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Abstract of the Dissertation 

Risk Measurement and Management in the Global Markets with the Tempered Stable 

Distributions 

by 

Tetsuo Kurosaki 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 (Quantitative Finance) 

Stony Brook University 

2013 

 

Risk measurement and management are now seen in a global context. Accordingly, several 

new concepts and techniques have been proposed in the field of quantitative finance to address 

new types of risk such as systemic or systematic risk. In this dissertation, we present three topics 

related to risk measurement and management in global markets. We particularly focus on 

applications of tempered stable distributions to asset returns for the purpose of improving risk 

measurement and management. 

In the first part, we measure the systematic risk in global banking stock markets by using 

stocks of global systemically important financial institutions (G-SIFIs). Because G-SIFIs are 

identified by the financial regulator, measuring the G-SIFI risks is critical for assessment of the 
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stability of the global financial system. For time series analysis, we adopt an autoregressive 

moving average (ARMA) generalized autoregressive conditional heteroscedasticity (GARCH) 

model with the multivariate normal tempered stable distributed innovations and demonstrate that 

it is a more realistic model to use with G-SIFI stocks. For measuring the risk, we take different 

approaches including CoVaR and its extension to average value at risk (AVaR), which we refer 

to as CoAVaR. We discuss the relationship among different risk measures. 

In the second part, we propose mean–CoAVaR portfolio optimization to mitigate the potential 

loss caused by systematic risk. This is a strategy to minimize the portfolio’s CoAVaR with a 

given expected return. Through empirical studies of portfolios comprising G-SIFI stocks, we 

confirm that the mean–CoAVaR strategy is effective during a financial crisis. 

In the third part, we examine a time series of global currency exchange rates by using 

currencies circulating in the member countries of the Organization for Economic Co-operation 

and Development (OECD). We propose a better model to describe the dynamics of exchange 

rates, by comparing GARCH and Markov−switching models through both in-sample and out-of-

sample tests. Also, the multivariate modeling for OECD currency exchange rates is discussed. 

We conclude that the tempered stable GARCH model is recommendable, especially for risk 

management purposes. 
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Chapter 1 Introduction 

1.1 Risk Measurement and Management in the Global Markets 

Risk measurement and management are critical in modern financial industries from the 

perspectives of both regulators and investors. In September 2008, the bankruptcy of Lehman 

Brothers, the fourth largest investment banking firm in the United States (U.S.) at that time, 

caused a massive chain of defaults and greatly worsened the conditions of all global financial 

market sectors including stock, bond, currency, credit markets, and so on. The financial crisis 

triggered by the failure of Lehman Brothers is now referred to as the “Lehman Shock.” The 

recent debt crisis in Greece also had huge and adverse impacts on the global financial markets. In 

April 2010, because of excessive debt, Standard and Poor’s (S&P) downgraded the Greek 

sovereign credit rating from BBB+ (an investment grade category) to BB+ (a non-investment 

grade category). A spillover effect into the sovereign debt markets of peripheral countries 

followed. Because financial institutions typically have large positions in sovereign bonds, which 

have been regarded as free of credit risk
1
, there were great concerns in the market that a systemic 

downturn would occur following the European sovereign debt crisis. These two financial crises 

have significantly stimulated the risk measurement and management in the global framework. 

1.1.1 Global Market Conditions and Regulations 

We show an overview of the recent global market conditions in Figure 1.1. The global stock 

index dramatically fell after the failure of Lehman Brothers. The yields of government bonds 

went up right before the failure of Lehman Brothers and rapidly went down after it because of 

                                                 
1 In Basel II’s standard method, home-currency government bonds have zero risk weight regardless of the 

external credit ratings. 
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the “zero interest rate” policy of central banks. The yields climbed up again after the 

downgrading of the Greek sovereign credit rating because concerns were directed toward 

sovereign creditworthiness. Regarding the foreign currency exchange rates, the Euro (EUR), 

British Pound Sterling (GBP), and Canadian Dollar (CAD) depreciated against the United States 

Dollar (USD) during the Lehman shock, while the Japanese Yen (JPY) appreciated because the 

adverse impact in Japan was relatively moderate compared with other regions such as the 

Eurozone and the United Kingdom (U.K.). The spread between the London inter-bank offered 

rate (LIBOR) and the overnight indexed swap (OIS) is regarded as an indicator of liquidity risk 

in inter-banking trading. The LIBOR-OIS spread was greatly widening during the Lehman shock. 

The Greek debt crisis also produced an increased risk of liquidity, especially, in the Eurozone. 

The credit default swap (CDS) spread describes creditworthiness. In the lowest row of Figure 1.1, 

the CDS spreads of both banking and sovereign sectors are shown. Judging from the movements 

of CDS spreads, the adverse impacts of the Greek debt crisis are more serious than those of the 

Lehman shock. In particular, concerns about the sovereign creditworthiness of Southern Europe, 

including Italy and Spain, have been mounting like never before. As is seen above, we can 

demonstrate that there was a wide range of adverse impacts of the recent financial turmoil on 

global markets. In addition, we find strong interconnectedness among market data in different 

regions and countries. 
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Figure 1.1: Conditions of Global Markets 

Note: Regarding stock indexes, SGFS is a financial subsector index of S&P Global 1200. 

