm case using MSLP, 24-h 

total precipitation, 850-hPa moisture flux and Z500 for EOF/fuzzy clustering, respectively. 
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The member assignments of any two cluster solutions out of the four forecast variables 

are compared in the above table. This gives an indication of whether two cluster solutions are 

mainly the same, or strong differences exist in the assignment. With a Rand Index RI=0.756, the 

cluster solution of the MSLP and 24-h TP have the highest agreement in member assignments. In 

contrast, the cluster solution of MSLP has only rather a moderate agreement with that of Z500 

(RI=0.659). Overall, the MSLP has good agreement with the total precipitation and 850 hPa 

moisture flux, indicating the MSLP scenarios are consistent with one of the most important 

forecast parameters: accumulated precipitation. Z500 has the lowest RI with the other 

parameters, suggesting the scenarios based on upper-level geopotential height are only consistent 

with precipitation scenarios in a moderate way. Note that the RI values are lower than the results 

from Keller et al. (2011), which is expected because Keller (2011) calculated RI using the same 

variable (Z500). Their purpose was to examine the clusters in TIGGE ensemble with or without 

the ECMWF model. Since we are using RI to validate the clusters using different parameters, the 

RI values would be expected to be a bit lower owing to the differences in two parameters. 

Nevertheless, even the lowest RI value (0.659) can still be considered as moderate agreement. 

The RI results confirm that the clusters using MSLP overall agree well with clusters using other 

parameters.  

4.4 Applying fuzzy clustering to ensemble verification of historical winter storm cases 

In sections 4.2 and 4.3 we have discussed the operational application of EOF/fuzzy 

clustering approach to a winter storm case study and compared the cluster solutions using 

different variables. When the analysis is available, the forecast scenarios in the multi-model 

ensemble can be verified by projecting the analysis onto the EOF PCs coordinate. The scenarios 
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closest to the analysis can be used to verify the ensemble forecast. This section discusses how to 

apply the EOF/fuzzy clustering method to ensemble verification of historical winter storm cases. 

4.4.1 Analysis scenario definition 

To perform scenario-based ensemble verification of EPSs in predicting East Coast winter 

storms, the definition of the analysis scenario is of paramount importance. In this study, our 

cluster analysis is based on EOF PC space; therefore, the analysis scenario is also defined based 

on the projection (von Storch and Zwiers, 1999) of the analysis onto the leading EOFs. To be 

more specific, the analysis anomaly (Aˈ) relative to the ensemble mean at the verification time is 

projected onto the leading two EOF patterns (E1 and E2) by using the following equation: 

2 ,1,
)var(

),'cov(
 i

E

EA

i

i
i       (4.3) 

where i stands for the projection coefficient of the analysis anomaly onto the EOF 1 or 2 

patterns. This is based on the property that the EOF patterns are all orthogonal to each other. 

Therefore the verifying analysis at the verification time is translated onto the EOF PC1-PC2 

phase space by adding the pair of projection coefficient i (i=1, 2) to the PC1-PC2 scatter plot. 

The point occupied by 1 and 2 represents the analysis on the PC1-PC2 coordinate. The cluster 

with the center having the shortest distance to the analysis point is considered to represent the 

analysis more closely than the remaining clusters; in other words, we define that cluster as 

“Group ANA” or the “analysis scenario”. One clarification here is the analysis point is not 

included in the clustering procedure to prevent modifications of the cluster assignments.  

Based on the above definition, for the 2015 January case, Group 2 in Figure 4.5 is the 

analysis group. As can be seen from Figures 4.6-7, Group 2 (or Group ANA) is the closest 
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cluster to the analysis (purple solid line in Figures 4.6-7), which forecasts a cyclone more north-

northeastward than the ensemble mean. The average precipitation corresponding to Group 2 is 

also more north-northeastward than that of the multi-model ensemble mean (Figures 4.2e-f). The 

heaviest precipitation in Group 2 is much closer to the observed than the other clusters as well as 

individual model means (Figure 4.2). In another case study for the 2010 December snowstorm 

examined in Chapter 3, we found that Group 3 was assigned as the analysis group for a 3.5 day 

forecast initialized at 0000 UTC 24 December 2010, which is the closest to the analysis contours 

in MSLP and Z500 over the Eastern U.S. and western Atlantic at verification time among the 5 

groups. In both cases, Group ANA is distinct from Group EM, that is, the analyses do not lie 

within the space occupied by the ensemble mean groups. 

Here, the analysis group has been defined based on the projection of the analysis onto the 

PC1-PC2 space. Two more conventional metrics, root-mean-squared error (RMSE) and pattern 

correlation coefficient (Corr), are used to verify that the analysis group defined this way is 

indeed the closest to the analysis. 

Figures 4.8 and 4.9 show the RMSE and Corr of Z500/MSLP from IT to VT for the 2015 

January winter storm (Case 1) and 2010 December case (Case 2), respectively. At VT (72 h for 

case 1 and 84 h for case 2), the analysis group (Group 2 for case 1 and Group 3 for case 2) has 

smaller RMSE (Figures. 4.8a-b and 4.9a-b) and higher pattern correlation (Figures. 4.8c-d and 

4.9c-d) than the other four groups. In addition, it also has smaller RMSE and higher Corr than 

the multi-model mean as well as each individual model mean. The superiority of the analysis 

group is significant at the 95% level based on 100 random sampling of groups. 

The superiority of the analysis group is not only limited to the VT. The time range of its 

robustness can also be seen from Figures 4.8-9. For the 2015 case (Figure 4.8), the analysis 
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group is significantly better from 42h (VT-30h, Figures. 4.8b,d) to 84h (VT+12h, not shown), 

spanning over 40h. For the 2010 December case (Fig. 4.9), the analysis group is significantly 

better from 30h (VT-54h, Figs. 4.9b,d) to 120h (VT+36h, not shown), spanning over 3.5 days. 

Therefore, the time range of the dominant benefit of using the analysis group varies case by case, 

but it can be robust spanning as long as over 3.5 days. Nevertheless, Figures 4.8-9 show that at 

early forecast times, other groups are closer to the analysis than the analysis group, indicating 

that one cannot easily pick a “best” forecast group based on its agreement with observations 

during early forecast hours, consistent with the findings of Smith (2001) and Orrell et al. (2001). 

 

Figure 4.8: RMSE of MSLP (a) and Z500 (b) for each cluster mean and model means at different 

forecast times; Correlation of MSLP (c) and Z500 (d) between each mean and the analysis at 

different forecast times. The clusters are selected based on the EOF PC s at 72 h forecast 

initialized at 1200 UTC 24 January 2015. The black, green, blue and purple solid lines are for 
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Group EM, 3, 4 and 5, respectively. The red dotted solid line is for Group 2 (analysis group). 

The black dashed line is for multi-model ensemble mean. The green, red and blue dashed lines 

are for the NCEP, CMC and ECMWF model means. The blue dot is the 95% significant line 

based on 100 randomly selected clusters. The verification area is a box (24 longitude x 20 

latitude) moving with the cyclone (for MSLP) and the corresponding upper level trough (for 

Z500) system.  

 

Figure 4.9: The same as Figure 4.8 but for Case 2 initialized at 0000 UTC 24 December 2010 

and verified at 1200 UTC 27 December 2010. Group 3 (green dotted solid line) is the analysis 

group. 

The verifications using RMSE and Corr confirm that the analysis group has relatively 

lower errors and higher pattern correlations among the 5 groups over a time range spanning the 

VT. The selection of the analysis group is hence reliable to be applied to operational post-

processing and model calibration. The result also indicates that by combining members from 

different models, an optimal cluster can be more valuable than both multi-model ensemble mean 
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and individual model means. 

 

 
Figure 4.10: The explained squared error fraction by EOF1 to EOF10 patterns respectively, as 

well as the accumulated fraction by EOF1-2, EOF1-3, EOF1-10, all 90 EOF patterns, and the 

residual for (a) day 3 forecast and (b) day 6 forecast. 
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The projection of the analysis onto the PC space and the definition of the analysis group 

can be used as a verification tool in ensemble verification. An assumption of this application is 

that the forecast errors do project primarily onto the leading two EOF patterns. In other words, 

the leading two EOF patterns explain the dominant forecast errors. To examine whether this 

holds true in most cases, the fraction of squared error (error here is defined as ensemble mean 

minus the analysis) explained by each EOF pattern is plotted in Figure 4.10 based on day 3 and 

day 6 forecasts for 111 cyclone cases over region 2. For day 3 forecasts, the median fraction of 

explained squared error by the leading two EOF patterns is around 70%, suggesting that over two 

thirds of the squared forecast error can be explained by the leading two EOF patterns. This value 

reaches 81% for day 6, suggesting that most of the forecast errors do project on the leading two 

patterns. Note that there are a few outlier cases for day 3 and day 6 with the leading two EOFs 

explaining very small amount of squared errors. Nevertheless, in most cases most of the forecast 

errors can be explained by EOF1 and 2 patterns.  

4.4.2 Outside-of-envelope (OOE) cases  

When analyzing the ensemble forecasts, there can be cases in which the analysis is out of 

the multi-model ensemble envelope. Figure 4.11 is an example comparing cases with the 

analysis in and out of the forecast envelope. The analysis is located within the cluster on the 

PC1-PC2 space for the case shown in Figure 4.11a; in contrast, the analysis is clearly out of the 

region enclosed by the dashed line in Figure 4.11b. Quantitatively, the outlier cases or OOE 

cases are defined by the following criteria: 1) the analysis is outside the boundary defined by the 

line segments joining the vertices on the PC1-PC2 coordinate; 2) the distance between the 

analysis and the closest member on the PC space is larger than the average distance between any 

two members plus 1 standard deviation. Among the cases we examined, there are 4 outlier cases 
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for 3-day forecast, 16 for 6-day forecast, and 19 for 9-day forecast. For most of the statistics 

discussed in sections 4.5 and 4.6 which are dependent on the existence of an analysis group, we 

have excluded the corresponding OOE cases for forecast at each lead time considering that the 

outlier cases don’t really have an analysis group and those cases should not be included in the 

related-statistics. However, the OOE cases are still included in calculating error/spread relation 

statistics (sections 4.5.3 and 4.5.4) since these statistics do not directly depend on the existence 

of an analysis group when evaluating the multi-model ensemble to avoid biasing the results. 

More details will be given in sections 4.5 and 4.6.  

 

Figure 4.11: In the envelope (left, a) and outside-of-envelope (right, b) examples. Green, red, and 

blue open circles represent members from the NCEP, CMC, and ECMWF models, respectively. 

Black dashed represents the outside envelope of the multi-model ens emble. Magenta circle with 

a plus sign denotes the analysis point. Left (a) is for 3-day MSLP forecast initialized at UTC1200 

January 24 2015; while right (b) is for 3-day MSLP forecast initialized at UTC1200 December 

09 2008. 

Given that the OOE cases are selected based on PC1-PC2 space, it is important to 

confirm that the case selection criteria make sense on the corresponding physical atmospheric 

field. Figure 4.12 shows the spaghetti plot for the OOE case shown in Figure 4.11b. It is clear 

that the analysis (black dashed line) is more southwestward than most of the ensemble contours; 
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except for three members from the ECMWF model. However, even the closest three members 

are much deeper and more west-northwestward than the analysis. Figure 4.12b depicts the 

corresponding group means for the five-cluster solution, which clearly shows that the analysis is 

quite distinct from the mean of any of the five clusters. Therefore, the definition of the OOE case 

for this case appears reasonable in the physical space. Apart from this case, we have also 

manually examined the other OOE cases determined based on the PC1-PC2 phase space, and 

confirmed that most of these cases are real outliers based on the physical field. Therefore, our 

definition of OOE cases is robust and can be used for investigating the statistics of outlier cases. 

More details concerning these cases will be presented in Section 4.6. 

 

Figure 4.12: (left, a) Same spaghetti plot as Figure 4.4b except for 1000 hPa contour line and 

initialized at 1200UTC December 09 2008; (right, b) same cluster mean plot as Figure 4.7e 

except for 1000 hPa contour line with initial time at 1200UTC December 09 2008. 

4.4.3 Steps for applying clustering approach to verify a historical storm case 

To apply the fuzzy clustering approach to verify a past storm case, the clusters of the 90 

ensemble members are first determined based on the steps listed in subsection 4.2.3. The analysis 

anomaly relative to the ensemble mean is then calculated and projected on to the leading EOF1 

and EOF2 patterns, respectively. The corresponding projection coefficient pair i (i=1, 2) is 

a) b) 
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plotted on the scatter plot of PC1 and PC2. According to the distance between analysis point and 

each ensemble member, whether the analysis is outside of the multi-model ensemble is first 

determined. If it is, then this case is referred as an OOE case; if not, the cluster with the center 

closest to the analysis point is defined as the analysis group (Group ANA) to represent the 

analysis scenario. The corresponding statistics associated with the analysis group can then be 

calculated, and these statistics will be discussed in the next section.  

4.5 Evaluation of the multi-model ensemble 

This section evaluates the capability of different EPSs in forecasting past East Coast 

winter storm cases. The cyclone cases are selected based on the NCEP operational analysis of 

MSLP with the minimum pressure less than 1005 hPa during the cool seasons from 2007/08 to 

2014/15. The multi-model ensemble is verified over region 2 (Figure 2.1) at lead times of 1 day 

to 9 days with an interval of 1 day. The statistics for region 1 are also calculated for day 3, 6 and 

9. The results are overall consistent. Though the number of verified cyclones at the same 

verification time should be the same, the number of cases are still different for different lead 

times due to missing data in the TIGGE archive. Table 4.3 shows the number of cases used as 

observed cyclone cases for each lead time.  

Lead Time [day] 1  2 3  4  5  6  7 8 9 

Case number 164 176 180 158 170 185 170 168 178 

Table 4.3: The number of cyclone cases used for each forecast day. 

Three types of scenario-based statistics are examined here: the average percentage of 

members that are in the analysis group for each model (section 4.5.1); the rate that each model 

misses the analysis group (section 4.5.1); and the frequency of the ensemble mean group 
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capturing the analysis scenario (section 4.5.2). Note that when calculating the above scenario-

based statistics, OOE cases are not included. Later in this section, the error-spread relation 

(section 4.5.3), and the model bias as well as its associated physical interpretation (section 4.5.4) 

will be explored using the PC metrics, and OOE cases are included in calculating these statistics. 

4.5.1 Different EPS’s ability in capturing the analysis scenario 

As demonstrated in the previous section, the analysis group resembles the analysis most 

closely with the smallest distance between cluster center and the analysis. By employing this 

definition, we can find out the analysis scenario at verification time for each ensemble run for 

each past cyclone case. Thus, we have repeated this calculation for all the historical cyclone 

cases over the East Coast region (region 2). In this study the NCEP operational analysis is used. 

We have also tested similar calculations using the ECMWF analysis and found that the analyses 

from different centers are very similar and lie close together on the PC1-PC2 scatter plot. Hence 

the choice of the analysis will not affect the related statistics. Another thing worth noting is that 

the analysis could be out of the ensemble envelope in some cases as discussed in subsection 

4.4.2, and these cases will be investigated separately in section 4.6. Unless specified otherwise, 

the OOE cases have been excluded from the calculation of the following statistics. 

Figure 4.13 shows the average percentage of ensemble members contributing to the 

analysis group with respect to the total number of ensemble members for the NCEP, CMC and 

ECMWF over region 2 at lead times of 19-days. The percentage statistic is averaged over all 

cases with the OOE cases excluded. For short-range forecast (days 12) (Figure 4.13), on 

average, there are around 26% (5.2) of NCEP members contributing to the analysis group. The 

highest percentage of members among the three EPSs suggests the NCEP is more superior in 

capturing the analysis scenario in short-range forecast. In contrast, the CMC model has the 
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lowest percentage (~18%, or 3.6 members) contributing to the analysis scenario among the three 

models. The average percentage of ECMWF model is in-between. 

 

Figure 4.13: The average percentage of member numbers in the analysis group for each EPS. 

The NCEP, CMC, and ECMWF have a total of 20, 20, and 50 ensemble members, respectively. 

The percentage is calculated by counting the number of each model member in the analysis 

group and dividing it by the total member number of each model. The average percentage is 

calculated based on all the historical cases for each lead time. The vertical bars represent the 

95% confidence level for each lead time. 