Bond yields are generic indexes of individual government bonds with the five-year maturity. 

Currency exchange rates are the spot rates for a unit USD. Regarding LIBOR-OIS spreads, the 

maturity of LIBOR is three months. Regarding banking and sovereign CDS spreads, the maturity 

of the CDS contract is five years, and it covers senior debts. The U.S. and U.K. sovereign CDS 

spreads are not shown because of insufficient data availability. All data are downloaded from 

Bloomberg. 
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After the Lehman shock, the Basel Committee on Banking Supervision (BCBS) began to 

formulate a new regulatory framework for international banks known as Basel III in order to 

prevent such a devastating financial crisis from recurring. The basic framework for Basel III, 

first published at the end of 2010 and revised in 2011 (Basel Committee on Banking Supervision, 

2011a), is still a work in progress at the time of this writing. However, as is clear in the current 

agreement of Basel III, it is definitely the new mission of regulators to address the so-called 

“systemic risk,” which is the risk of meltdown of an entire financial system. To this end, the 

BCBS (2011b) has proposed a methodology for measuring how important each financial 

institution is on the global financial system. More recently, the Financial Stability Board 

published an initial list of 29 global systemically important financial institutions (G-SIFIs) 

identified by using the BCBS methodology (Financial Stability Board, 2011). Given the growing 

importance of systemic risk, when managing their portfolios, investors need to be conscious of 

the potential huge losses that can be caused by systemic risks or, more specifically, systematic 

risks
2
. Thus, the risk measurement and management is now a worldwide concept. 

1.1.2 Time Series Model, Risk Measure, and Risk Management 

Risk measurement and management in the financial industries basically has the following 

procedures. First, the future scenario that is likely to happen in the market is predicted on the 

basis of historical data through time series models. Second, by using the predicted future, the risk 

is measured. Third, referring to the risk measure, the risk is managed. A comprehensive review 

of traditional risk measurement and management techniques is, for instance, given in the 

                                                 
2
 See the section 2 of Hansen (2013) for a discussion about the distinction between the two terms; systemic and 

systematic risk. He explains that systematic risk is macroeconomic or aggregate risk that cannot be avoided through 

diversification, whereas the formal definition of systemic risk is much less clear. He also points out three possible 

notions of systemic risk: “a modern-day counterpart to a bank run triggered by liquidity concerns,” “the 

vulnerability of a financial network in which adverse consequences of internal shocks can spread and even magnify 

within the network,” and “the potential insolvency of a major player in or component of the financial system.” We 

do not dwell further on the issue of this terminological distinction. 
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textbook of McNeil et al. (2005). With the traditional techniques as the point of departure, we 

need to develop the time series model, measures to quantify the risk, and management of risk to 

enhance the risk measurement and management in the globally systemic context. Below, we 

review the recent developments in the time series model, risk measure, and risk management, 

and state basic ideas on what we are going to do in this dissertation. 

Time Series Model 

The generalized autoregressive conditional heteroscedasticity (GARCH) model introduced by 

Bollerslev (1986) is now standard in the financial industries. A GARCH model is a direct 

extension of an ARCH model (Engle, 1982). Numerous empirical studies have revealed that a 

GARCH model well explains volatility clustering phenomena, which asset returns typically show. 

In some cases, an autoregressive (AR) and/or a moving average (MA) process are embedded in a 

GARCH model for better model performance. 

Since the introduction of the original GARCH model, many multivariate extensions have been 

proposed
3
. The multivariate extension is essential because the global financial markets are 

closely interconnected and we need to incorporate such interconnectedness into the time series 

model. A copula GARCH model is one of the most flexible multivariate extensions
4
. It has two 

steps in its construction. First, GARCH models are fitted to each marginal time series 

independently under various distributional assumptions, and subsequently a copula is fitted to all 

the residuals of univariate GARCH models. The resulting joint distribution is expected to 

account for the dependent structure of asset returns. Traditionally, the residuals of the GARCH 

model are assumed to obey the normal distribution for simplicity. However, it has been revealed 

that the distribution of asset returns typically has fat-tailness and skewness, which the normal 

                                                 
3
 See, for instance, a survey by Bauwens et al. (2006). 

4
 See Sun et al. (2008) for more information about a copula GARCH model. 
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distribution fails to describe. Therefore, non-normal distributions are explored to provide a better 

description of asset returns
5
. 

Recently, Kim et al. (2011) proposed replacing the normal distribution with the tempered 

stable distribution in the assumptions for the residuals of the GARCH model, by which they 

obtained a much more realistic model for S&P 500 compared with the normal and even student t 

distributions. The stable and tempered stable distributions are known to be capable of describing 

fat-tailness and skewness. The stable distribution
6
 was applied to asset returns for the first time 

by Mandelbrot (1963a, 1963b), supplemented by Fama (1963). The main difficulty in the 

application of the stable distribution to finance is that it has an infinite variance. To overcome 

this drawback, the tempered stable distribution has been developed. It is derived by introducing 

the so-called tempering function to the stable distribution. According to the tempering function, 

Rachev et al. (2011) classify the tempered stable distributions into several variants, such as 

classical tempered stable (CTS)
7
, modified tempered stable (MTS), normal tempered stable 

(NTS) distributions, and so on. See Rachev et al. (2011) for more information on the stable and 

tempered stable distributions. 

More recently, multivariate extension of the NTS distribution (Kim et al., 2012) and NTS 

copula (Kim and Volkmann, 2013) have been proposed. These new multivariate models have 

been clearly shown to explain the interdependencies among asset returns better than the 

multivariate normal model. Given the aforementioned developments, we now can construct the 

GARCH model with the multivariate NTS (MNTS) distributed residuals, following a copula 

                                                 
5
 See Rachev et al. (2005) for a description and history of fat-tailed and skewed distributions for asset returns. 

6
 It is also referred to as  -stable distribution, Lévy distribution, and stable Paretian distribution. Paul Pierre Lévy 

and Vilfredo Pareto are pioneers in the related fields. 

7
 The CTS distribution has been referred to using various names in the literature: the truncated Lévy flights by 

Koponen (1995), the KoBoL distribution by Boyarchenko and Levendorskiĭ (2000), and the CGMY distribution by 

Carr et al. (2002). The name of the CTS distribution is first given in Kim et al. (2008). 
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GARCH framework. The GARCH model with the MNTS distributed residuals is expected to 

make a more realistic forecast of simultaneous asset returns in global markets. In this dissertation, 

we utilize this new model for the risk analysis. 

An alternative time series model for the volatility clustering phenomena is the Markov 

regime−switching model, or simply, the Markov−switching (MS) model, proposed by Hamilton 

(1989, 1994). The MS model assumes unobservable regimes whose stochastic dynamics are 

described by the Markov chain and allow the parameters to switch depending on regimes. In 

principle, the MS structure can be attached into any traditional time series model, including 

standard regression, AR, and GARCH models. Since the original paper (Hamilton, 1989) 

successfully applied the two-regime MS−AR(4) model to postwar U.S. real GNP, numerous 

extensions and empirical studies have been provided, including the MS −GARCH model 

(Hamilton and Susmel, 1994; Cai, 1994; Gray, 1996), MS−GARCH with the student t distributed 

residuals (Marcucci, 2005; Henneke et al., 2011), and multivariate extension (Sims et al., 2008). 

See Kim and Nelson (1999), Hamilton and Raj (2002), and Bhar and Hamori (2009) for more 

information on the MS model. We also study the topic of making a comparison of performances 

between GARCH and MS models. 

Risk Measure 

Value at Risk (VaR) is the most standard risk measure adopted by financial institutions. The 

reason for the popularity of VaR is that it is endorsed by the regulators to measure market risk.  

However, several drawbacks of VaR have been pointed out in spite of its popularity. The main 

criticism of VaR is that it is not informative about the risk above the VaR level, i.e., the tail risk. 

Additionally, VaR does not satisfy the axioms of coherent risk measures
8
. Recently, average 

                                                 
8
 See McNeil et al. (2005).  
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VaR (AVaR), also known as expected shortfall, has attracted more interest because it is free of 

the above drawbacks of VaR. If fact, the BCBS (2012) proposed to use AVaR instead of VaR in 

the future to measure market risk. 

Moreover, researchers have focused on novel types of risk measures for systemic risk, 

especially since the Lehman shock. Whereas VaR and AVaR are risk measures based on the 

premise that an institution is isolated, novel risk measures attempt to measure the risk of 

meltdown of a whole financial system and/or the risk contribution of each institution to an entire 

system, i.e., the risk spillover effect. In this dissertation, we consider the CoVaR methodology 

proposed by Adrian and Brunnermeier (2011) to address systemic risk. CoVaR, or more 

specifically,         , is a bivariate risk measure between two institutions, i and j.          is 

the VaR of j on a certain condition of i. Putting j into an entire system, Adrian and Brunnermeier 

(2011) measure the risk contribution of i to the system. The applications of CoVaR have been 

studied by several researchers. López-Espinosa et al. (2012) analyze the driving factors of 

systemic risk in the large international banks with CoVaR approach. Wong and Fong apply 

CoVaR methodology to the sovereign CDS spreads of Asia Pacific economies (2011) and the 

Eurozone (2012). Girardi and Ergün (2013) estimate the CoVaR of U.S. financial institutions on 

the basis of stock prices by using the bivariate GARCH model with dynamic conditional 

correlation specification and Hansen’s skewed t distributed residuals. 

Alternative approaches for measuring systemic risk other than CoVaR have also been 

proposed. Segoviano and Goodhart (2009) assess the stability of the financial system by 

indicators based on the joint and the conditional default probability, where the joint distribution 

is derived from a cross-entropy-based optimization technique with CDS data. In line with the 

work of Segoviano and Goodhart, Zhou (2010) introduces systemic importance indicators based 
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on the conditional default probability, which he calls the “systemic impact index (SII)” and the 

“vulnerability index (VI).” The multivariate extreme value theory is used for estimations. Huang 

et al. (2009) quantify systemic risk as a theoretical insurance price against a financial crisis, 

which is inferred from CDS spread and stock return correlations among financial institutions. 