For medium-range forecast (days 36), the ECMWF model has the highest percentage 

(~23%, or 11.5) of members assigned to the analysis group, suggesting that it does a very good 

job in capturing the analysis scenario in medium-range forecast. The CMC model still has the 

lowest percentage (~17%, 3.4), but they are not significantly lower than that for the NCEP model 

(except for day 3). The average percentage of the NCEP model has dropped from day 2 to day 6, 

suggesting its decreasing skill in the medium range in capturing the analysis scenario. 
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As for extended-range forecasts (days 79), the NCEP model’s percentage (~21% or 4.2) 

has increased since day 6, and becomes the highest one among the three models. Meanwhile, the 

average percentage for the ECMWF model has decreased since day 6, but it is not significantly 

lower than the NCEP model. The average percentage for the CMC model is still the lowest one 

among three; however, it has slightly increased from day 6 to day 9. On day 9, it is not 

significantly different from the ECMWF model.  

 
Figure 4.14: The percentage (missing rate) for each EPS and NAEFS that misses the analysis 

group based on all cases at each lead time. The percentage is calculated by counting the cases 

with zero member in the analysis group and dividing it by the total case number at each lead 

time. 

In some cases, one or two EPS(s) can have zero number of members in the analysis 

group. In other words, the EPS(s) fails to predict that particular analysis scenario. We define a 

missing rate for each EPS to represent the fraction of cases that the EPS fails to predict the 

analysis scenario. Figure 4.14 shows the missing rate for each EPS as well as a combination of 
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NCEP and CMC model (NAEFS). For short-range forecasts (days 12), the NCEP model has the 

largest missing rate (>12%) among the three models. The ECMWF model has a missing rate 

value of 6% on day 1, but it reduces to less than 3% on day 2. The CMC model also has a 

missing rate value of 6% on day 1, but it increases to 9% on day 2. During the medium-range 

(days 36), the NCEP and CMC models have comparable missing rates (9%-14%), which are 

much larger than that of the ECMWF model. For the extended range (days 79), the CMC has 

larger missing rate than the NCEP model (except for day 9) while the ECMWF model still has 

the smallest missing rate (<4%) among the three models. One thing worth noting is that the 

NAEFS has comparable missing rate as the ECMWF model. It even has the smallest missing rate 

for short-range, day 4 and day 9 among all groupings considered, suggesting one benefit of 

combining the NCEP and CMC ensembles is to significantly reduce the missing cases in 

forecasting winter storms. 

To sum up, the percentage of members contributing to the analysis group together with 

the missing rate can quantify how well the individual EPS captures the analysis scenario. The 

NCEP model has the highest probability to be included in the analysis group for the short-range 

forecasts; however, it also has the highest missing rate. This indicates that NCEP model may 

have less forecast errors but also a smaller ensemble spread for short-range forecasts. The 

ECMWF ensemble shows the best performance in the medium range with the highest percentage 

contributing to the analysis group as well as the lowest missing rate among the three EPSs, 

suggesting its superiority in medium-range forecasts of East Coast storms. The CMC model 

overall shows the smallest percentage of members contributing to the analysis group and a 

relatively higher missing rate, suggesting that it is less reliable in terms of capturing the analysis 

scenario. However, it has lower missing rate than the NCEP model in the short range, indicating 
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that it may have both large forecast error and ensemble envelope for short-range forecasts. The 

combination of the CMC and NCEP models can reduce the missing rate significantly, 

demonstrating the value of combining the two models. 

4.5.2 Ensemble mean group versus other groups 

In general, the ensemble mean forecast is often assumed to be closer to the truth than any 

of the individual forecasts comprising the ensemble (Leith 1974; Murphy 1988; Whitaker and 

Loughe 1998). In operational forecast, the ensemble mean is most widely used to represent the 

best available estimate of the future state of the atmosphere. However, most of the verification of 

ensemble mean errors are based on the correlation, the mean absolute errors or RMSE. The 

majority of verification methods are not intuitive and don’t help improve the understanding of 

scenario development. The knowledge of correlation and MAE/RMSE for the ensemble mean 

(e.g. over the CONUS) is insufficient to be guidance for a forecaster to make a sensible forecast 

when expecting a severe winter storm. For example, in the 2015 January case, the ensemble 

mean was forecasting a cyclone closer to shore while a subset of ensemble members forecast a 

more northeastward cyclone. Under this situation, if the forecaster relied too heavily on the 

ensemble mean and ignored the other scenarios in the ensemble, a wrong forecast could be made. 

Therefore, a complementary and efficient verification of the ensemble mean is necessary to 

investigate whether the ensemble mean is really better than other subsets of an ensemble 

forecast. 

Scenarios based on PC1-PC2 phase space provide a new perspective to verify the 

ensemble mean. Since the analysis group is a representation of the analysis scenario while the 

ensemble mean group (Group EM) is a representation of the ensemble mean scenario, it is easy 
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to verify whether the ensemble mean group is similar to the analysis group. If the ensemble mean 

group includes the analysis scenario more often than the other scenario groups, it will suggest 

that the ensemble mean does have a better skill than the other subsets of the ensemble in terms of 

the capability of including real development scenarios. 

 

Figure 4.15: The fraction of cases (red line with dot) with the Group EM same with Group ANA 

for all cases at each lead time. For the five-cluster solution, each group is supposed to have 20% 

(black dot line) chance (average chance) to be similar with the Group ANA. The blue and 

magenta dashed lines represent 50% less and 50% more chance than the average chance to 

include analysis group, respectively. 

Figure 4.15 shows the fraction of cases in which the ensemble mean group is The same as 

the analysis group. For short-range forecast (12-day), the ensemble mean group does include 

the analysis scenario more often (~40%) than the expected average chance (20%) of each group. 
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This indicates that the ensemble mean scenario is more reliable than the remaining ensemble 

groups. However, the percentage decreases beyond day 2, becoming only slightly higher than the 

average percentage in the medium range and even less than the expected average in the extended 

range. This suggests that the ensemble mean group has no advantage when compared with the 

other groups in medium- and extended-range forecasts. Even in the short-range forecast, there 

are still around 60% of cases with the analysis group being different from the ensemble mean 

group. Therefore, focusing on the ensemble mean too much could be misleading in most cases. 

The ensemble mean information is far from a sensible guidance for forecasters in operations. 

 

Figure 4.16: The percentage of cases in which the analysis falls into the same quadrant as NCEP, 

CMC, ECMWF, and NAEF means, as well as in a quadrant in which none of the three EPS 

means are in. 
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The above results demonstrate that in the majority of cases, the analysis does not lie 

within Group EM, similar to the aforementioned two case studies, suggesting that one should not 

put too much emphasis on the ensemble mean and ignore the other groups. 

In operational forecasting, the individual model means are also used a lot, especially the 

ECMWF mean. Previous studies suggested that the ECMWF model is the “best” in global 

ensemble model (e.g., Buizza et al. 2005; Keller 2011). Operational forecasters have the 

tendency to hedge towards the ECMWF forecast direction when the forecast uncertainties are 

large. Figure 4.15 has shown that in the medium range the analysis scenario is not more likely to 

be in the Group EM. Here, we examine how often the analysis tends to be in the direction of 

individual model means on the PC1-PC2 space. We investigate this question by examining 

whether the projection of the analysis on the PC1-PC2 space is in the same quadrant as the 

different EPS means. Figure 4.16 shows the percentage of cases in which the analysis falls 

within the same quadrant as each EPS mean at each lead time. The percentage that the analysis is 

located outside of any of the EPS mean quadrants is also calculated for comparison. Since there 

are 4 quadrants, if everything is random, each EPS mean should have a probability of 1/4 (25%) 

to lie within the same quadrant as the analysis. As can be seen from Figure 4.16, the ECMWF 

model does show higher chance during the medium range to be in the analysis quadrant. 

However, even the highest percentage (for day 5) is no more than 35%. The NCEP and NAEFS 

show slightly higher chance for days 12 and day 9 to be in the analysis quadrant. One thing 

worth noting is that there are a moderate number (~20-30%) of cases in which the analysis lies in 

a quadrant in which none of the three EPS means fall. The quadrant statistics in Figure 4.16 

suggest that although the ECMWF ensemble shows a slightly higher chance to be in the quadrant 

in which the analysis falls for the medium range, it also misses the analysis direction in around 
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2/3 of the cases. The above result has practical implications in operational forecast, suggesting 

that it is not a good practice for forecasters to hedge towards the ECMWF ensemble mean 

solution as we often see, even though the ECMWF might be the best ensemble. Together with 

the statistics for Group EM and Group ANA in Figure 4.15, these results indicate that all 

scenarios must be taken into consideration in the formulation of a forecast. 

4.5.3 Error-spread relationship 

One widely accepted measure of the utility of an EPS is the relationship between its 

forecast accuracy and ensemble spread. From Figures 4.13-14, we have seen the capability of 

different EPSs in capturing analysis scenarios. The performance of an EPS is largely associated 

with its error-spread relationship or whether the EPS could provide sufficient forecast variability 

in simulating East Coast storms. In previous studies, the relationship is often simplified by 

linearly correlating the absolute error of either the ensemble mean forecast or the deterministic 

forecast with the corresponding ensemble spread of a forecast variable (Kalnay and Dalcher 

1987; Murphy 1988; Buizza 1997; Grimit and Mass 2005). However, there is a lack of studies to 

employ a complementary metric or to compare the error-spread skill for both multi-model and 

individual models. In this study, the error-spread relation in different individual models as well 

as the multi-model is revisited under the framework of EOF PCs. The metrics we are utilizing to 

do cluster analysis are EOF PCs, with the standard deviation normalized to be 1 for each case. 

To be consistent, we choose this metric to study the spread-error relation. Note that the OOE 

cases are included in calculating the following statistics in this subsection to avoid biasing the 

results. 



151 

 

Figure 4.17: The ratio of error to the spread of (a) PC1, and (b) PC2at each lead time for each 

EPS. The error is calculated based on the distance of analysis relative to each EPS or multi- 

model mean; while the spread is calculated using all the EPS ensemble members relative to the 

ensemble mean of each EPS or mulit-model. 

Figure 4.17 shows the error-spread ratios for the leading two EOF PCs based on the 

observed cyclone cases at each lead time for all three EPSs and the multi-model. The error-

spread ratio is calculated by dividing the RMSE of each model mean by the standard deviation of 

all members with respect to the model mean for all cases. One represents the perfect relation. 
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The model is considered to be “under-dispersed” if the ratio is greater than 1; otherwise, it is 

“over-dispersed” if the ratio is less than 1. For short-range forecasts, both PC metrics suggest 

that the NCEP model is severely under-dispersed (>1.2), which partly explains the larger missing 

rate shown in Figure 4.14. The CMC model is slightly over-dispersed on day 1 for PC1 and close 

to the reference line on day 2 for PC1 and on days 12 for PC2. The ECMWF model shows 

slight under-dispersion on day 1 especially for PC2, but it is overall closer to the reference line 

than the other two models. For medium-range forecasts, both the NCEP and CMC models are 

more under-dispersed than the ECMWF model for PC1 metric. The NCEP model shows the 

highest under-dispersion in PC2 while the other two show comparable under-dispersion. As for 

extended-range forecasts, all three models are severely under-dispersed in PC1 with comparable 

error-spread ratios. The ECMWF model has less under-dispersion than the other two EPSs in 

PC2. 

For PC1, the multi-model ensemble shows over-dispersion in short- to medium-range 

forecasts (days 14), a nearly perfect relation on day 5, and increasing under-dispersion after day 

6. For PC2, it also shows over-dispersion for forecasts before day 4. Between day 4 and day 7, it 

is slightly under-dispersed. However, it becomes more under-dispersed after day 7. For the 

extended range, the error-spread skills for all ensembles converge towards too low of a spread, 

which is consistent with previous studies (e.g. Park et al. 2008). Overall, the multi-model 

ensemble shows a much lower under-dispersion for medium- and extended-range forecasts, 

suggesting the benefit of combining different EPSs in the medium and extended range. 

To sum up, the NCEP model is severely under-dispersed in the short range for both PC 

metrics, suggesting the NCEP model may not have enough ensemble dispersion. Connecting this 

with its higher percentage of members contributing to the analysis scenario (Figure 4.13), a 
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preliminary conclusion is that the NCEP model has less forecast errors but a narrow ensemble 

spread in the short-range. In contrast, the CMC model is slightly over-dispersed or close to 

reference line during the short range. Since it has lower chance to be included in the analysis 

group, the CMC model seems to have large forecast errors but also a broad ensemble. The 

ECMWF model has better error-spread relationship during the medium range, demonstrating its 

superior performance in the medium range which is consistent with Figures 4.13-14. Note that 

during the earlier forecast time (1–3 days), the differences in the error-spread skills for the three 

models are larger, which could be due to their differences in generating ensemble perturbations 

(Table 2.1). The ECMWF model has been using the singular vector method for perturbing initial 

conditions (Molteni and Palmer 1993; Buizza and Palmer 1995). Previous studies found that the 

ECMWF spread is small and grow fast during the short range (Trevisan et al. 2001; Park et al. 

2008; Buizza et al. 2005), which partly explains why the ECMWF model is more underdispersed 

on day 1 than on day 2 in Figure 4.17. Overall, the best error-spread skill is obtained by the 

ECMWF ensemble for it has the best data assimilation/modeling components (Buizza et al. 

2005). The NCEP ensemble model uses the breeding vector approach for generating 

perturbations. The basic assumption is that the fast-growing perturbations naturally develop in a 

data assimilation cycle and will continue to grow as short- and medium-range forecast errors 

(Toth and Kalnay 1993). Previous studies found that the NCEP model exhibits the lowest (and 

least realistic) perturbation growth and the smallest spread beyond the first day (Buizza et al. 

2005), which perhaps explains the overall underdispersive characteristics for both short- and 

medium-range forecasts. The CMC EPS uses the operational ensemble Kalman filter (EnKF) to 

generate initial conditions (Houtekamer et al. 2009; Houtekamer et al. 2014). An ensemble of 

trajectory assimilates randomly perturbed observations, and uses different model versions. A 
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number of ensemble analyses are generated, among which 20 representative members are chosen 

to initialize the global ensemble forecasts. Hagedorn et al. (2012) found that CMC EPS starts 

with a large spread but exhibits a serious mismatch in the growth of the spread and error, which 

grows with lead time. This partly explains the largest increase in the error to spread ratio of the 

CMC EPS when compared with the other two models. The relatively good performance of the 

CMC system beyond 7 days may be due to the use of both perturbed observations and models in 

that ensemble (Buizza et al. 2005). 

On the other hand, the multi-model (NCEP+CMC+ECMWF) ensemble shows over-

dispersion in short-range forecasts, suggesting a combination of the three models is over-

dispersed. Beyond day 4, it is under-dispersed like the individual models. However, it is closer to 

the perfect value than any individual model is, suggesting the benefit of combining different 

EPSs to provide more forecast variability in the medium and extended range. The above results 

are consistent with the findings by Hagedorn et al. (2012) who analyzed using forecasts of 850-

hPa temperature, 2-m temperature and 500 hPa geopotential in the extratropics. 
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Figure 4.18: The same as Figure 4.17 but for two time periods during the examined time. Dashed 

lines with markers are for the cases during the first half period while the solid lines with markers 

are for the second half period. 

Since all three models experienced updates during the time period we examined, the 

error-spread ratios have been recalculated for two different periods: the first half (2007/08 to 

2010/11) and the second half period (2011/12-2014/15), separately. Figure 4.18 shows the error-

spread ratio for the two periods. For the PC1 metric, the error-spread ratio for short-range 

forecast doesn’t show large differences between the two periods except that the NCEP model 

becomes even more under-dispersed. Beyond day3, the NCEP and ECMWF models show 

improved error-spread relation in the second period while the CMC becomes more under-

dispersed. The multi-model showed slight improvement during the second period with the curve 

closer to the reference line except for day 3. For PC2, all three models as well as the multi-model 

show improvement beyond day 1 with the curves much closer to the reference line during the 

second period than during the first period. The NCEP model shows the largest improvement 

among the three models. Therefore, the error-spread relation in PC2 shows larger improvement 

in these two metrics. In the next subsection, we will show that PC2 is mainly associated with the 
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southwest-northeast shifting of the cyclone position. The above results suggest that the models 

improved the error-spread relation in forecasting cyclone southwest-northeast track uncertainties 

especially for the NCEP model. 

 

4.5.4 Physical interpretation of model errors based on PC metrics 

One benefit using EOF analysis is the orthogonal property of EOF patterns, which can 

also be used to perform the error decomposition. To decompose the forecast uncertainty in the 

multi-model ensembles, we first computed each member’s anomaly with respect to the ensemble 

mean for each case, and repeated this calculation for all cases. An EOF analysis was then 

calculated on the combined anomaly for all members and all cases. The leading patterns 

represent the dominant forecast uncertainties in all cyclone forecasts.  

Figure 4.19 shows the dominant uncertainty patterns in all ensemble members in 

forecasting the observed cyclone cases from day 1 to day 6 forecasts. The leading pattern (EOF1) 

tends to be a monopole at all forecast times, which is a bit northward (westward for day 6) of the 

ensemble mean cyclone (purple dot). This pattern suggests the main uncertainty in forecasting 

East Coast storms is the intensity together with a slight shift of the center in the north-south 

direction. The variance explained varies from 35.9% (for day 1) to 56.6% (for day 6). The 

second pattern (EOF2) is always a dipole orthogonal to the first pattern, which mainly represents 

the southwest and northeast shift in cyclone position. The explained forecast variance by the 

leading two patterns increases from 60.4% for day3 to 76.6% for day 6. Therefore, the leading 

two patterns represent most of the forecast uncertainties. 
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The systematic errors on each EOF direction can also be calculated. On the above EOF 

PC1-PC2 space, each member occupies one point for one case. When the analysis is projected 

onto the corresponding EOF1 and 2 patterns, it also occupies one point for each case. The 

difference in the abscissa or the ordinate between each member and the analysis reflects the 

relative error for that member in EOF PC1 or PC2. By averaging the differences between the 

members from one EPS and the analysis, the systematic error associated with EOF1/2 pattern 

corresponding to that EPS can be evaluated. Though the differences calculated in PC1 or PC2 is 

dimensionless, the EOF patterns have the dimension of MSLP. Each EOF pattern represents an 

anomaly with respect to the ensemble mean. Therefore, the PC1/PC2 errors can be converted 

back to the dimensional errors since they are associated with the EOF anomaly. The errors in 

cyclone forecasts can thus be decomposed into errors associated with the EOF1 or EOF2 pattern. 

Since each of the two patterns is two-dimensional, it can be further decomposed into cyclone 

intensity (minimum pressure) and displacement errors. The above decompositions of forecast 

errors associated with the leading two patterns are summarized in Figures 4.19-20 to provide a 

physical understanding of the model errors based on the EOF PC1-PC2 space. 

 

EOF 1 EOF 2 
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Figure 4.19: The first (left panel) and second (right panel) EOF pattern (shaded) in the multi-

model ensemble for day 1 to day 6 forecast (top to bottom). The purple dot represents the 

ensemble mean cyclone position averaged over all cases for each lead time. 
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Figure 4.20: Mean minimum pressure error (unit: [Pa]) of each EPS and the combined model for 

PC1 (a) and PC2 (b) errors from day 1 to day 6 forecast. 
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Figure 4.20 illustrates the minimum pressure error for each EPS as well as the combined 

EPSs from day 1 to day 6 forecasts derived from each EOF PC errors. The minimum pressure 

errors for the EOF1 patterns are much larger than those for the EOF2 patterns, which is 

consistent with Figure 4.19. Figure 4.21 depicts the displacement errors for each EPS associated 

with the leading two patterns. For the errors associated with the EOF1 pattern, the ECMWF 

model shows slightly larger positive intensity errors and displacement error toward the south or 

south-southwest direction than the other models for day 1 and day 2 forecasts (Figures 4.20a, 

4.21a, c). In contrast, the NCEP model has negative intensity errors and is located more toward 

the north than the other models. The CMC, NAEFS, and the three-model combined ensemble 

have the errors between the above two. For the medium range (36 days, Figure 4.20a, 4.21e, g, i, 

k), all models have positive intensity errors, suggesting an under-prediction of the observed East 

Coast winter storms. Among them, the CMC forecasts have the largest intensity and 

displacement errors toward the south (southeast for day 6) while the NCEP forecasts have the 

smallest intensity and displacement errors during days 3 and 5 and the ECMWF model has the 

smallest errors for day 6 forecasts. Throughout day 1 and day 3 forecasts, the NCEP model tends 

to be more northward than the other models, indicating their less southward bias. 

As for the EOF2 pattern, the overall intensity errors for all EPSs (Figure 4.20b) are small 

and negative, which again confirms the second EOF pattern often represents the position shift 

uncertainty instead of intensity uncertainty. During days 13 (Figures 4.20b, 4.21b, d, f), the 

ECMWF has the largest displacement error toward the west-southwest while the NCEP model 

has the least errors. During day 4-6 (Figures 4.20b, 4.21h, j, l), the ECMWF model has the least 

intensity and displacement errors among all models. Note that when comparing with the other 

models, the ECMWF model is always to the west-southwestward direction, suggesting that when 



162 

forecasting East Coast winter storm, one tendency of the ECMWF model is to forecast them too 

west-southwestward than the other two models. This could be partly due to the slow propagation 

in the ECMWF model as suggested by Froude et al. (2010). 
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Figure 4.21: The displacement errors corresponding to averaged PC1 (left) or PC2 (right) errors 

-day forecast. The radius has unit of 

kilometer (km). 

Here we want to emphasize that the forecast errors shown in Figures 4.20-21 only 

provide a qualitative understanding of the model errors. The simplification by extracting the 

leading two forecast uncertainty patterns is already an approximation in representing the forecast 

information. The mean errors of each EPS associated with the leading two patterns provide a 

gross tendency diagnosis of the biases present in the different EPSs. 

Note that in calculating the forecast errors (as well as for the error/spread relation 

discussed in the previous subsection), all cyclone cases and ensemble members are included in 

the calculations, hence we believe that the evaluations conducted in this study can provide results 

that are complementary to those provided by cyclone matching (Froude 2010; Korfe 2016) that 

can directly verify forecast errors in intensity and displacement, but can only verify cases in 

which many ensemble members can be matched to the observed cyclone, as well as verifying 

only the ensemble members that can be matched, which represent a reducing fraction of all 

cyclone forecasts as the lead time is increased. 

Day 6 k) PC1 l) PC2 

PC2 
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4.5.5 Evaluations based on predicted cyclones 

To confirm the results of evaluations for the three EPSs using observed cyclone cases, 

similar statistics were calculated using the predicted cyclone cases based on the NCEP 

deterministic forecast. The number of cases used for different lead times are listed in table 4.4. 

Lead Time [day] 1  2 3  4  5  6  7 8 9 

Case number 140 143 145 119 120 119 123 110 100 

Table 4.4: The number of predicted cyclone cases used for each forecast day. 
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Figure 4.22: (a) The same as Figure 4.13 but for the predicted cyclone cases; (b) The same as 

Figure 4.14 but for the predicted cyclone cases. 

Figure 4.22 shows the percentage of members contributing to the analysis group and the 

missing rate for each model. For the short range (days 12, Figure 4.22a), the NCEP members 

have the highest chance to be in the analysis group while the CMC members have the lowest 

chance. During the medium- and extended-range (Figure 4.22a), the ECMWF members have 

significantly larger chance in contributing to the analysis group. Overall the CMC members have 

the lowest chance to be included in the analysis group. Meanwhile, NCEP has the largest missing 

rate during days 13 while ECMWF shows much smaller missing rate during medium- and 

extended-range (Figure 4.22b). The combination of NCEP and CMC (NAEFS) significantly 

reduces the missing rate and even shows smaller rate during days 14 when compared to the 

ECMWF model (Figure 4.22b). Therefore, the scenario-based statistics overall are consistent 

with the statistics using the observed cyclone cases in section 4.5.1. The differences between the 

observed cases and predicted cases occur during day 7-9, which could be due to the large 

differences in sample size. 

We have also calculated other statistics such as the group EM vs. Group ANA, the 

quadrant statistics, and the error-spread ratios using the predicted cyclone cases (not shown). The 

statistics are grossly consistent with results in subsections 4.5.2-3 especially during days 15, 

demonstrating the results for the evaluations in this study are robust for short- and medium-range 

forecasts.  

4.6 Summary of outlier cases  

While for an ensemble forecast, a rate of outliers, i.e., the analysis lying outside of the 

ensemble envelop, is expected, the outlier rates are of paramount importance to ensemble 
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verification since they represent the poorest forecast skills in NWP. Since our study is based on 

the PC phase space, the outlier or OOE cases are also defined based on the PC1-PC2 space. As 

stated in section 4.4.2, the outlier cases or OOE cases are defined by the condition that the 

distance between the analysis and the closest member is significantly larger than the average 

distances between any two ensemble members.  

The fraction of OOE cases for each lead time is shown in Figure 4.23. During the lead 

times of 1- to 3-day, there are only less than 3% of OOE cases, which is consistent with the 

overall over-dispersion characteristic of the multi-model ensemble (Figure 4.17). It increases to 

5% on day 5 and reaches 8% for 6- to 7-day. The fraction of OOE increases to ~14% on day 8 

and drops slightly on day 9. Overall, the OOE fraction increases with lead time in medium- to 

extended-range, which could be associated with the increasing error-spread under-dispersion 

(Figure 4.17). 
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Figure 4.23: The fraction of OOE cases to all observed cyclone cases for each forecast lead time. 

Table A4.1 in Appendix 1 listed all the OOE cases for 16-day lead times in this study, 

including their forecast lead time, initial/verification time, and the verified weather event. Figure 

4.24 shows the counts of the OOE cases at all lead times for each cool season. It is shown that 25 

out of 38 OOE cases happened during the first half of the examined years (before 20011/2012, 

Figure 4.24). Eighteen of them happened in 2008/2009 and 2009/2010 cool seasons. The 

improvements of model resolution, data assimilation method and physical parameterization 

schemes (Table 2.1) could have brought about the overall reduction of OOE cases in the second 

half of the examined years. However, since the ensemble runs are flow dependent, the OOE 

cases can be also associated with very poor predictability of some types of synoptic flow patterns 

while NWP models remain the same. Thus, we examined the details of the 13 OOE case for 14-

day forecasts and the composited flow patterns for the 25 OOE cases for 6-day forecasts. The 

results are summarized in Appendix 1. 
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Figure 4.24: OOE cases count for each cool season based on all the OOE in table A4.1 in 

Appendix 1. 

4.7 Chapter summary 

This chapter has presented the application of a fuzzy clustering method to diagnose 

forecast scenarios in operations and to evaluate the capability of different EPSs in forecasting 

historical East Coast winter storm cases. 

It has been shown that the clustering method can be applied to efficiently separate the 

scenarios in forecasting East Coast storms based on a 90-member multi-model ensemble. 

Application to the 26–28 January 2015 storm event demonstrates that the forecast scenarios 

determined by the fuzzy clustering method are well separated and consistent in different state 

variables (i.e., MSLP, Z500, and total precipitation). The robustness of performing cluster 

analysis based on MSLP has been also confirmed by computing a Rand Index between clusters 

using different variables. 

Building upon the successful application of EOF/fuzzy clustering to operational cyclone 

cases, we have also proposed a scenario-based ensemble verification method by projecting the 

analysis onto the EOF PCs coordinate and finding the closest cluster to represent the analysis 

scenario. We have applied this tool to examine the capability of different models in capturing the 

analysis scenarios for historical East Coast cyclones. The NCEP model is found to perform better 

in the short range in terms of capturing the analysis scenario although it is under-dispersed. The 

ECMWF ensemble shows the best performance in the medium range, suggesting its superiority 

in medium-range forecasts of East Coast storms. The CMC model overall shows the smallest 

percentage of members contributing to the analysis group and a relatively high missing rate, 

suggesting that it is less reliable in terms of capturing the analysis scenario. One thing worth 
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noting is that the combination of NCEP and CMC can significantly reduce the missing rate. In 

addition, the combination of the three models is found to improve the error-spread relation, 

demonstrating the benefit of combining models in reducing missing rate and alleviating the 

under-dispersion problem especially in the medium- to extended-range.  

Since the ensemble mean of a multi-model or individual models (in particular the 

ECMWF model) is most widely used by the operational forecasters to represent the best 

available estimate of the future state of the atmosphere, whether the ensemble mean from the 

multi-model or individual models is really better than other subsets of an ensemble forecast has 

also been investigated based on the scenario analysis or the quadrant statistics. It is found that in 

the majority of cases, the analysis does not lie within Group EM. The quadrant statistics suggest 

that although the ECMWF ensemble shows a slightly higher chance to be in the quadrant in 

which the analysis falls for medium-range forecasts, it misses the analysis direction in around 2/3 

of the past storm cases. The above results have practical implications in operational forecast, 

suggesting that: 1) one should not put too much emphasis on the ensemble mean and ignore the 

other groups in the multi-model ensemble; 2) it is not a good practice for forecasters to hedge 

towards the ECMWF ensemble mean solution as we often see, even though the ECMWF might 

be the best ensemble. All scenarios must be taken into consideration in the formulation of a 

forecast.  

The forecast uncertainty patterns in forecasting winter storms based on the multi-model 

have also been investigated. For the 16-day forecasts, the first pattern is a monopole within the 

verification region, suggesting the dominant uncertainty is associated with the variation in 

forecasting cyclone intensity. The second pattern is a dipole along the west-east or southwest-

northeast direction, representing the variation in forecasting cyclone positions. For the 13-day 
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forecasts, the NCEP model tends to better represent both EOF1 and EOF2 patterns by showing 

less intensity and displacement errors. The ECMWF model has the largest bias in both EOF1 and 

EOF2 for days 12. For the 36 forecasts, the CMC model has the largest errors in representing 

both EOF1 and EOF2 patterns. Meanwhile, the ECMWF model is found to have the smallest 

errors in both EOF1 and EOF2 patterns during days 36. Therefore, as the acknowledged “best” 

ensemble among global EPSs, the ECMWF only starts to show superiority beyond day 3. One 

interesting point is that our results suggest that East Coast cyclones in the ECMWF forecasts 

tend to be towards the southwest of the other two models in representing EOF2 pattern, 

suggesting ECMWF model may have a tendency to show a closer-to-shore solution in 

forecasting East Coast winter storms. 
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Chapter 5 Predictability associated with Rossby wave packets 

In Chapter 3, we have found that ensemble sensitivity signals sometimes develop and 

propagate like an RWP with downstream development (Chang et al. 2013). Some OOE cases 

determined in Chapter 4 (see Appendix 1) are also associated with the presence of RWPs. Thus, 

another goal of this study is to find the connection between RWPs and the predictability 

associated with the rapid downstream error propagation. As early as the 1990s, RWPs in the 

middle and upper troposphere were considered to affect extratropical cyclones which often bring 

high-impact weather in winter. For instance, Orlanski and Sheldon (1995) proposed an energetic 

framework of downstream baroclinic evolution, and examined the trough formation over the east 

coast of North America associated with the “Blizzard of 93”.  They concluded that the formation 

of the trough was primarily due to the downstream propagation of Rossby wave energy from 

disturbances over the northeast Pacific. Moreover, they pointed out that under environmental 

conditions in which the downstream development leads to packets of eddies with a life span 

much longer than individual eddies, the detection of such packets and energy transfer processes 

may impact the longer range predictability of such systems. Chang and Yu (1999) found that 

wave packets appear to be most coherent across southern Asia, extending all the way across the 

Pacific, into North America, across the mid-Atlantic, across North Africa, and back toward 

southern Asia. This band is referred as the primary wave guide for synoptic-scale wave packets. 

There are downstream-developing wave trains propagating from the eastern end of the Pacific 

storm track across North America toward the Atlantic, suggesting that wave developments near 

the entrance of the Atlantic storm track are influenced by waves from the Pacific. Hakim (2003) 

showed that the Atlantic storm track is often seeded by wave packets that originate over the 

western North Pacific by studying a sample of North Atlantic storm track events.  
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Forecast errors also tend to develop wave packet-like structures (Hakim 2005), and 

propagate rapidly downstream with the group velocity (at least as fast as the upper level flow). 

Model errors during the “Surprise” January 2000 East Coast snowstorm also propagated with an 

RWP from the Pacific (Langland et al. 2002). Moreover, when a coherent RWP is present and 

the flow is zonal, distinctive targeted regions, which are associated with maximum forecast error 

reduction within verification regions, can be traced upstream to near Japan at lead times of 47 

days (Majumdar et al. 2010). Rodwell et al. 2013 investigated the forecast busts of the ECMWF 

day-6 forecasts over a European verification box and found that the busts are associated with a 

Rossby wave train that crossed the Pacific, suggesting the RWPs might enhance the medium-

range forecast errors and the ensemble spread over the verification region. In this work, we 

hypothesize that model errors are generally enhanced when wave packets are present upstream. 