Acharya et al. (2010) propose the systemic expected shortfall (SES) and the marginal expected 

shortfall (MES) as a measure for systemic risk. MES is the institution’s expected loss on the 

condition that the loss of the aggregate banking system is beyond the VaR level, and SES is the 

institution’s expected drop in capital below its target level on the condition that the aggregate 

banking capital goes below its target level. Schwaab et al. (2011) apply a latent dynamic factor 

model of mixed-measurement data to systemic risk. Giesecke and Kim (2011) define systemic 

risk as the conditional probability of defaults of a large proportion of total financial institutions 

and analyze it by a dynamic hazard model. 

Risk Management 

We focus on portfolio risk management. There are two distinct methods of portfolio 

optimization; the mean–risk and reward–risk optimizations. The framework of mean–risk 

optimization is to construct a portfolio minimizing the risk measure with a given desired expected 

return. The mean–risk optimization originates from Markowitz’s mean–variance optimization 

(1952). Because the variance is not always an appropriate risk measure to minimize, it has been 

proposed to replace the variance in Markowitz’s theory with other risk measures such as VaR 

and AVaR, which are collectively called mean–risk portfolio optimization. On the other hand, 

the framework of reward–risk optimization is to construct a portfolio maximizing the reward to 

risk ratio, which is regarded as a performance measure. Whereas the expected return to variance, 

called the Sharpe ratio (1966), is the most prevailing performance measure, AVaR is also 



 

10 

adopted in the reward to risk ratio. The expected return to AVaR ratio is called the stable tail-

adjusted return ratio (STARR; Rachev et al., 2008a). See Rachev et al. (2008b) for more 

information about portfolio optimization. It is worth attempting to use the aforementioned novel 

risk measures as the objective functions in the framework of the portfolio optimization. In this 

dissertation, we incorporate CoVaR methodology into the mean−risk framework. 

1.2 Overview of Dissertation 

In this dissertation, we study several issues related to risk measurement and management in 

the global financial markets. Specifically, we cover the global stock and foreign currency 

exchange markets. Our methodology is based on the cutting-edge research outcomes stated in 

Section 1.1. The rest of this dissertation is structured as follows. 

Chapter 2 discusses the measurements of systematic risk in the global banking stock market. 

Motivated by the growing importance of systemic risk in the global banking system, we measure 

the risk of the system and the marginal contributions of the institutions in several ways in terms 

of stock markets. The undiversifiable risk appearing in specific market sectors is called 

systematic risk rather than systemic risk. We focus on global banking stocks comprising G-SIFIs, 

and discuss the global systematic risk measurement. To forecast the future joint distribution of 

returns, we utilize the multivariate ARMA–GARCH model with the MNTS distributed and 

multivariate normal distributed residuals. We statistically demonstrate that the ARMA–GARCH 

model with the MNTS distributed residuals is a more realistic model for G-SIFI stocks. In line 

with previous studies, we estimate four systematic risk measures. We investigate the properties 

of the measures and relationship among the measures in the time series and cross-section 

directions. Thereafter, we make some remarks on the systematic risk measurement. 
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Chapter 3 discusses the management of systematic risk for global banking portfolios. We 

propose a mean–CoAVaR portfolio optimization to mitigate the potential loss caused by 

systematic risk. CoAVaR is a natural extension of Adrian and Brunnermeier’s CoVaR, and is 

defined as the AVaR on the condition that the market index is in distress. Similar to CoVaR, 

CoAVaR also accounts for the extent to which an institution is affected by systematic distress. 

We expect that the potential loss of the portfolio arising from systematic risk is mitigated by 

minimizing the CoAVaR of the portfolio against the market index. We investigate the 

effectiveness of the mean–CoAVaR optimization by using the stocks of G-SIFIs. The reason for 

choosing G-SIFI stocks as trial samples is that they are both highly interconnected to each other 

and potentially affected by systematic risk. The joint stock return distribution is predicted by the 

ARMA–GARCH model with the MNTS distributed residuals, which will be shown to be a better 

model for G-SIFI stocks in Chapter 2. 

Chapter 4 discusses risk management in foreign currency exchange markets. We explore the 

best models for describing the dynamics of time series of currency exchange rates. Sample 

currencies are those circulating in the member countries of the Organization for Economic Co-

operation and Development. The GARCH and Markov−switching models are compared in terms 

of both in-sample and out-of-sample tests. In order to consider the fat-tailness and skewness of 

GARCH residuals, we adopt the student t and NTS distributional assumptions as well as the 

normal one. Extending on the previous study, we renew sample periods, expand samples, and 

investigate higher frequency data. For the out-of-sample test, we focus on the accuracy of 

forecasting of VaR and tail behavior, because they are crucial for risk management, especially 

during financial turmoil. We also discuss multivariate modeling by using the GARCH model 
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with the MNTS distributed residuals to further examine the effectiveness of the GARCH model 

when used with exchange rates. 

Chapter 5 concludes the dissertation. We summarize the results in each chapter and make 

some remarks on future works, extending and sophisticating the analysis in this dissertation. 