To be more specific, we hypothesize the RWPs originating from the Pacific Ocean can degrade 

the predictability of the eastern North America and western Atlantic in the medium range.  

We start with the RWP envelope characteristics of large forecast error (dropout) cases in 

Section 5.1. In Section 5.2, the corresponding RWP anomaly in large ensemble spread cases will 

be presented. As a complementary perspective, Section 5.3 proposes a conceptual model about 

the errors/uncertainties relative to a coherent RWP and examines the corresponding forecaster 

errors and uncertainties under a coherent RWP case. Ensemble sensitivity based on the same 

coherent RWP will be examined in Section 5.4. The mechanism of downstream development for 

ensemble errors/uncertainties will be summarized in Section 5.5. Section 5.6 concludes this 

chapter. 

5.1 Dropout cases and RWP 
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 Dropout cases here refer to large forecast error cases over a prescribed verification region 

(Figure 2.2) for 300 hPa geopotential height day-7 forecasts from the NCEP GFS deterministic 

forecasts. Figure 5.1 shows the time series for the dropout cases used in this section. Subsection 

5.1.1 will explore the RWP anomaly in the dropout cases. As a comparison, subsection 5.1.2 will 

investigate the RWP anomaly in good forecast cases. 

 

Figure 5.1: The time series of168-h forecast RMSE of Z300 over VR for 5 cool seasons from 

2007/08 to 2012/13. Unit: [m]. Red dots and blue dots represent 83 large error cases and 85 

small error cases, respectively. 

5.1.1 RWP amplitude anomaly for Dropout cases 

RWP amplitude (RWPA) anomaly here is the average anomaly relative to the 

climatology of RWP amplitude during 2007/2008 and 2012/2013 cool seasons (Figure 5.2).  The 

dropout cases represent the cases with the largest forecast errors. By compositing the 

corresponding RWPA anomaly, the corresponding RWP features can be examined in the dropout 

cases. 
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Figure 5.2: Climatology of RWPA over the 2007-2012 cool seasons. Unit: [m/s]. 

Figure 5.3 shows the time evolution of the absolute error anomaly relative to its 

climatology based on the day-7 large error cases. At a lead time of 1 day, the forecast errors are 

very small and distributed randomly within the plotting area. Starting from day 2, significant 

positive errors begin to develop over the Gulf of Alaska, northwest of the U.S., and southwest of 

Canada. There is also a small but significant positive error over northern Japan. On day 3, the 

error maxima are over the Gulf of Alaska and northwestern U.S., respectively. There are also 

positive errors east of Kamchatka but they are not significant. The maximum error grows from 

~20 m for day 3 to >30 m for day 4. There are three error maxima on day 4: one east to the 

Kamchatka, the second across northwestern coast of the U.S., and the third one over western U.S. 

The eastern two pieces of errors grow rapidly from day 4 to day 5 and merge into one center 

west of the verification regions. The aforementioned first error maximum east of the Kamchatka 

has moved to Gulf of Alaska on day 5. The forecast errors grow from ~60 m on day 5 to 100 m 

on day 6. The error maximum is centered slightly southwest of the center of the verification 

region on day 6. Significant large errors cover most of the continental U.S. and its adjacent sea 
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east of the coast. On day 7 (verification time), the error has increased to >140m and is centered 

over northeastern U.S.   

Figure 5.4 shows the corresponding RWPA anomaly. The 95% significance contour for 

positive error in Figure 5.3 is also plotted to show where the significant errors are. On day 1, 

there is a significant RWPA positive anomaly over eastern Asia. Another positive anomaly is 

over northwestern U.S. On day 2, the RWPA anomaly over eastern Asia on day 1 has moved to 

western Pacific. Another positive anomaly is now over the northern plains of the U.S. On day 3, 

the first RWPA anomaly has moved to Central Pacific with the center east of the date line. Large 

errors tend to develop around its center and northern parts. There is another large error with the 

center over northwestern U.S, seemingly corresponding to the leading edge of the RWPA 

anomaly. The second RWPA anomaly has decreased radically.  On day 4, the RWPA anomaly is 

centered over northeastern Pacific, with the leading edge crossing the northwest coast of the U.S.  

Two large error maxima are over the leading edge of the positive RWPA anomaly and west to 

the positive anomaly center, respectively. On day 5, the RWPA anomaly has split into two 

centers, with the eastern one centered over the southern plains of the U.S., and the western one 

over the west coast of North America. The largest errors tend to develop over its downstream 

over the Great Lakes. During day 6 and day 7, the RWPA anomaly moves southeastward, with 

the center over the Great Lakes on day 7. The largest error is centered over its leading edge. 
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Figure 5.3: Composited forecast absolute error anomaly of Z300 conditional on 77 drop-out 

cases. Unit: [m]. Black line: significant values at 95% confidence level using t-test. Day 1-7: 1-7 

day forecast times. Day 7 is also the forecast verification time. 

To sum up, the forecast errors tend to develop and propagate from the central and eastern 

Pacific, suggesting the errors are associated with the propagation of large scale flow. For the 

forecast dropout cases, there was coherent RWPA positive anomaly starting from eastern Asia, 

crossing central and eastern Pacific, and entering the North American continent. Large forecast 

errors tend to develop with the RWPA anomaly when the RWPA anomaly is small. However, 

when the RWPA anomaly becomes large in amplitude and area, the largest errors tend to develop 

over its leading edge. The trailing region of RWPA is the second favorite region for error growth 

when a mature RWPA starts to cross the west coast of North America. America. 
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Figure 5.4: Composited RWPA anomaly (relative to climatology) conditional on 77 drop-out 

cases. Unit: [m/s]. Green line: significant values at 95% confidence level using t-test. Black 

contour: significant large absolute error region in Figure 5.3. 

5.1.2 RWPA anomaly for good-forecast cases 

From Figures 5.3-4, we have seen that composite large error cases over eastern U.S. and 

western Atlantic are associated with positive RWPA anomalies from upstream. By comparison, 

the RWPA anomalies in good-forecast cases have also been investigated in this subsection. 

Figure 5.5 shows the time evolution of the absolute error anomaly based on the day 7 

small error cases. During days 13, the forecast error anomalies are very small and mainly 

smaller than the climatological errors. Starting from day 4, an isolated piece of small error 

anomaly (negative values) is just crossing the southwestern coast of the Canada. On day 5, the 

significantly smaller errors are mainly over the western/southwestern coast of the U.S. The 
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significantly smaller errors develop over the whole North America on day 6 and shifts towards 

the western Atlantic on day 7. The error anomaly shows an over 70 m reduction over the 

northeastern U.S.  

 
Figure 5.5: The same as Figure 5.3 but for the good-forecast cases. Note the black contours 

represent the significantly smaller errors relative to the climatological errors. 

The corresponding RWPA anomaly is shown in Figure 5.6. The 95% significant contour 

for negative error anomalies in Figure 5.5 is plotted to show where the significantly small errors 

are. On day 1 and day 2, there are very weak positive RWPA anomalies over the western Pacific. 

The positive RWPA anomalies dissipate on day 3. A negative RWPA anomaly is over the west 

coast of the Canada, corresponding to the small error anomaly there on day 4. On day 5, the 

above negative RWPA anomaly becomes elongated and spans the middle latitudes (~35°N-55°N) 
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of North America. The center of the RWPA anomaly moves to the east coast of the U.S. and 

western Atlantic on days 67. Meanwhile, there exists weakly negative RWPA anomaly over 

most regions of eastern North America.   

 
Figure 5.6: The same as Figure 5.4 but for the good-forecast cases. Note that black contours 

show the significantly smaller errors relative to the climatological errors. 

Therefore, a weakly negative RWPA anomaly develops from the west coast of Canada 

and is seemingly associated with the decreasing absolute errors over the eastern North America. 

When compared with the results for the large-error cases, the negative RWPA anomalies are 

weaker and more localized, indicating that the weakening of the RWP is linked to the small 

errors over the eastern North America and western Atlantic. 

5.2 Large spread cases and RWP 
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Ensemble spread is used in some studies (Grimit and Mass 2007; Du and Zhou 2011; 

McMurdie and Ancell 2014) to represent the predictability, with large ensemble spread 

indicating poor predictability. Therefore, we used 70 large ensemble spread cases based on the 7-

day forecast of Z300 from 2007/2008 to 2012/2013 cool seasons over the same verification 

region in section 5.1. The large-spread cases are the cases with area-averaged spread >1.5 

standard deviation.  

Figure 5.7 shows the evolution of the composite spread anomaly from day 1 to day 7. 

Note the dashed box in each panel is the verification region. On day 1, the average spread is 

quite small everywhere. On day 2, large positive spread anomalies are mainly over the western 

North Pacific.  On day 3, significantly larger spread anomalies are over the North Pacific. One 

anomaly is over the north of the Bering Sea, and another small positive anomaly is centered on 

(155°W, 35°N). There is also a third large spread anomaly spreading from northeastern Pacific to 

the northwest of the Great Lakes. On day 4, the largest spread anomaly has moved to the 

northeastern Pacific and the west of North America with two centers over the southwestern 

coastal area of Canada and northern Great Plains. From day 5, both positive spread centers grow 

and expand eastward. The west coast one is still centered over western Canada, whereas the 

downstream one has moved to the Midwest of the U.S. Note that the downstream anomaly 

developed more than the upstream one north of the Rocky Mountains.  On day 6, the spread 

anomaly over the west coast has moved eastward and started to merge with the downstream one 

over the Great Lakes. Meanwhile, the downstream one has significantly increased from 25 m to 

35 m. On day 7, the largest spread anomaly is within the verification region, with the center 

spreading from south of the Great Lakes to the Northeast of the U.S.  Note that there is another 

center just over the Alaska Peninsula.   
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The composited RWPA anomaly together with the largest normalized spread over the 

whole region is shown in Figure 5.8. A positive RWP anomaly is over northwestern North 

Pacific on day 1. Another positive RWP anomaly is over its southeast spreading from East 

Pacific to the west coast of the U.S. The largest spread develops between them over the North 

Pacific. On day 2, the positive RWP anomaly to the west has moved to the south of the Bering 

Sea and increased to 4 m s
-1

, whereas the eastern one remains over eastern Pacific between 35°N 

and 40°N. Significant larger positive spread anomalies are around the centers of the two 

anomalies. The above two RWP positive anomalies merge and strengthen on day 3 with the 

stronger center at (40°N, 140°W). Note that the largest spread is around the northern RWP center 

over the Gulf of Alaska.  On day 4, the merged positive RWP anomaly has crossed the west 

coast of North America with the center over the northern part of the Rockies. The largest spread 

is over the west coast of Canada. On day 5, the positive RWPA center has weakened and shifted 

to the west of the Great Lakes. The largest spread is still over the southwest coast of Canada; 

meanwhile, another positive spread anomaly is over the west of the Great Lakes. Hence the large 

spread anomalies develop over the trailing region as well as the central region of the positive 

RWPA. On day 6, the RWPA anomaly continues weakening and moves to the East Coast of the 

U.S. The largest positive errors follow the RWPA anomaly center. Note that from day 5 to day 6, 

the largest spread center has jumped from the west coast of Canada to the Great Lakes, 

indicating that downstream development may have also occurred in the development of the 

forecast uncertainties over eastern U.S. On day 7, the RWPA anomaly intensifies slightly over 

the Northeast of the U.S. The large positive spread anomaly is with the RWPA positive anomaly. 

Meanwhile, a weak positive spread anomaly is over the Gulf of Alaska, which is the trailing 

region of the RWPA anomaly.  
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From Figures 5.7-5.8 we can see that the large-spread cases are also associated with 

enhanced RWPA propagating eastward from the Pacific. The centers of the large spread anomaly 

seem to shift from upstream over northeastern Pacific to the downstream over eastern and 

northeastern U.S. from day 4 to day 6 when the enhanced RWPA reaches the west coast of North 

America and enters the central North America. These results suggest that the leading edge of an 

RWP is a preferred region for the growth of both errors and uncertainties.  

 
Figure 5.7: Composited ensemble forecast spread anomaly of Z300 conditional on 70 large 

spread cases. Unit: [m]. Black line: significant values at 95% confidence level using t-test. 
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Figure 5.8: Composited RWPA anomaly (shaded, [m/s]) and the normalized ensemble spread 

(black contour, [%]) in 70 large spread cases. 

5.3 Errors and uncertainties in coherent RWPs 

5.3.1 A conceptual model of errors/uncertainty development associated with RWPs 

Previous studies of both individual cases and a large number of cases have suggested that 

RWPs can serve as energy sources of downstream disturbances (Chang 1993; Orlanski and 

Sheldon 1995; Chang 1999; Chang and Yu 1999; Chang 2000; and Hakim 2003). Hakim (2005) 

further demonstrated that midlatitude forecast errors can develop and propagate similarly to 

RWPs. Chang et al. (2013) proposed that forecast uncertainties resemble the behavior of the 

downstream development of RWPs. Meanwhile, the impacts of targeted observations also 
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propagate downstream in the form of an RWP (Szunyogh et al. 2000; Szunyogh et al. 2002; 

Majumdar et al. 2010).  

From the studies of both large-error and large-spread cases for the eastern North America 

and western Atlantic discussed in the previous sections, we have found that both large errors and 

spread are associated with enhanced RWPs from upstream as far as eastern Asia or western 

Pacific. Building on the previous studies as well as the interpretation of operational daily 

ensemble RWPs, we propose a conceptual model for error and forecast uncertainty development 

as illustrated in Figure 5.9. 

 
Figure 5.9: A conceptual model of the errors/uncertainties relative to the different stages of an 

RWP. Green, orange, red, and purple solid contours represents the RWP amplitude with the 

green being the least value and purple the largest value. The dashed contours represent an 

alternate process between two adjacent stages of RWP. The area enclosed by the green contour 

represents one RWP object. The black four-pointed star, diamond, six pointed star, triangle 

(dashed triangle), and plus sign, denote the possible regions for large errors/uncertainties 

associated with each RWP object. Note that the positions of RWP objects just denote an 

approximation of the preferred RWP location, instead of the exact locations of an RWP. 

Figure 5.9 shows an RWP forming over western Pacific (or central/eastern Pacific), and 

propagating into continental North America. We define the main stages of the RWP as follows: 

the onset of the RWP (stage I), the developing stage (stage II), the mature stage (stage III), the 

decaying stage (stage IV) and the re-developing stage (stage V). An RPW can form in different 

ways (Souders et al. 2014b): it may begin independently from a synoptic eddy; it may form when 



187 

upstream energy “seeds” the entrance region of a storm track with a strong waveguide in place, 

or it may split off from a parent RWP either at its leading or trailing edges. The most likely 

genesis locations for RWPs in the NH are found to be at 140°E170°W and 80°W60°W 

(Souders et al. 2014b). During the onset stage, the likely large errors or forecast uncertainties 

tend to follow the RWP center when there is not a pre-existing upstream RWP. The RWP often 

intensifies over the central and eastern North Pacific. During the developing stage, the largest 

forecast errors/uncertainties are often over the center as well as the leading edge of the RWP. 

The RWP that impacted the predictability of eastern U.S. often reaches a peak or mature stage 

(Stage III) around eastern North Pacific or the west coast of North America.  During this stage 

the largest errors/uncertainties are mainly over its center. Meanwhile, there often exist significant 

large errors/uncertainties over its leading edge. The RWP starts to decay when it crosses the 

mountainous regions (the Rocky Mountains) over western North America. The flow often splits 

into two streams: the northern stream and the southern stream. Hence the RWP crosses the 

mountain by turning either to its north (solid contours over the west coast of North America 

Figure 5.9) or south (dashed contours, Figure 5.9). From the composite results in sections 5.1-2, 

the northern track of the RWP over the west coast of North America is more closely associated 

with both large error and uncertainty cases. The northern track is considered to be the primary 

track to impact the predictability of eastern North America and western Atlantic. Henceforth, the 

southern track is considered to be the secondary track for RWPs to impact the forecasts of 

downstream regions. No matter which track the RWP takes, the forecast errors/uncertainties are 

often over its trailing region and leading edges. Both Souders et al. (2014b) and Glatt and Wirth 

(2014) suggested that western-central U.S. (west of 80°W) is a preferred region for RWP decay. 

The decaying stage (stage IV) is thus defined when the RWP crosses the Rocky Mountains and 
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reaches its minimum intensity over western North America. During the decaying stage, the 

largest forecaster errors/uncertainties can develop further downstream of the leading edge of 

RWP. East Coast of the U.S. and the surrounding ocean is another preferred region (80°W-

60°W) for RWP formation (Souders et al. 2014b). Therefore, a re-developing stage (stage V) is 

defined when the RWP starts to strengthen again over the east coast of the U.S. and western 

Atlantic. During this stage, the largest errors/uncertainties are over the central and leading 

regions of the RWP. Note that RWP during the re-developing stage can be actually a new RWP 

seeded by the decaying RWP. However, no matter whether a new RWP is triggered over the East 

Coast and the western Atlantic region, the largest errors and uncertainties often increases 

significantly around the previous decaying RWP center and the leading regions. 

Previous studies (Lee and Held 1993; Orlanski and Chang 1993; Swanson and 

Pierrehumbert 1994) used numerical experiments to demonstrated that nonlinearity modifies the 

wave characteristics substantially, with the leading edge of the linear wave packet developing 

into a localized nonlinear wave packet, and the trailing end somehow dissipating, leaving just a 

localized downstream developing wave packet propagating with the speed of the leading edge as 

predicted by the linear theory. Chang (1993) showed that over the Pacific storm track regions, 

baroclinic waves exhibit the distinct characteristics of downstream development and occur in 

wave packets that propagate with group velocities much faster than the phase speeds of 

individual waves. RWP movement can be largely explained by the divergence of the fluxes of 

local eddy kinetic energy and ageostrophic geopotential (Chang 2001). Szunyogh et al. (2000; 

2002) employed the ETKF method to investigate the impact of targeted observations and found 

that the ETKF signals propagate like upper-tropospheric wave packets generated by baroclinic 

energy conversion. Meanwhile, the largest error reduction was observed at the leading edge of 
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ETKF signals. Hence it is reasonable to hypothesize that the large amplitude of the growing 

waves over the leading edge regions could impact the growth and distribution of 

error/uncertainties especially downstream of RWPs. For example, the center of the largest 

errors/uncertainties can jump from the center of an RWP to the downstream regions when the 

center of eddy activity is shifting toward the downstream side during the mature and decaying 

stages (Chang 1993; Chang 2001). Szunyogh et al. (2002) found that the peaks of forecast 

improvement over the eastern U.S. followed the peaks of improvement over the western half 

with a 24-h delay, which is the time it takes for a wave packet to travel from the western to the 

eastern half of the country. Their results also showed the eastward “jump” of the signal maxima 

(See Figure 8 in Szunyogh et al. 2002), suggesting that the shift of the ETKF signals appear with 

the strong energy conversions. Extreme RWPs are often formed more commonly (more than 

70%, Souders et al. 2014) in the North Pacific. The average propagating speed is around 25-30 m 

s
-1 

(Glatt and Wirth 2014) or a bit slower (15-25 m s
-1

, Souders et al. 2014b), and the average 

duration is 5.8 days. Hence it is common for a coherent RWP originating over western or central 

Pacific to propagate across western North America and reach eastern North America within 4-7 

days. The conceptual model shown in Figure 5.9 should be a useful model to illustrate how 

RWPs can modulate the development of forecast errors/uncertainties, thereby the medium-range 

predictability of East Coast high-impact weather event. One caveat for using this conceptual 

model is that the observed RWP objects in Figure 5.9 are not necessarily consistent with the 

exact locations and the relative amplitudes. Nevertheless, they represent a practical tool to 

understand the evolution of forecast errors/uncertainties associated with the coherent RWPs 

originating from upstream as far as western Pacific. 

5.3.2 A case study of Error/forecast uncertainty growth with respect to a propagating RWP from 

western Pacific 
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To illustrate how the growth of errors and uncertainties in operational runs fit the 

conceptual model in Figure 5.9, a typical RWP case propagating from western Pacific is 

investigated in Figures 5.10-11 

Figure 5.10 shows the time evolution of the ensemble mean RWPA as well as the 

forecast errors/uncertainties from day 1 to day 5 (verification time). On day 1 (24h), the RWP is 

over the central Pacific between 35°N and 50°N. There is large spread over its leading edge 

centered at (160°W, 43°N). The largest errors are also found over the leading edge between 

155°W and 135°W. On day 2 (48 h), the RWP has moved eastward by ~15°longitudes. The 

largest spread is located east of the RWPA center. Meanwhile, the forecast errors have increased 

to over 60 m just southeast to RWPA center. Downstream of the RWP, there is a large spread 

center around the southwest coast of the U.S. 
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Figure 5.10: The ensemble mean RWPA (magenta solid contours, [m/s]), ensemble spread of 

Z300 (black contours,[m]), and the ensemble mean Z300 errors (shaded, [m])  of a 20-member 

GEFS run from 24h to 120h forecasts initialized at 1200 UTC March 21, 2014. The green box is 

the verification box later used to compute ensemble sensitivity. 

On day 3 (72 h), the RWP center has shifted to the west coast of North America, leaving 

a longitudinally elongated trailing region which spans almost the entire Pacific. Taking both 

intensity and area into account, the RWP reaches its maximum on day 3. The largest 

errors/spread grows rapidly just west to RWP center as well as its northeastern quadrant. In other 

words, the largest errors and forecast uncertainties start to develop over both the leading edge as 

well as the trailing area. On day 4 (96 h), the RWP center has crossed the west coast of North  
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Figure 5.11: The Hovmoller plot of ensemble mean RWPA (magenta solid contours, [m/s]), and 

the ensemble spread of Z300 (a, blue contours,[m]) averaged between 30°N and 55°N, and the 

ensemble mean Z300 absolute errors (b, blue contours, [m])  of a 20-member GEFS run from 24 

h to 120 h forecasts initialized at 1200 UTC March 21, 2014.  Black plus signs represents the 

maxima of spread or errors at each forecast day. 

America and weakened a bit. Large errors and spread are over its leading regions. A new large 

spread center forms over the East Coast of the U.S. On day 5 (120 h), the RWP is centered over 

the Mid-Atlantic. The largest errors and spread are spreading from its center towards the east and 

the northeast. The magnitude of the positive errors of Z300 over the western Atlantic has 

increased rapidly to >220 m from a negative error of ~40m on the previous day. The spread has 

increased rapidly from ~50 m to ~140 m over the east and  northeast of U.S.   

Figure 5.11 shows the corresponding Hovmoller diagram for both RWPA and the 

errors/spread. It is clear that the largest errors and spread tend to be mainly over the east of 

RWPA centers from day 1 (12Z 22 Mar 2014) to day 5 (12Z 26 Mar 2014). In other words, the 

errors and spread exhibit clear downstream development characteristics associated with the wave 

packet.  However, there are also large errors/spread over the trailing regions of RWP between 

day 3 and day 4. This time is the transition time when the wave packet transitions from the 

mature stage to the decaying stage with the errors/uncertainties developing over both its trailing 

end and its leading edge, which qualitatively fits the northern track scenario displayed in Figure 

over both its trailing end and its leading edge, which qualitatively fits the northern track scenario 

displayed in Figure 5.9. 

5.4 ESA of forecast metric to RWP 

As discussed in Chapter 3, ESA can reveal the co-varying relation between a forecast 

metric and a state vector. The most sensitive areas are the critical regions associated with the  
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Figure 5.12: Ensemble mean of Z300 (black solid contour), with EOF1 (a, colored contour) and 

EOF2 (b, colored contour) of Z300 patterns based on the 20-member GEFS ensemble of Z300 

initialized at 1200 UTC March 21, 2014 and valid at 1200 UTC March 26, 2014. 
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Figure 5.13: Sensitivity of EOF PC1 of Z300 to Z300 (left, shaded) and WPA (right, shaded) 

from 24h (day 1) to 120h (day 5) forecast time. The ensemble is the 20-member GEFS run 

initialized at 1200 UTC March 21, 2014. The EOF PC1 is calculated based on the 120 h or day 5 

forecast over the green box. Magenta contours: the ensemble mean WPA; Gray contours: 

ensemble mean Z300. 

variation in forecast metric corresponding to a verification time over a specified area. Sensitivity 

can be considered as an alternate way to represent forecast uncertainties in an ensemble run. In 

this section, we use ESA to investigate the sensitivity of a forecast metric to an RWP, which can 

be considered as an alternative way to examine the development of forecast uncertainty relative 

to RWP. 

The same case discussed in subsection 5.3.2 (Figures 5.10-11) is used here. The leading 

two EOF PCs of Z300 are used as forecast metrics while the state vector is the RWPA anomaly 
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in different members with respect to the ensemble mean. To compare the results, the Z300 is also 

employed as a state vector to calculate sensitivity. 

The 5-day GEFS ensemble run is chosen and the EOF analysis is performed to find the 

dominant pattern of the Z300 forecast. The ensemble mean of Z300 shows a trough over the East 

Coast (Figure 5.12). Positive EOF 1 pattern shows a positive anomaly southwest of the trough 

and a negative anomaly over its north and northeast (Figure 5.12a). Hence EOF1 pattern 

represents a north-northeastward shifting and strengthening of the trough. EOF2 pattern shows a 

negative anomaly just west of the trough and strong positive anomaly over the east and the north 

(Figure 5.12b), indicating a slightly westward shifted and overall weaker trough. 

Figures 5.13 and 5.14 show the ensemble sensitivity lon-lat plot and the hovmoller 

diagram using both Z300 and WPA as state vectors. Both sensitivities using Z300 and WPA as 

state vectors shows that the Z300 forecast over the verification regions are closely associated 

with the propagating RWP from western Pacific. The sensitivities using Z300 as state vector are 

overall stronger, which is expected for the forecast metric is based on the Z300 ensemble. 

Sensitivity using Z300 also clearly showed downstream development features. ESA using WPA 

suggested that the trough intensification and northeastward shifting at verification time are most 

significantly associated with the RWP intensity on day 1 and day 2, and the northeastward 

expansion on day 3 and day 4. Both sensitivities suggested that overall the leading edges 

downstream of the RWP center tend to develop the largest ensemble sensitivity. Nevertheless, 

west of the central regions between day 2 and day 4 also exhibits significant ensemble 

sensitivity.   
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Figure 5.14: Hovmoller plot of sensitivity to Z300 (a, blue contours) and to WPA (b, blue 

contours) averaged between 30°N and 55°N. The magenta contours are for RWPA averaged over 

the same longitudinal bands. 
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Figure 5.15: The same as Figure 5.14 but for sensitivity using EOF PC2. 

Sensitivity of EOF PC2 to Z300 shows that the weakening and westward-shifting of the 

trough and its downstream ridge is associated with a weaker wave group both upstream and 
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downstream at verification time (Figure 5.15a). The sensitivity to RWPA (Figure 5.15b) is 

consistent, suggesting the weakening and slightly southwestward shifting RWP is associated 

with the EOF2 pattern. When comparing with sensitivity for EOF1, both sensitivities for the 

EOF2 pattern are weaker in amplitude. However, the most robust signals which finally propagate 

into the verification region at verification time are over the leading edges.  

 The ESA for the case study confirms that the forecast uncertainties over the verification 

region are most closely linked with the central to leading part of the RWP. The sensitivity 

develops and propagates with the RWP leading edges, exhibiting the characteristics of 

downstream development. These results suggest that RWPs propagating across the North Pacific 

have a pervasive impact on the forecast skill over eastern U.S. and western Atlantic. 

5.5 Downstream development of forecast errors 

In the previous sections we have shown the importance of downstream development in 

the time evolution of forecast errors and uncertainties. The conceptual model in Figure 5.9 was 

proposed based on the composited results as well as the daily ensemble WPA interpretations. 

Orlanski and Katzfey (1991) derived the eddy kinetic energy (EKE) budget equations and 

showed that the local kinetic energy fluxes between adjacent baroclinic systems are critical to 

cyclone growth and downstream development. Chang (1993) employed the EKE equation to 

build a comprehensive framework of downstream development theory of RWPs. Since we 

hypothesize that the large forecast errors and uncertainties are associated with the downstream 

development of RWPs, the EKE budget will be used to diagnose whether the error increases are 

mainly due to the downstream process.  

5.5.1 The eddy kinetic energy budget  
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In order to derive the EKE budget equation, the atmospheric flow is first separated into a 

time mean (usually monthly mean) part and a perturbation part. The horizontal velocity, vertical 

velocity and the geopotential can be divided as follows: 

                                   'vvv  m  (5.1) 

                                   '  m  (5.2) 

                                    '   (5.3) 

Where v is the horizontal and ω is the vertical velocity; ϕ represents the geopotential. The 

subscript m denotes the time-mean part and the prime describes the perturbations. 

The eddy part of the kinetic energy (EKE) can be defined as: 

                                     
2/)( 2'2' vuKe 

. (5.4) 

The equation governing the local tendency of the EKE can be derived from the horizontal 

momentum equations as well as the continuity equation and be written as follows (see Appendix 

2 and Orlanski and Katzfey 1991): 
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Note that the v in the above equation represents the total horizontal wind. The variables 

in the equations are defined in equations 5.1-4. 

Orlanski and Katzfey (1991) further demonstrated that the first term on the rhs in 

equation 5.5 associated with the pressure work can be further partitioned into two, one for the 

geostrophic eddy flux and the other for the ageostrophic eddy flux through the following 

derivation: 
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Hence the EKE equation 5.5 can be summarized as follows: 
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In equation 5.6, the first term on the rhs is the convergence of the total energy flux, which 

is the sum of advective flux (AdvF) and ageostrophic geopotential flux (AGF). The second term 

is the baroclinic conversion from eddy available potential energy. The third term is the 

barotropic conversion. The fourth term represents the convergence of the vertical advective flux 

of EKE and the vertical energy flux (the total energy flux entering the volume from the top and 

bottom if vertically integrated).  

It has been shown in the literature that the ageostrophic geopotential fluxes (AGF) 

contribute significantly to the growth of downstream waves (e.g. Orlanski and Chang 1993). 

Chang and Orlanski (1994) showed that for nearly plane waves, the summation of the AGF and 

the AdvF normalized by the total eddy energy is exactly equal to the group velocity of RWPs, 

indicating the total energy flux in equation 5.6 is most closely associated with the downstream 

energy dispersion. Their results also showed that waves over the wintertime Pacific storm track 

region radiate a lot of energy toward the downstream direction, suggesting this energy can affect 

the weather and climate of the eastern Pacific and the continental North America. Since the 
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integral of the total energy flux convergence can be used to diagnose downstream development 

between adjacent waves when integrating the local EKE tendency, we will use the vertical 

integral of the first term in the rhs of equation 5.6 as well as its individual components associated 

with the AGF and the AdvF to diagnose the development of errors and investigate how much it 

contributes to the EKE budget. Since the vertical velocity data (ω’ in equations 5.6) is not 

available from the TIGGE archive and the focus of this study is on the terms associated with 

downstream development, the baroclinic term in equation 5.6 is not calculated for this work even 

though it may also be important.  

5.5.2 The diagnostic of forecast errors under EKE framework 

In order to examine how the errors develop and propagate under the EKE framework, the 

vertically integrated EKE as well as its local tendency (DK/DT) will be investigated firstly using 

the same 2014 March case discussed in sections 5.3-5.4. 
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Figure 5.16: Vertically integrated EKE (gray shades 1x105 J m-2) and the local EKE tendency 

(colored contours, -70-20, and 2070 W m-2) from 0 h (day 0, 12Z March 21 2014) to 120 h 

(day 5, 12Z March 26 2014) in the NCEP analysis. Black dashed contours are Z500. 