The contents of Chapters 2 and 3 are on the basis of the papers published in refereed journals; 

Kurosaki and Kim (2013a), and Kurosaki and Kim (2013b), respectively. The content of Chapter 

4 is under submission at the time of writing. 
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Chapter 2 Systematic Risk Measurement in the Global Banking Stock Market with 

Time Series Analysis and CoVaR 

2.1 Introduction 

In the modern financial system, global financial institutions become strongly interconnected, 

leading to awareness of the so-called “systemic risk.” According to the definition given by 

Kaufman and Scott (2003), in contrast to the risk that there will be a breakdown in individual 

parts or components of the financial system, systemic risk refers to the probability that there will 

be a breakdown of the entire financial system. Moreover, this risk is evidenced by the co-

movements of the different parts of the financial system. 

We can observe the applicability of this definition of systemic risk in the case of global 

financial system in 2008, following the bankruptcy of the United States (U.S.) investment 

banking firm Lehman Brothers. The financial crisis triggered by the failure of Lehman Brothers, 

referred to as the “Lehman shock,” had a spillover effect in every sector of the global financial 

market (stock, bond, currency, credit markets, and the like). 

Following the Lehman shock, the Basel Committee on Banking Supervision (BCBS) began to 

formulate a new regulatory framework for international banks known as Basel III to mitigate the 

risk of a reoccurrence of financial crises due to the problem of large financial institutions. One of 

the most significant enhancements in Basel III relative to Basel I and II is that of protecting the 

global financial system from systemic risk. More specifically, within the three pillar framework 

first introduced in Basel I in 1988, Basel III calls for additional capital requirements for global 

systemically important financial institutions (G-SIFIs), in contrast to the uniform capital 
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requirement imposed on every bank in Basel II. More recently, an initial list of 29 G-SIFIs (8 

from the United States, 17 from Europe, and 4 from Asia) was identified and published based on 

the BCBS methodology (Financial Stability Board, 2011). See Appendix A for the list of 

financial institutions. 

The recent debt crisis in Greece calls for greater attention to systemic risk in another way. 

Because financial institutions typically have large positions in sovereign bonds, there was great 

concern in the market that a systemic downturn would occur because of the European sovereign 

debt crisis. This, in fact, did occur for one G-SIFI, Dexia Group, because of exposures to these 

countries
9
. There are some market observers with such a pessimistic view that if Greece 

collapses, the adverse impact on the financial system would be greater than that of the Lehman 

shock. 

Motivated by the growing importance of systemic risk, the purpose of this chapter is to 

investigate such risk in the global banking system. This is done by focusing on systemic risk 

observed in stock markets and investigating stocks that are included in G-SIFIs, as of November 

2011. Our methodology involves time series analysis to generate a future joint distribution of 

stock returns, and accordingly we estimate risk measures. 

We emphasize that, strictly speaking, we are not going to quantify systemic risk itself given 

that we exclusively deal with stock returns. There are systemic risk and systematic risk. Even 

though both emerge with a downslide of total market returns, systemic risk is considered as the 

risk that specifically arises from intense interconnectedness and results in a breakdown of the 

entire system. Aggregate adverse impact in a specific sector of a market should be classified as 

                                                 
9
 Dexia was bailed out by the Belgium, France, and Luxembourg governments in October 2011 and then again in 

November 2012. 
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systematic risk. For this reason, we hereafter refer to the risk that we quantify based on stock 

returns as systematic risk rather than systemic risk
10

. 

For time series analysis, we use a multivariate autoregressive moving average generalized 

autoregressive conditional heteroscedasticity (ARMA–GARCH) model, where the innovation 

terms are assumed to follow the multivariate normal tempered stable (MNTS) and multivariate 

normal distributions. The MNTS distribution is a relatively new non-Gaussian stock return 

model proposed by Kim et al. (2012). Each marginal of the MNTS distribution is referred to as a 

univariate normal tempered stable (NTS) distribution. For systematic risk measures, we use the 

CoVaR methodology proposed by Adrian and Brunnermeier (2011). CoVaR, or more 

specifically,         , is defined between two institutions i and j.          is the Value at Risk 

(VaR) of j on a certain condition of i. Setting j as the market index, we consider the difference 

between CoVaR on i’s distress and “normal” conditions, denoted by              . 

              can be interpreted as the marginal contribution of i to the overall market risk. 

There are two problems we address in this issue. The first is how to measure and predict 

systematic risk. The second is how to determine the influence of a financial institution on the 

entire financial system, i.e., how to quantify the risk spillover effect. From a regulatory 

perspective, it is critical to recognize signals of a meltdown of the financial system and specify 

the financial institutions that potentially have considerable influence on the financial system. 

For the first problem, we propose the joint probability of negative stock return movements as a 

measure of systematic risk. This is necessary because although  CoVaR can be a measure of 

marginal contribution to systematic risk, it is not a measure of systematic risk itself. For the 

second problem, we employ  CoVaR to quantify the risk spillover effect. In addition, we extend 

                                                 
10

 The basic measure of systematic risk is beta. Similar to beta, we focus on the co-movement between the entire 

system and each institution in the global banking stock market. 
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 CoVaR into the counterpart of average VaR (AVaR), which we refer to as  CoAVaR. An 

alternative approach for the risk spillover effect is to describe an institution’s power of influence 

on the system as the probability of a negative co-movement of the market return on the condition 

that a return of the institution moves downward. The idea underlining the use of conditional 

probability is parallel to the idea of addressing the first problem via joint probability. We 

examine the relationship among AVaR,  CoAVaR, and conditional probability using regression 

analysis. 