Figure 5.16 shows the time evolution of the EKE and its tendency (DK/DT). Two EKE 

centers (A and B) developed over the western and central Pacific, which were associated with the 

presence of a wave packet as discussed in sections 5.3-4. The EKE tendency suggests that the 

EKE often increases (positive DK/DT) over the leading regions of the EKE center and decreases 

(negative DK/DT) over the trailing areas, indicating predominantly eastward movement. By 24 

h, the developing center B has grown in both amplitude and area. A new EKE center (C) formed 

downstream of center B. At 48 h, the upstream EKE center A weakened while the downstream 

center C had been growing. Center B maintained its intensity. Note that at this time there were 

two positive tendency centers just over the west coast of North America, indicating the EKE 

there will subsequently increase. Figure 5.13 has shown that at this time, the leading edge of the 

RWP reached the west coast of North America. The positive EKE tendency there is indicative of 

the dispersion of EKE energy from upstream. At 72 h, center C developed while the upstream 

center B weakened. A new center D was forming downstream of C associated with a trough 

lying northeast to the Rocky Mountains. Large positive EKE tendency was over the downstream 

side of center D. At 96 h, both centers B and C weakened while the center D developed over the 

B D E 
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Northern Plains of U.S. Another new center E formed over the ocean east to the East Coast of the 

U.S. At 120 h, center C disappeared and B was very weak. Center D had moved to the Midwest 

of the U.S. and weakened a bit. The downstream center E, which was over the eastern side of an 

upper-level trough along the East Coast, had rapidly intensified. The positive tendency over its 

eastern and northeastern side indicates it will be further intensifying in the following time. Note 

that center E was also connected with a pre-existing western Atlantic RWP (center X). 

Figure 5.16 shows that the EKE associated with the RWP started to increase from 48 h 

over the west coast of North America, impacting the continental U.S. during the following days, 

and reached the East Coast of the U.S. at 120 h. As can be seen from Figures 5.10 and 5.11, the 

forecast errors over the continental U.S. and the surrounding ocean started to grow by 72h. 

Previous studies suggested that the downstream development of a new EKE center is triggered 

by the convergence of the AGF (Chang 1993; Orlanski and Sheldon 1995). While the AdvF is 

often large, it acts mainly to redistribute energy from the rear to the front of the energy center 

and not between energy centers, as is the case for the AGF (Orlanski and Sheldon 1995). In 

terms of the EKE budget, Chang (1993) found that over weakly baroclinic regions, initially the 

convergence of the AGF dominates the growth of EKE with other terms playing only secondary 

roles. Therefore, we consider the AGF to be more representative of the initial downstream 

development, though AGF and the AdvF together are associated with the group velocity of 

RWPs (Chang and Orlanski 1994). Here we hypothesize that the errors in a new EKE center are 

triggered by the errors in AGF during the early stages while the AdvF becomes increasingly 

important during the later stages. Meanwhile, the errors in the baroclinic conversion term can be 

comparable with the AGFD term in the later stage over the regions with strong baroclinicity. 
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To examine the errors associated with downstream development, the forecast errors in 

EKE are calculated. Meanwhile, the errors in the convergence of the AdvF, the AGF, and the 

total advective flux are also computed separately to represent the contributions of each term to 

the errors in the local EKE tendency. Hence the errors associated with downstream development 

can be quantified. The control member from the NCEP operational model, and two ensemble 

members (member 4 and member 10) will be investigated. These two members are chosen 

because member 4 has larger MAE than other member while member 10 has smaller MAE over 

a verification box (80°W-50°W, 25°N-55°N) and better forecast the location and the intensity of 

the surface cyclone at 120 h than other members. Since the large errors over North America 

developed from 72 h, the errors from 72 h (day 3) to 120 h (day 5) will be shown.  
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Figure 5.17: (left panels) The EKE (shaded) and the AGF (black arrows) and its convergence 

(colored contours, -AGFD); (right panels) the errors of EKE (shaded), AGF (black arrows) and 

its convergence (colored contours). The colored contours are starting from 100 Wm
-2

, with a 

100 increase or decrease. 

The vertically integrated EKE, the AGF, and the convergence of AGF are shown in the 

left panels of Figure 5.17 while the right panels show their errors in the control forecast. It is 

clear that strong AGF exhibits between two EKE centers, with the upstream center radiating 

energy to the downstream one. At 72 h,  the EKE enter C radiated energy to its northeast across 

the west coast of North America, leading to a convergence of AGF around (125°W, 50°N). The 

newly formed center D received energy from its northwest through weak AGF. In the forecast, 

center C was a bit weaker and displaced southward. The northeastern side of C radiated more 

energy to its north instead of its east, leading to the divergence error around (125°W, 50°N). The 

new EKE center D was shifted north-northeastward over the northern Plains. At 96 h, center D 

was more north-northeastward in the forecast. In the analysis, there were very strong AGF 

transferring energy from D to the newly formed downstream center E over the southeast coast of 

the U.S., while the AGF was much weaker (opposite direction around 90°W, 35°N) in the 

forecast. The downstream center E was thus much weaker in the forecast. There also existed 

significant AGF transferring EKE from center D to eastern Great Lakes in the analysis while the 

AGF was also weaker in the forecast. At 120 h, the AGF errors between centers D and E were 

very large over the East Coast of the U.S., leading to the less energy transfer from D to E and 

excessive divergence (energy dissipation) over the southern part of E, which contributes to the 

B 
D E 
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negative EKE errors over western side of E and positive EKE errors over the east-southeastern 

side of D.  Note that the AGF was anticlockwise within center E in the analysis while in the 

forecast the AGF had a clockwise errors, creating positive EKE errors around (65°W, 41°N). 

Overall, there was a qualitative correspondence between the AGF convergence (divergence) 

errors and the positive (negative) errors of two adjacent EKE centers, seemingly associated with 

the downstream development over regions with strong AGF. 

Figure 5.18 shows the EKE, the AdvF, and the convergence of the AdvF. The relation 

between the EKE and advection term is straightforward as can be seen from the left panels in 

Figure 5.18. The AdvF follows the propagation of EKE, creating divergence over the rear of the 

energy center and convergence over the front of the center, which is consistent with the results 

from Orlanski and Shelton (1995). The errors of the advection term showed divergence error 

over the eastern (western) side of a negative (positive) EKE error and convergence error over the 

western (eastern) side of a negative (positive) EKE error. When compared with the AGFD from 

96 h, the convergence/divergence errors caused by the advection term overall were smaller than 

that by the AGFD over eastern U.S. and western Atlantic, indicating the errors associated with 

the AGFD term are larger. Meanwhile, the errors of the advection term were mainly distributed 

within a same EKE center while the AGFD errors could be large during the regions between two 

adjacent energy centers, suggesting the AGFD can shift the error centers from upstream to 

downstream and thus initiate a downstream error center while the errors in advection term are 

more local. Nevertheless, together with the AGFD, they modulate the change of local EKE 

change and its errors. 
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Figure 5.18: The same as Figure 5.17 but for the AdvF and its convergence (the advection term). 
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Figure 5.19: Averaged (a-d) MAE and (e-h) ME of the EKE tendency, -AGFD, -AdvD, and the 

total flux convergence for four regions (top to bottom: EP, 150°W-125°W; WN, 125°W-100°W; 

CE, 100°W-75°W; and WA, 75°W-50°W) between 30°N and 60°N.  Unit: W m
-2

. 

Figure 5.19 shows the area averaged mean absolute error (MAE) as well as the mean 

error (ME) for the EKE tendency (DK/DT) and the two flux terms associated with the AGF and 

AdvF for four regions from west to east. For the MAE, the errors in DK/DT increases with the 

increase of the errors in the AdvFD term, which seem to lag (by ~6-24 hours) behind the growth 

of MAE in AGFD term. The peak of the MAE in DK/DT shifts with time to the east and grows 

rapidly between region CE (central and eastern North America, Figure 5.19c) and region WA 

(western Atlantic, Figure 5.19d).  The peak value of MAE in DK/DT for a region seems to be 

influenced by the position of the aforementioned RWP relative to this region. For instance, the 

center of the RWP reaches the central longitude of region EP at 78 h (not shown), at which the 

MAE over region EP started to approach its peak value (Figure 5.19a). The amplitude of MAE in 

AGFD term is slightly larger than that of AdvD term when a region is located east of the center 

of the RWP, indicating that the errors in the AGFD term may contribute more to those in the 

DK/DT over the leading edge of the RWP or the further downstream areas of the leading edge. 
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A closer look at the mean errors (Figures 5.19e-h) show that the net mean errors in 

DK/DT over a region prior to the peak of MAE are grossly consistent with the net errors in the 

AGFD term, indicating that the initial errors in DK/DT might be triggered by the errors for the 

AGFD term when the region is downstream to the RWP, for example, between 24 h and 42 h 

over region EP in Figure 5.19e; and between 102 h and 120 h over region WA in Figure 5.19h. 

For region WA, the signs of the ME for the DK/DT were similar with the ME in the AGFD term 

between 108 h and 144 h (Figure 5.19h), indicating the errors in DK/DT are mainly attributable 

to the errors in the AGF convergence: the under-prediction between 102 h and 120 h and the 

over-prediction between 126 h and 156 h. Between 144 h and 168 h, errors in advection term 

contributed more to the errors in DK/DT over region WA. Note that the net errors in total 

advection can be much smaller or larger than those in DK/DT, such as during 66 h and 108 h for 

region EP in Figure 5.19e, and during 132 h and 144 h for region WA in Figure 5.19f, suggesting 

that other terms (e.g., the dissipation term, the barioclinic conversion term) were cancelling or 

enhancing the errors in total advection term. 

Other than the control forecast, the EKE errors associated with two ensemble members 

(member 4 and 10) are also computed. Note that member 4 showed larger MAE among the 

ensemble than member 10 did over the verification box (80°W-50°W, 25°N-55°N) at 120 h. At 

72 h (Figure 5.20), there was an AGF divergence error over the west coast around (125°W, 

50°N) in member 4, suggesting less energy transferring from the EKE center C in Figure 5.16 to 

its northeast, leading to weaker amplitude and the east-northeastward displacement of the 

downstream center D. In contrast, there was an AGF convergence error over at same location in 

member 10, leading to excessive EKE errors over the northeastern side of Rocky Mountains. The 

overall errors over EKE center D was smaller in member 10 than in member 4. During 96-120 h 
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(Figure 5.20), the errors in the AGF downstream of center D were much larger in member 4 than 

those in member 10.  Both members under-predicted the southern and eastern side of EKE center 

E. However, member 4 under-predicted the EKE much more than member 10 did. The errors in 

the AdvD term (Figure 5.21) for the two members followed the EKE errors. Member 4 had more 

advection errors than member 10 had at 72 h. Both members showed comparable errors in the 

advection term at 120 h.   

 

 

 

 

Figure 5.20: The same as right panels in Figure 5.17 but for member 4 (left panels) and member 

10 (right panels) for lead times of 72 h, 96 h and 120 h. 

D D 

D D 

D D 
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Figure 5.21: The same as Figure 5.20 but for the DK/DT errors associated with the AdvF term in 

member 4 (left panels) and member 10 (right panels). 

Figure 5.22 compares the MAE and ME of the two members for regions CE and WA, 

respectively. For region CE (Figure 5.22), the EKE tendency errors peak around 108 h for 

member 4 and 96 h for member 10. The MAE in the AGFD term for both members was much 

larger than the MAE in the AdvF term during 54120 h (Figures 5.22a, e), again suggesting that 

the AGFD term is more important in contributing to the errors in DK/DT over this region when it 

is over the central and leading regions of the RWP. However, the overpredictions of the AGFD 

term for member 4 were much larger than for member 10 especially during 96-120 h. Note that 

around the peak of DK/DT errors, the errors in the total advection were much larger than the 

DK/DT errors, suggesting that errors in other terms (e.g., baroclinic conversion term) might be 
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fairly large and cancelling errors in the total flux terms especially in member 4 (Figure 5.22b). 

For region WA (Figures 5.22c, g), the MAE in DK/DT peaks at 132 h in member 4 and at 126 h 

in member 10. The DK/DT for member 4 was severely underpredicted in member 4 during 102-

120 h and over-estimated between 126-150 h, which was mainly attributable to the errors in 

AGFD terms during 102-132 h and to the errors in AdvD term during 136-150 h (Figure 5.22h). 

Hence the total advective term dominate the large errors in DK/DT for member 4. For member 

10, the DK/DT was only slightly under-estimated during 120-126 h and over-estimated during 

132-150. Note that the reduction of the errors in AGFD might be the main reason for the larger 

underestimation errors associated with center E in member 4 prior to its mature stage (132 h). 
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Figure 5.22: Averaged MAE (a, c, e, g) and ME (b, d, f, h) for member 4 (left, a-d) and member 

10 (right, e-h) over region C (a, b, e, f) and D (c, d, g, h). 

To sum up, the EKE errors increased with the AGFD and advection terms, in particular 

for the downstream regions over the eastern U.S. and western Atlantic Ocean, indicating that the 

two terms contribute significantly to the EKE local tendency. The comparisons among the three 

members show that the AGFD term is more important in modulating the EKE errors during the 

initial stages when there are significant AGF but small AdvF, in particular over the leading 

regions of a RWP. When the RWP propagates into northeastern Pacific, there are always change 

of shape over the west coast of North America. The directions of AGF can thus change rapidly, 

affecting the energy transfer between the RWP center and its leading areas. A proper 

representation of the AGF in models can modify the convergence or divergence areas and thus 

modulate the local EKE change when the convergence of the AGF is dominating the growth of a 
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new EKE center. The initial locations of newly formed EKE centers are critical in impacting the 

downstream forecasts. Member 10 in this case study better resolved the initial EKE center 

(center D) with less AGFD errors, leading to a much better forecast of DK/DT over the 

downstream areas (eastern U.S. and western Atlantic). For instance, both the cyclone position 

and intensity of member 10 are closer to the analysis off the East Coast as can be seen from 

Figure 5.23. Nevertheless, the errors in the AGF and the AdvF terms together contribute 

significantly to the error growth of the local EKE center as well as the propagation of error 

peaks. 

As can be seen from equation 5.6, the EKE tendency has other terms: the baroclinic term 

and the barotrophic terms. Previous studies suggested that the advection term, the AGFD term, 

and the baroclinic term are the dominant terms in EKE tendency budget (Chang 1993). However, 

the baroclinic term in a new EKE center only plays a secondary role in modifying the growth of 

the RWP during the initial stages. Due to the lack of the vertical velocity data (ω) in TIGGE 

archive, the baroclinic term was not calculated for this work. In this case, as well as many other 

coherent RWPs impacting the central and eastern U.S., an RWP often starts to decay when 

crossing the West Coast; the baroclinic term is not expected to contribute much in the local 

energy change over the central and west coast of the U.S. However, when there is strong 

baroclinicity over the East Coast and the western Atlantic Ocean, the baroclinic term could also 

contribute significantly to the error growth. We speculate that the rapid intensification of center 

E is also impacted by the baroclinicity over the southeastern U.S. during days 4-5. The averaged 

errors during 96-120 h for region CE showed that the other terms are also important other than 

the advective term (Figures 5.18 c, g, and 5.22a,b,e,f). However, our study confirms that the 

downstream development over the leading regions of a RWP crossing west coast of U.S. 
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provides an excessive error source to degrade the downstream forecast. In other words, when the 

thermal and moisture conditions are similar, the presence of an RWP from upstream can further 

degrade the forecast skills over the central and eastern U.S. 

 

Figure 5.23: Geopotential height of 1000 hPa for analysis, member 4 and member 10 valid on 

day 5 (1200 March 26, 2014). 

5.6 Chapter summary 

This chapter has explored the impacts of RWPs on medium-range forecasts over eastern 

U.S. and western Atlantic in the cool season. Previous studies have suggested that RWPs exhibit 

downstream development characteristic (e.g. Chang 1993), with the co-existence of the decaying 

upstream waves and developing downstream new waves. A hypothesis was proposed that RWPs 

originating from Pacific can degrade the predictability over eastern U.S. and western Atlantic 

Ocean. 
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The RWPA anomalies in both large-error cases and large-spread cases over the 

verification region have been analyzed in sections 5.1 and 5.2. The composite results show that 

both the large-errors and large-spread cases are associated with enhanced RWPs from upstream 

from as far as western Pacific. The error maxima can shift from upstream of an RWPA anomaly 

to its downstream regions (see Figures 5.3-4, 5.7), indicating the errors might propagate with the 

speed comparable with the group velocity of RWPs. 

Building upon the composite results as well as our observations of the operation daily 

RWPA, a conceptual model of errors/uncertainty development associated with RWPs has been 

proposed in subsection 5.3.1. The conceptual model shows that there are five stages of a RWP 

originating from the western or central Pacific and propagating into the continental North 

America. It suggests that large errors/uncertainties are mainly over the central and the leading 

edge of the RWP in most stages. One exception is the decay stage, during which the 

errors/uncertainties also develop over the trailing areas of the RWP. An investigation of the 

errors and ensemble spread in a typical RWP case confirms the validity of the conceptual model. 

ESA associated with the same case also demonstrate that the development of the sensitivities 

qualitatively fits the conceptual model. 

In order to investigate the mechanism of how RWPs affect the downstream predictability, 

forecasts error growth associated with downstream development have also been investigated 

under the framework of eddy kinetic energy budget based on the same coherent RWP case in 

Section 5.5. The results show that the errors in the total advective term (AGF and AdvF) 

associated with downstream development contribute significantly to the errors in the local EKE 

tendency especially over the eastern U.S. and western Atlantic region. The AGF plays a 

significant role during the initial development of the EKE errors. A comparison between two 
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ensemble members shows that the ensemble member (e.g. member 10 in the case study) that 

better resolved the initial EKE center with less AGFD errors subsequently had a much better 

forecast of the EKE tendency over the downstream areas (eastern U.S. and western Atlantic). 
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Chapter 6 Conclusions and future work 

In this dissertation, we have explored the source and propagation of forecast errors and 

uncertainties in forecasting cool-season extratropical cyclones over the east coast of the U.S. and 

western Atlantic Ocean utilizing a multi-model ensemble from CMC, NCEP, and ECMWF. 

Ensemble sensitivity analysis has been employed to diagnose the upstream uncertainties 

associated with cyclone amplitude and position forecasts using the multi-model ensemble. The 

sensitivities determined by the ESA are verified by the LOOCV technique. In order to 

investigate the detailed evolution of different forecast scenarios in forecasting the high-impact 

winter storms, an EOF/fuzzy clustering tool has been applied to operational forecast to separate 

forecast scenarios in the multi-model ensemble. Building on the successful application of the 

EOF/fuzzy clustering method to cyclone case studies, a scenario-based ensemble verification 

method has been proposed to examine the capability of different models in capturing the analysis 

scenarios for historical East Coast winter storms. Meanwhile, the model errors from the three 

EPSs have been evaluated based on the leading EOF PC metrics. The role of the large scale 

RWPs originating from the Pacific Ocean in impacting medium-range forecasts over eastern 

North America and western Atlantic Ocean have been explored. The primary goal of the research 

presented here is to increase our understanding of the predictability of East Coast winter storms 

and apply novel techniques to reap the benefits of ensemble outputs and potentially improve 

medium-range forecasts.   

6.1 Summary and conclusions 

Because of the chaotic nature of the atmosphere, small differences in different model 

members at the initial times can be amplified or distorted at later forecast time steps. Thus the 

variations of a state variable at initial times may have a profound effect on medium range 
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forecasts associated with a high-impact winter storm. Therefore, it is necessary to quantify the 

relation between the state variable at earlier forecast times and the forecast metric of interest in 

the medium range. Meanwhile, it is important to determine regions where small changes can be 

largely associated with the variations in forecasts over the verification region at a valid time, 

such as the intensity and track uncertainties of the cool-season storms over the eastern North 

America and western Atlantic Ocean in the medium range. In Section 3, the ESA was applied to 

diagnose the forecast uncertainties for cyclone amplitude and position forecasts using the multi-

model ensemble. The application of ESA to a high-impact winter storm in December 2010 

demonstrated that the sensitivity signals based on different forecast metrics (the EOF PCs, the 

MSLP run cycle differences, and the short-range forecast errors) are robust. In particular, the 

ESA based on the leading two EOF PCs can separate sensitive regions associated with cyclone 

amplitude and intensity uncertainties, respectively. The sensitivity signals were verified using the 

LOOCV method. Both 3-day and 6-day LOOCV results based on historical cyclone cases 

demonstrated that the forecast skills of ESA are fairly high in modifying the forecasts over the 

verification region. Thus, the sensitivity using the leading two EOF PCs can be quite reliable out 

to medium range.  

Section 3.6 also presented the climatology of ESA for 3-day and 6-day forecasts based on 

the multi-model forecasts of historical cyclone cases. It was found that the EOF1 pattern often 

represents the intensity variations while the EOF2 pattern represents the track variations along 

west-southwest and east-northeast direction. For PC1, the upper-level trough associated with the 

East Coast cyclone and its downstream ridge are important to the forecast uncertainty in cyclone 

strength. The initial differences in forecasting the ridge along the west coast of North America 

impact the EOF1 pattern most. For PC2, it was shown that the shift of the tri-polar structurethe 
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East Coast trough and its adjacent ridgesis most significantly related to the cyclone track 

forecasts. 

While the ESA tool discussed in Chapter 3 can provide an overall linear relation to 

diagnose forecast uncertainty related to a forecast metric, it may miss parts of the important 

information in the ensemble forecast given the nonlinear nature of the atmospheric flow. The 

detailed development scenarios in an ensemble can also be important in the operational forecast 

process and to improve the understanding of the predictability of winter storms. Meanwhile, 

effective tools to extract the ensemble information in a form that can provide the most important 

development scenarios could benefit the operational forecasters and decision makers given the 

increasing volume of ensemble data. 

To quickly extract important information from a large ensemble and diagnose forecast 

uncertainty, Chapter 4 applied the EOF/fuzzy clustering tool to diagnose the scenarios in 

operational ensemble forecast of East Coast winter storms. It was shown that the clustering 

method can efficiently separate the forecast scenarios associated with East Coast storms based on 

the 90-member multi-model ensemble. The application of the EOF/fuzzy clustering tool to the 

26-28 January 2015 storm event demonstrated that the forecast scenarios are well separated and 

consistent in different state variables such as the MSLP, Z500, and 24-h total precipitation. 

Based on the successful application of the EOF/fuzzy clustering tool to case studies, we 

have proposed a scenario-based ensemble verification method and applied it to examine the 

capability of different EPSs in capturing the analysis scenarios for historical East Coast cyclone 

cases at lead times of 19 days (Section 4.5). The results suggest that the NCEP model performs 

better in short-range forecasts in capturing the analysis scenario although it is under-dispersed. 

The ECMWF ensemble shows the best performance in the medium range. The CMC model is 



225 

found to show the smallest percentage of members in the analysis group and a relatively high 

missing rate, suggesting that it is less reliable in terms of capturing the analysis scenario when 

compared with the other two EPSs.  A combination of NCEP and CMC models has been found 

to reduce the missing rate and improve the error-spread skill in medium- to extended-range 

forecasts. 

By utilizing the scenario analysis, whether the ensemble mean from the multi-model 

ensemble or each individual models is really better than other subsets of an ensemble forecast 

has also been analyzed. It was found that in the majority of cases, the analysis does not lie within 

Group EM in the multi-mode ensemble. Meanwhile, the quadrant statistics suggest that the 

ECMWF model misses the analysis direction in around 2/3 of the past storms although it shows a 

slightly higher chance to be in the analysis quadrant in the medium range. 

Based on the orthogonal features of the EOF patterns, the model errors for 16-day 

forecasts have been decomposed for the leading two EOF patterns. The results show that the 

NCEP model tends to better represent both EOF1 and EOF2 patterns by showing less intensity 

and displacement errors during 13 days. The ECMWF model is found to have the smallest 

errors in both EOF1 and EOF2 patterns during 36 days. The CMC model shows moderate 

errors for days 12 and the largest errors for days 36. We have also found that East Coast 

cyclones in the ECMWF forecast tend to be towards the southwest of the other two models in 

representing the EOF2 pattern, which is associated with the southwest-northeast shifting of the 

cyclone. This result suggests that ECMWF model may have a tendency to show a closer-to-shore 

solution in forecasting East Coast winter storms. 

Motivated by the observation that the sensitivity signals sometimes develop and 
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propagate like an RWP with downstream development (e.g., Figures 3.24-25), the relation 

between RWPs and the forecast errors/uncertainties in the GFS and GEFS models is investigated 

to explore the role of RWPs in the predictability of downstream regions over eastern U.S. and 

western Atlantic Ocean.  

The composited RWPA anomalies show that there are enhanced RWPs propagating 

across the Pacific in both large-error and large-spread cases over the verification regions 

(sections 5.1-5.2. There are also indications that the errors might propagate with a speed 

comparable with the group velocity of RWPs. 

Building upon the composite results as well as our observations of the operation daily 

RWPA, a conceptual model of errors/uncertainty development associated with RWPs has been 

proposed to serve as a practical tool to understand the evolution of forecast errors and 

uncertainties associated with the coherent RWPs originating from upstream as far as western 

Pacific. It suggests that the central and the leading regions of the RWP are the preferable regions 

for large errors/uncertainties to grow and develop. The errors and spread in a case study for a 

coherent RWP fits the conceptual model well. The ESA is also performed for this case study and 

the corresponding sensitivities also qualitatively fit the conceptual model. 

In order to investigate the mechanism of how RWPs affect the downstream predictability, 

the forecasts errors associated with the downstream development have been investigated under 

the framework of eddy kinetic energy budget based on the same coherent RWP case in Section 

5.5. Previous studies showed that the total advective term in the EKE budget equation is most 

closely related to the downstream development (Chang 1993; Orlanski and Shelton 1995). The 

results show that the errors in the total advective term contribute significantly to the errors in the 



227 

local EKE tendency especially over the eastern U.S. and western Atlantic region. The errors in 

the AGF term plays a significant role in the initial development of the EKE errors. A comparison 

between two ensemble members shows that the ensemble member that has less errors better 

resolved the initial EKE center with less AGFD errors, leading to a much better forecast of the 

EKE tendency over the downstream areas (eastern U.S. and western Atlantic).  

6.2 Implications 

This dissertation applied ESA and clustering to investigate the source of forecast 

uncertainty and to separate the forecast scenarios for the medium range in forecasting cool-

season cyclones over the East Coast of the U.S. Meanwhile, the three most widely used EPSs are 

comprehensively evaluated in terms of the scenario-based statistics, the quadrant statistics, the 

PC-based error-spread skills, and the EOF pattern-based intensity/displacement error 

decompositions. Finally how RWPs impact the predictability over the eastern U.S. was 

investigated. Consequently, a conceptual model was proposed and analyzed under the EKE 

framework. Results in this dissertation have important operational and scientific implications as 

summarized below. 

i. The application of ESA in operational forecasting provides an efficient and intuitive way 

to help forecasters to track the source of the forecast uncertainty associated with an EOF 

pattern of interest (e.g. the close-to-shore or far-from-shore solutions). In past literature 

about ESA (e.g. Ancell and Hakim 2007; Torn and Hakim 2008; Zheng et al. 2013), the 

verification of the sensitivity signals had been a limitation. The main verification method 

of ESA has been based on initial-condition numerical experiments (Torn and Hakim 

2009; Chang et al. 2013), which are computationally expensive and thus cannot be 

applied to a large number of cases. The verification using LOOCV method (Gombos and 
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Hoffman 2013) provides an efficient and robust way that allows us to verify the ensemble 

sensitivity signals for many cases. The results from the LOOCV demonstrated the 

goodness of the sensitivity signals in the multi-model ensemble forecasts we examined. 

ii. The climatology of ESA for medium-range forecasts of East Coast cool-season storms 

can provide guidance to operational forecasters to help them identify and conceptualize 

the preferable regions for the development of forecast uncertainties during significant 

East Coast cyclone events. Meanwhile, the ESA climatology highlights the regions where 

model disagreement can impact the forecast most.  

iii. The fuzzy clustering provides a complementary way to investigate the forecast 

uncertainties. Together with the ESA, they can help forecasters to make better use of the 

ensemble output. The ensemble verification based on scenario is a novel and efficient 

way to verify cyclone forecasts in the multi-model ensembles. Previous studies mainly 

employed the tracking and matching method to verify extratropical cyclones (Froude 

2010), which only verify cases in which many ensemble members can be matched to the 

observed cyclone, as well as only the ensemble members that can be matched. Hence 

these verifications exclude a significant fraction of cyclone forecasts especially in the 

medium range. In this dissertation, all (most) of the cyclone cases and ensemble members 

are included in evaluating the model errors (calculating scenario-based statistics), hence 

we believe that the evaluations here can provide results that are complementary to the 

results from previous studies. Despite the difference in our method and the matching 

method, we have found consistent results with other studies (Froude 2010), for example 

the westward tendency in ECMWF model associated with the slow propagation speed of 

the forecast cyclones.  
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iv. We have shown that the ensemble mean group (the ECMWF mean) is not superior to 

other subsets of ensemble members in terms of the scenario (quadrant) statistics. 

Meanwhile, the quadrant statistics suggests that although the ECMWF ensemble shows a 

slightly higher chance to be in the quadrant in which the analysis falls for the medium 

range, it also misses the analysis direction in around 2/3 of the cases. A few clarifications 

were made about the benefit of ensemble mean. The above results have practical 

implications in operational forecast, suggesting that: 1) one should not put too much 

emphasis on the ensemble mean and ignore the other groups in the multi-model 

ensemble; 2) it is not a good practice for forecasters to hedge towards the ECMWF 

ensemble mean solution as we often see, even though the ECMWF might be the best 

ensemble. All scenarios must be taken into consideration in the formulation of a forecast.  

v. The composite results based on large-error and large-spread cases suggest that the RWPs 

originating from Pacific Ocean and propagating into North America degrade the 

predictability over the eastern U.S. and western Atlantic Ocean. These results are 

consistent with the findings based on the forecast busts over Europe in Rodwell et al. 

(2013). However, other studies (Grazzini 2007; Grazzini and Vitart 2015) suggested that 

the atmospheric predictability may be enhanced with the presence of coherent RWPs. 

The differences might be due to the metrics used to represent RWPs as well as the 

different forecast lead times, for instance, the focus of Grazzini and Vitart (2015) is on 

the medium- and long-range forecasts (beyond day 8).  

vi. The conceptual model proposed in Section 5 represent a practical tool to illustrate how 

RWPs can modulate the development of forecast errors/uncertainties, thereby the 

medium-range predictability of East Coast high-impact weather event. One caveat is that 
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the observed RWP objects in Figure 5.9 are not necessarily similar with the exact 

locations and the relative amplitudes. Meanwhile, the EKE based budget is creatively 

applied in diagnosing downstream-development-related errors. It provides a physical 

interpretation of the mechanism for RWPs to impact the cyclone forecasts over the 

eastern U.S. 

vii. Both ensemble sensitivity and the fuzzy clustering approaches have been applied to real-

time ensemble forecasting out to medium range as part of our collaborations with the 

NOAA Environmental Modeling Center (EMC) group. The near real-time products and 

web interfaces of ESA and fuzzy clustering provide an efficient and intuitive way for 

operational forecasters to interpret the ensemble outputs.  

6.3 Future work 

The theme presented in this dissertation provides a framework for ongoing and future 

work. Some potential future research paths are listed as follows. 

i. Further comparisons of ESA and other sensitivity analysis methods, such as the ETKF 

and adjoint sensitivity. We have shown in Section 3.5 that the ETKF signals are 

qualitatively consistent with the ESA signals in a case study. Quantitative comparisons 

between them using more cases are necessary to improve the understanding of the 

dynamical relation between a response function and state variables and to provide 

confident guidance for targeting and assimilating new observations.  

ii. Perturbed initial condition experiments can be performed to differentiate significant 

sensitivity signals from spurious signals, as well as to validate the verifications based on 

the LOOCV method. 
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iii. To examine how differences in large scale flow patterns can impact coherent ESA signals. 

Preliminary suggested that the blocked events over eastern Pacific have an impact on the 

propagation of ESA. The future work will investigate the differences in ESA for the 

zonal and blocked flows.  

iv. Given its simplicity and low computational cost, the ESA can be applied to other high-

impact weather events. The impact-based response functions can be developed to help the 

decision makers and to benefit the end-users. 

v. The OOE cases represent the cases with the poorest forecasts. Detailed case studies are 

needed to understand what factors might have led to the poor predictability.  Numerical 

experiments can be designed to test those related factors either using different physics 

under a similar model or using the different models (e.g. WRF and CAM) with similar 

physics. 

vi. The fuzzy clustering method and the scenario-based verifications can be applied to other 

high impact weather events, such as tropical cyclones and extremely heavy precipitation 

events.  

vii. The model errors determined in Section 4.5 can be diagnosed using the same models but 

using the physics or data assimilation method from another model to test the reasons for 

the model errors. 

viii. The relation between RWPs and the forecast dropout cases provides motivation that 

future work can be done to investigate in more details the relation between RWPs, flow 

patterns, and cyclogenesis. 

ix. Some preliminary results based on case studies have suggested that the ensemble 

sensitivity using the metrics of total precipitation also show characteristics of RWPs. The 
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impacts of RWPs on the predictability of large-scale precipitation events, in particular the 

shifting of the heaviest precipitation region, can be investigated to potentially improve 

the forecasts on the boundary of the heaviest precipitation region. 
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Appendix 1 

This appendix summarizes the OOE cases as listed in the Table A4.1 for Section 4.6. 