The rest of this chapter is organized as follows. In Section 2.2, we introduce an ARMA–

GARCH–MNTS model for time series analysis. Subsequently, we define the following 

systematic risk measures: the joint probability and conditional probability of negative 

movements,  CoVaR, and  CoAVaR. Section 2.3 describes the data to be used. Section 2.4 

presents the results and discussion. After we demonstrate that the ARMA–GARCH–MNTS 

model is a better model for G-SIFI stocks, we present the estimation results of systematic risk 

measures. We also discuss the relationship among the different types of measures. Section 2.5 

concludes the chapter. 

2.2 Methodology 

Our methodology for the investigation of systematic risk has the following two steps: (1) 

generating the future joint distribution of stock returns via the ARMA–GARCH model and (2) 

deriving systematic risk measures from the predicted joint distribution. We also briefly explain 

our simulation-based estimation methods. 

2.2.1 ARMA–GARCH–MNTS model 

Our time series model for stock returns is the ARMA(1,1)–GARCH(1,1) model given by 
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(2.1)  

where the index           corresponds to each institution, t represents a time period,   
 
 is the 

stock return,   
 
 is the conditional mean,   

 
 is the conditional standard deviation,   

 
 is the i.i.d. 

with zero mean and unit variance, called (standardized) innovation, and the other symbols are 

model parameters. We describe the multivariate distribution whose every marginal has zero 

mean and unit variance as standard. Thus,       
    

      
   forms a standard multivariate 

distribution. Note that ARMA(1,1)–GARCH(1,1) is a standard specification for financial data in 

the GARCH framework. 

There are several candidate models for each marginal   
 
. We choose the NTS distribution 

because it has the ability to capture stylized properties of stock return distributions such as fat-

tailness and skewness, which the normal distribution lacks. In addition, we use the normal 

distribution for the purpose of comparison. The standard NTS distribution is characterized by 

three parameters: two fat-tailness parameters       and one skewness parameter  . If we assume 

common       among NTS marginals with   as a still free parameter for calibration, we can 

join marginals into MNTS via the variance-covariance matrix of    without computational 

difficulty even in a considerably high-dimensional system. See Kim et al. (2012) and Appendix 

B for the definition and estimation of the MNTS distribution. In the case of the normal model, 

we can also join marginals into the multivariate distribution via the variance-covariance matrix, 

because it is the single parameter of the standard multivariate normal distribution. The 

multivariate distribution of    accounts for the dependent structures among stock returns. 
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Following the same approach as Kim et al. (2012), we first estimate the univariate NTS 

parameters         ( ̂  ̂  ̂) for the innovation of the representative stock, i.e., the market 

index. Then, we use the estimated parameters ( ̂  ̂)  as those of MNTS. For the CoVaR 

estimation, Adrian and Brunnermeier (2011) mainly use quantile regressions supplemented with 

the GARCH model with the normal distributed innovations as a robustness check. Girardi and 

Ergün (2013) use the GARCH model with Hansen’s skewed t distributed innovations. Our 

methodology is different from the previous studies because we first apply the multivariate 

tempered stable distribution to the CoVaR estimation. Another advantage of MNTS is that it has 

the reproductive property; the linear combination of NTS distributed random variables still 

follows NTS. This property enables us to easily deal with the portfolio of stocks. 

Model (2.1) forecasts the joint distribution of stock returns at t + 1 period on the basis of the 

information up to t. We refer to Model (2.1) with the standard MNTS distributed and standard 

multivariate normal distributed    as the ARMA–GARCH–MNTS (AGMNTS) model and 

ARMA–GARCH–multivariate normal (AGMNormal) model, respectively. We primarily use an 

AGMNTS forecast, whereas we use an AGMNormal forecast as a reference. 

2.2.2 Systematic Risk Measures 

Before introducing systematic risk measures, we begin with VaR. VaR is the most standard 

market risk measure used by financial institutions. Consider the VaR of j’s stock return   
 
 at the 

confidence level            , denoted by       
 

. The definition of       
 

 is given by 

       
 

            (  
 
  )      (2.2)  

If   
 
 is continuous,       

 
 is the q-quantile of the distribution of   

 
, which satisfies 

     (  
 
        

 
)     (2.3)  
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An alternative risk measure is AVaR. The definition of        
 

 is given by 

 
       

 
 

 

 
∫       

 
   

 

 

  (2.4)  

If   
 
 is continuous, AVaR is equivalent to 
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|  

 
        

 
)  (2.5)  

which is called expected tail loss. Henceforth, for simplicity, every stock return distribution is 

assumed to be continuous. AVaR has more desirable properties than VaR as a risk measure (e.g., 

the ability to account for risk above the VaR level, often referred to as “tail risk”)
11

. In literature, 

AVaR is also called conditional VaR (CVaR
12

) or Expected Shortfall (ES). 