Lead Time Case Initial Time 
Verification 

time 
Description of weather event 

1 day 
1a 2008123100 2009010100 Northeastern U.S. winter Storm 

1b 2015032600 2015032700 N/A 

2 day 2a 2010012100 2010012300 N/A 

3 day 

3a 2008120912 2008121212 Eastern U.S. mixed precipitation event 

3b 2009012600 2009012900 
Southern Plains/Ohio Valley/Northeast 

U.S. winter storm 

3c 2011010612 2011010912 N/A 

3d 2014011912 2014012212 Midwest to Eastern U.S. winter storm 

4 day 

4a 2007122300 2007122700 N/A 

4b 2008122800 2009010100 Northeastern US winter Storm 

4c 2009012500 2009012900 N/A 

4d 2012122600 2012123000 N/A 

4e 2014011800 2014012200 Midwest to Eastern U.S. winter storm 

4f 2014021212 2014021612 Northeast winter storm 

5 day 

5a 2008111100 2008111600 N/A 

5b 2008122700 2009010100 Northeastern U.S. winter Storm 

5c 2009121412 2009121912 Eastern U.S. winter storm 

5d 2009121500 2009122000 Eastern U.S. winter storm 

5e 2010020812 2010021312 Southern snowstorm 

5f 2010122212 2010122712 Eastern U.S. winter storm 

5g 2011120312 2011120812 N/A 

5h 2013020400 2013020900 
Great Lakes and Northeast major winter 

storm 

5i 2013102900 2013110300 N/A 

6 day 
6a 2008020112 2008020712 Northeastern winter storm 

6b 2008031512 2008032112 N/A 
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6c 2008120612 2008121212 Eastern U.S. mixed precipitation event 

6d 2008122600 2009010100 Northeastern U.S. winter Storm 

6e 2009110700 2009111300 N/A 

6f 2009121312 2009121912 Eastern U.S. winter storm 

6g 2009121400 2009122000 Eastern U.S. winter storm 

6h 2010022300 2010030100 N/A 

6i 2010022512 2010030312 N/A 

6j 2010110212 2010110812 N/A 

6k 2011011712 2011012312 N/A 

6l 2012020600 2012021200 N/A 

6m 2012021412 2012022012 N/A 

6n 2013020312 2013020912 
Great Lakes and Northeast major winter 

storm 

6o 2014020812 2014021412 
Southern Plains to East Coast winter 

storm 

6p 2015012500 2015013100 Northeastern U.S. winter storm 

Table A4.1: List of OOE cases for 16-day lead times in this study, their forecast lead time, 

initial/verification time, and the verified weather event summarized by NOAA/WPC forecasters. 

N/A denotes that the case is not a significant large-scale storm event and not included in the 

NOAA WPC storm summary. Cases highlighted by bold and/or colored fonts represent events 

verified at the same valid time. 

Figures A4.1-2 show the two OOE cases for 1 day forecasts. Case 1a had a cyclone over 

the northern Indiana with the central pressure less than 1005 hPa at initial time (Figures A4.1a, 

f). The cyclone moved east-southeastward with large negative pressure change ahead of its track 

during time step 1-3 (initial time to 12-h forecast; Figures A4.1a-c, and f-h). Meanwhile, the 

multi-model ensemble forecast errors show a negative center (~2 hPa) west of the analyzed 

cyclone center, suggesting the ensemble mean forecasts a cyclone a bit more westward and 

slightly deeper than the analyzed cyclone. The analyzed cyclone deepened rapidly from time step 

3 to 4 (12 to 18 h forecasts; Figures A4.1h, i) with the 6-hr pressure drop of 18 hPa around the 

analyzed cyclone center at step 4 (18 h; Figure A4.1i). The ensemble spread shows an over 2-hPa 
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increase, which is large when compared with the previous time steps. Forecast errors tend to 

form an asymmetric dipole around the analyzed cyclone, suggesting the model forecasts a 

cyclone more westward and slightly deeper than the analyzed cyclone. At time step 5 (day 1 

forecast; Figure A4.1j), the analyzed cyclone continued to intensify with a central pressure of 

982 hPa. The spaghetti plot (Figure A4.1e) clearly shows that the analyzed cyclone is more east-

northeastward with respect to the overall envelope. The forecast errors grew quickly with the 

negative value reaching 6hPa. One thing worth noting is the forecast error centers overlapped 

with the largest spread change areas. Previous study suggested that the change of ensemble 

spread can be used to quantify the change of flow nonlinearity (Grimit and Mass 2007; Du and 

Zhou 2011). The large errors in this case seemed to be associated with the large nonlinear 

process during rapid cyclone development. 
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Figure A4.1: Day 1 OOE case: case 1a in table A4.1 spaghetti plot for 1005 and 995 hPa MSLP 

contour line (a-d, left) at different forecast step; and (e-h, right) ensemble mean forecast error 

(magenta dashed) with an interval of 2 hPa starting from 2hPa, pressure change (blue contours) 

between two time steps with an interval of 4 hPa, spread change (gray shades and contour with 

an interval of 1 hPa), and analyzed MSLP contour (solid black lines). Unit for all plots: [hPa]. 

The time step is 6 hr. 

Case 1b (Figures A4.2a, f) shows an area of low pressure located at the surface in 

northern Texas at initial time. At time step 2 (6 h; Figures A4.2b, g), the low moved to its 

northeast and had weakened by 5 hPa. From time step 3 (12 h; Figures A4.2c, h), another low 

center formed over the south Appalachia within the broad low pressure area. Meanwhile, 

negative forecast errors of 2 hPa developed to the west of the analyzed cyclone. During time 

steps 4 and 5 (18 and 24 h; Figure A4.2d-e, i-j), the multi-model ensemble overall forecasts a 

d) 

e) 

i)

) 

 a) 

j)

) 

 a) 
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more west-northwestward cyclone than the analyzed cyclone. This case shows that the forecast 

errors are mainly due to the misrepresentation of cyclone center position on the background of a 

broad low surface area in models. Although the multi-model has a small ensemble spread (1 

hPa), the systematical northwest shifting error in the models still render it to be an OOE case. A 

further examination confirmed that there coexisted a coherent RWP from initial time (not 

shown), indicating that the RWP may have degraded the forecast skill of cyclone position in this 

case.  
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Figure A4.2: The same as Figure A4.1 except for case 1b in Table A4.1 and spaghetti plot using 

1015 and 1005 hPa MSLP contour lines. The shades in f-j represent the spread instead of spread 

change. 

c) h)

) 
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d) i)

) 

 a) 

e) j)
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The single OOE case for day 2 is shown in Figure A4.3, which represents a typical Miller 

type B cyclone. At time step 4 (18 h; Figures A4.3a, g), the primary cyclone was over the 

southwestern Ohio Valley with a minimum pressure of 999 hPa. The multi-model mean showed 

negative errors of -3 hPa northwest to the cyclone center, and positive errors of 4 hPa southeast 

of the Georgia coast. At time step 5 (24 h; Figures A4.3b, h), a new surface low area appeared 

off the South Carolina coast, where forecast errors increased to 4 hPa accompanying positive 

ensemble spread change. Models seemed to shift the second low too northwestward and 

forecasted the primary cyclone a bit deeper and more westward than the analysis. From time step 

5 to 6 (24-30 h; Figures A4.3c, i), the secondary cyclone off the Mid-Atlantic coast developed 

rapidly with a pressure drop of ~12 hPa. The secondary low in the models was too weak and too 

westward while the primary low was a bit deeper and more westward than the analyzed low. 

Large positive errors are over the region of large spread increase. From time step 6 to 8 (30-42 h; 

Figures A4.3c-e; i-k), the cyclone continued to develop rapidly with large pressure drop. The 

forecast errors are mainly positive over the center and northeastern side of the analyzed cyclone 

accompanying with spread increase. Between 42 h and 48 h (Figures A4.3f, l), large negative 

errors developed over the western side of the cyclone together with a spread increase, indicating 

the westward shift became the dominant error.  

In this case, the NWP models cannot predict the secondary low’s position and amplitude 

correctly at its onset time. The corresponding errors developed rapidly with the rapid 

development of the secondary low. Previous studies suggested that rapid cyclone development is 

often the result of nonlinear interaction among different processes, such as strong upper-level 

forcing, the intrusion of stratospheric high PV air, latent heat release, surface energy fluxes from 

the ocean, as well as enhanced local baroclinicity from differential diabatic heating, although all 
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these factors need not be present (Uccellini 1995; Wang and Rogers 2001) at the same time. The 

overlap of error maxima and positive spread change again indicate that the models tended to 

continue to provide a linear solution while the nonlinear processes lead to rapid development.   
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Figure A4.3: Day 2 OOE case: case 2a spaghetti plot for 1005 and 995 hPa MSLP contour line 

(a-f, left) at different forecast step; and (g-l, right) ensemble mean forecast error (magenta 

dashed), pressure change (blue contours) between two time steps, spread change (gray shades 

and contour), and analyzed MSLP contour (solid black lines). Unit for all plots: [hPa]. Each time 

step represents 6 hr. 
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As for the four 3-day OOE cases, case 3a is associated with a surface low tracking from 

the Gulf Coast across the Mid-Atlantic northward through southern New England and into 

Northern Maine (not shown). This case involved the re-development of the cyclone and strong 

nonlinearity ahead of the cyclone track, making the forecast extremely difficult. The cyclone in 

the model was around ~650km more northeastward than the analyzed cyclone was (Figure 4.12). 

This displacement error exceeds the double value of the typical displacement errors for 3-day 

forecasts for an East Coast storm in the GFS model, which is ~250 km in Colle and Charles 

(2011). Case 3a was also confirmed as a high-impact storm case by NOAA HPC forecasters.  

Case 3b is a high-impact ice storm case originating from the southern Plains. The storm 

in the ensemble models was too weak and too slow. The errors are partly due to the rapid 

development of the cyclone as well as the increasing speed (~488 km (6 hr)
-1

) of the storm.  
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Figure A4.4: Day 3 OOE case: case 3d spaghetti plot for1015, 1005 and 995 hPa MSLP contour 

line (a-c, left) at different forecast step; and (d-f, right) ensemble mean forecast error (magenta 

dashed), pressure change (blue contours) between two time steps, spread change (gray shades 

and contour), and analyzed MSLP contour (solid black lines). Unit for all plots: [hPa]. The time 

step is 6 hr. 
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Both case 3c and case 3d are associated with a cyclone embedded in the remnants of a 

pre-existing cyclone.  Figure A4.4 shows the synoptic development and error evolution of case 

3d. The models under-predicted the cyclone at the onset stage of the storm, and finally forecasted 

a much weaker and more northeastward cyclone on day 3. Large positive forecast errors existed 

with the spread increase, again suggesting that nonlinearity is one of the reasons for the large 

forecast error. 

To sum up, for days 1-4 (day 4 is not shown), the OOE cases are mainly associated with 

one or two of the following synoptic features: a) rapid cyclogenesis; b) cyclone development 

embedded in a pre-existing low; c) multiple cyclone centers over an elongated low pressure area; 

d) development of a secondary low; e) Rossby wave packet. One thing worth noting is that in 

most of the cases, error maxima tended to be over the areas with large spread increase, which 

may or may not be in the centers of the positive spread change. We hypothesize that the 

increasing nonlinearity and the models’ misrepresentation of the nonlinear processes, such as 

latent heat release (Whitaker and Davis 1994; Zhang et al. 2002; Ahmadi-Givi et al. 2004; 

Moore et al. 2008), enhanced local baroclinicity from differential diabatic heating (Bosart 1981; 

Moore and Montgomery 2004;  Boettcher and Wernli 2011), or strong upper-level forcing 

(Rogers and Bosart 1986; Smith et al. 1992) are the major reasons for the OOE cases. However, 

given the limited sample size here and the complexity of nonlinear flow representation, this point 

needs to be further investigated through well-designed numerical experiments.  

Figures A4.5 and A4.6 show the composited MSLP and Z500 ensemble mean errors as 

well as the flow patterns for the 6-day OOE cases. From the initial time (0 h) to 24 h, there was a 

blocked upper-level ridge around the dateline in the mid-high latitudes (Figure A4.6). Another 

open ridge was just off the west coast of North America. Between the above two ridges, a 



248 

surface low developed with the corresponding cut-off low at upper level off the southern Alaska 

coast. Meanwhile, there was another low west of the dateline at around 50°N corresponding to 

the cut-off low west of the blocked ridge. Note that although the high latitude flow was blocked, 

the flow was quite zonal south of 40°N from the west Pacific to the western U.S coast.  
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Figure A4.5: Composited MSLP forecast errors (red and blue contours) and MSLP analysis 

(black contour) for 6-day forecast OOE cases. The green shaded shows the significant values of 

errors different from the averaged errors of all cyclone cases. The MSLP contours have an 

interval of 5 hPa with 1010 and 1020 hPa lines labeled. 

The amplitude of the blocked ridge over central Pacific decreased from 72 h (Figure 

A4.6). Forecast errors increased from 72 h at both the surface and upper levels associated with 

the southern side of the trough downstream of the blocked ridge and over the U.S. west coast 

ridge, indicating the models underestimated the short-wave trough and its downstream ridge over 

the southwest coast of the U.S. Between 96 h and 120 h, the flow pattern changed to be quite 

zonal over the central Pacific. The preexisting two surface lows over West and Northeast Pacific 

were underestimated by the ensemble. A wavy pattern of ridge-trough-ridge-trough developed at 

96 h from 160°W to 100°W between 20° and 50°N, and was underestimated by the models at the 

upper level.  Meanwhile, a weak surface low developed over the southern part of Mexico. From 

108 h, the surface low area moved northeastward across the U.S. south coast, and intensified 

over the North Carolina coast at 132 h and moved to the east of the Mid-Atlantic coast. The 

surface low was underestimated significantly by over 12 hPa at the verification time. There was 

also some negative errors just ahead of the cyclone. At the upper level, the associated trough and 

its downstream ridge were underestimated by 100 m at the verification time, which can be 

directly linked with the weakening of the shortwave trough at 96 h over the southwest of U.S.; 
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The upstream errors can be further traced back to the errors in the wave group originating the 

south and downstream of the preexisting blocking ridge. 
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Figure A4.6: Composited Z500 forecast errors (red and blue contours), Z500 analysis (black 

contour) and anomaly to the climatology of Z500 for 6-day forecast OOE cases. The green 

shaded shows the significant values of errors different from the averaged errors of all cyclone 

cases. The climatology of Z500 is based on the mean of cool season (NDJFM) during 2007/8 and 

2014/15. The errors starts from 10m with an interval of 30 m; the Z500 anomaly starts from 

20 m with an interval of 40m; and the Z500 contours have an interval of 100 m with 5800m 

line labeled. 

Therefore, the composite 6-day OOE cases seem to be related with a cyclone from the 

Gulf of Mexico and the upper-level southern stream short-wave trough. Both the surface and 

upper-level errors are associated with the under-estimation of the corresponding system. 

However, the MSLP errors are more local, while the upper-level errors are associated with a 

propagating wave group from East Pacific south of the 45°N. We speculate that the surface 

forecast errors could be partly due to the moisture conditions over the Gulf of Mexico, while the 

upper-level errors are associated with the downstream development of wave groups embedded 

on a blocking-to-zonal changing flow regime.  Previous studies also suggested that the transition 

of large scale flow regimes can degrade the forecast skills over East Coast. For example, 

Frederiksen et al. (2004) found that the forecast errors tend to be larger when the blocks are 

developing or decaying and smaller for mature blocks. Langland et al. 2012 showed that the 

ACC for 120-h forecast of Z500 over NH is lower on average during the transition from negative 

Arctic Oscillation (AO) to positive phase in operational deterministic models. Archambault et al. 
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(2010) showed that the cool-season Northeast precipitation tends to be enhanced during 

negative-to-positive PNA and positive-to-negative NAO pattern. Therefore, our result for OOE 

fits the notion that the errors grow rapidly when dynamical development is rapidly changing 

(Frederiksen and Bell 1990; Frederiksen et al. 2004; Trevisan et al. 2001; Langland et al. 2002, 

2012). 
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