While VaR and AVaR are micro-prudential risk measures on the premise of an institution 

being isolated, alternative macro-prudential risk measures for systemic risk have recently been 

explored in the context of global financial turmoil. While some consider probability-based 

approaches (Segoviano and Goodhart, 2009; Zhou, 2010; Giesecke and Kim, 2011), others put 

weight on quantifying systemic risk such as CoVaR (Adrian and Brunnermeier, 2011), SES, and 

MES (Acharya et al., 2010). In line with the previous studies of systemic risk, we introduce four 

systematic risk measures in stock markets on the basis of VaR and AVaR, in which two out of 

four are probability-based indicators: joint and conditional probabilities of negative movements. 

The other two are measures to quantify the marginal contribution to systematic risk:  CoVaR 

and  CoAVaR. 

Joint Probability of Negative Movements (JPNM) 

We consider systematic risk as simultaneous negative movements of stock returns, where the 

negative movement simply means the return being less than the conditional mean. Note that this 

                                                 
11

 For further information, see Rachev et al. (2008b). 

12
 Note that CoVaR is a different concept from CVaR, despite the analogous name. 
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definition is consistent with the definition of systemic risk given by Kaufman and Scott (2003). 

Accordingly, we introduce the joint probability of negative movements (JPNM), 

 

          (⋂  
 
   

 

 

   

)  (2.6)  

as a measure of systematic risk. Because massive simultaneous negative co-movement is a very 

rare event, the joint probability is low. However, we expect that such a low probability captures 

the common distress factor among financial institutions and signals crisis. In a previous study, 

Segoviano and Goodhart (2009) estimate the joint probability of distress among financial 

institutions from the credit default swap data. 

CoVaR 

To investigate and quantify the risk spillover effect, we adopt Adrian and Brunnermeier’s 

CoVaR methodology. CoVaR is a bivariate concept between two institutions i and j. While 

      
 

 is the q-quantile of the unconditional distribution of   
 
,         

   
 is the  -quantile of the 

conditional distribution of   
 
 on a certain condition of i, more specifically,   

 . When we specify 

the condition of   
  as  (  

 ) , we denote         

   (  
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 instead of         
   

. The implicit 

definition of         
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 for continuous   
 
 is given by 

 
    (  

 
          

   (  
 )
| (  

 ))     (2.7)  

Let   (  
 ) and   (  

 ) be the distress and “normal” conditions of   
 , respectively. Adrian 

and Brunnermeier (2011) suggest that the difference of         
   

 between the two conditions 
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accounts for the risk contribution of i to j. 

For the application of CoVaR to systematic risk in stock markets, we highlight the case of j 

being a market index.          
       

 is regarded as the marginal contribution of i to the overall 

systematic risk. 

Regarding the conditions, Adrian and Brunnermeier (2011) define the distress and normal 

conditions as the institution’s loss and return being exactly at its VaR and median, respectively,  

   (  
 )  {  

         
 }  

  (  
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 }  

 

(2.9)  

However, we adopt the modified definition by Girardi and Ergün (2013), where the distress 

and normal conditions denote the institution’s loss and return being above its VaR and within the 

range of one standard deviation from its mean, respectively, 

   (  
 )  {  

         
 }  

  (  
 )  {  

    
    

    
    

 }  

 

(2.10)  

We make the confidence level     of    coincide with that of CoVaR, which is conditioned 

by   . As Girardi and Ergün point out, the modified definition has several merits
13

. First, it 

focuses on tail risk, i.e., the loss above the VaR level, and thus, the resulting CoVaR becomes 

more insightful. Second, it allows backtesting of CoVaR. We can apply the ordinary VaR 

backtesting methods to         

        (  
 )

 for the days during which VaR violation of i occurs. 

Here, the VaR violation of i means the event when the observed loss    
  exceeds       

 ; i.e., 

                                                 
13

 The modified definition is also supported by Mainik and Schaanning (2012) in terms of the consistency of the 

response to the dependent parameters. 
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the condition   (  
 ) actually occurs

14
. The simplest way of VaR backtesting is to observe how 

often VaR violations occur. If one attempts to estimate          % VaR, violations should 

occur at 100q% of whole observations. Following Girardi and Ergün (2013), we shall use the 

likelihood ratio tests of the unconditional and conditional coverages by Christoffersen (1998) as 

a more sophisticated VaR backtesting method. The conditional coverage test is more desirable 

than the unconditional one because it can consider the tendency for consecutive violations, which 

is observed for ordinary VaR during financial turmoil. We define the CoVaR violation of i as the 

event when the observed    
      exceeds         

        (  
 )

 during the VaR violation days of i. 

Through the Christoffersen tests, it can be tested whether CoVaR violation occurs with a 

reasonable probability during VaR violation days; that is,         

        (  
 )

 is appropriately 

estimated at the given confidence level. In the conditional test of          

        (  
 )

, the 

conditions are considered between two adjacent days of the VaR violations of i. The last 

convenience of the modified definition (2.10) for our study is to make scenario simulation-based 

estimation of CoVaR feasible (See Section 2.2.3). 

Conditional Probability of Negative Movements (CPNM) 

We can create an alternative probability-based indicator for the risk spillover effect. Given that 

systematic risk is the simultaneous negative movement of stock returns, the probability of the 

market index going down contingent on the institution being distressed is regarded as the 

indicator for systematic risk originating from that institution. Then, we introduce the conditional 

probability of negative movements (CPNM), 

                                                 

14
 Although we can test         

        (  
 )

 in the same way, we concentrate on the distress condition   , which is 

more associated with systematic risk, as Girardi and Ergün (2013) do. 
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We still follow Eq. (2.10) regarding the definition of   . In this case, CPNM is proportional to 

the joint probability of both a market index and an individual institution incurring the loss 

beyond their respective VaRs. Note that, in contrast to the case of JPNM, negative movement 

does not stand for the return being less than the conditional mean but rather the loss exceeding 

VaR in the case of CPNM. This is because the joint probability of returns less than conditional 

means appears insufficient to inspect bivariate tail dependency. 

CoAVaR 

We can consider the Co-version of AVaR by considering Eqs. (2.4) and (2.5).          
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In an analogous fashion to CoVaR, the risk contribution of i to j in terms of CoAVaR is 

expressed by 
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  (2.13)  

In Adrian and Brunnermeier (2011), CoAVaR is mentioned as CoES. Because AVaR has 

some merits compared with VaR, we primarily use CoAVaR rather than CoVaR for the 

assessment of systematic risk. 

2.2.3 Scenario Simulation 

We rely on scenario simulation for estimation of systematic risk measures. It flexibly enables 

the estimations of various risk measures. On the basis of the AGMNTS (AGMNormal) model, 
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we generate a large number S of scenarios about one-period-ahead multivariate stock returns 

    
  (    

        
          

   )       via a Monte Carlo simulation. For the AGMNTS 

model, the random variables that follow the MNTS distribution are easily simulated using its 

subordinated representation
15

. The risk measures can be estimated from the selected scenarios, 

where a relevant or conditioning event like   (  
 ) or   (  

 )  is realized out of the overall 

scenarios. For the estimations of          
       

,           
       

, and        
       

, we specify 

the bivariate ARMA–GARCH model of the market index and institution i. 

2.3 Data 

For empirical research, we use daily stock logarithmic return data for 28 out of 29 G-SIFIs, as 

of November 2011. We refer to each stock by its ticker symbol or abbreviation. The list of G-

SIFIs is given in Appendix A. The only exclusion is Banque Populaire CdE because it is unlisted. 

We use the S&P global 1200 financial sector index to represent the global banking stock market. 

The sample period is from January 1
st
, 2000 to June 30

th
, 2012. We exclude the U.S. non-

business days from this period, which leads to 3260 observations for each stock. BOC, ACA, and 

three Japanese G-SIFIs (MUFG, MHFG, and SMFG) do not have sufficient length of historical 

data to cover the whole sample period. Regarding BOC and ACA, we backfill historical data 

using Cognity
16

. Regarding the three Japanese G-SIFIs, we extrapolate historical data using those 

                                                 
15

 It is specifically a mixture of the multivariate normal distribution and classical tempered stable subordinator. 

See Kim et al. (2012). 

16
 Risk management software provided by FinAnalytica, Inc. We refer to Shanghai Stock Exchange Composite 

(SHCOMP) Index and Morgan Stanley Capital International (MSCI) Index of France for backfilling of BOC and 

ACA, respectively, because these indexes are found to show relatively strong associations with missing stocks. 
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of their representative affiliates, which had been listed before the establishments of holding 

companies
17

. All stock return data are downloaded from Bloomberg. 

We set the          confidence level for risk measures unless otherwise noted. The 

number of scenarios in the Monte Carlo simulation is      . The forecast of stock returns is 

made on a daily basis. Each business day, the model parameters are updated from a moving 

window of the most recent 1250 days’ sample return data. It means that we have 2011 daily 

parameter estimates starting from October 15
th

, 2004. In individual model parameter estimations, 

the variance-covariance matrix of    is estimated from the most recent 250 days’ sample 

innovations. 

2.4 Estimation Results 

We present the estimation results of systematic risk measures. The measures are estimated on 

the basis of the AGMNTS model unless otherwise noted, whereas they are estimated on the basis 

of the AGMNormal model, if needed for a reference. 

First, we validate the usage of the AGMNTS model with G-SIFI stocks. For this validation, 

we test the standard NTS and normal distributional assumptions for the innovation of each stock 

in the ARMA(1,1)–GARCH(1,1) model (2.1) through the Kolmogorov–Smirnov (KS) test. 

Because we have 2011 daily estimations of the ARMA–GARCH model, the KS test is 

accordingly applied 2011 times for each stock. Table 2.1 reports the number of days on which 

the NTS and normal assumptions for each stock are rejected at three different significance levels: 

1%, 5%, and 10%. The result is that NTS provides much better fitting for innovations than 

                                                 
17

 Japanese major banks restructured their business form into holding companies all together in the beginning of 

2000s under financial reforms called Japanese financial Bing Bang. Therefore, stock prices of major affiliate banks 

can be substituted for those of holding companies before their establishments. Specifically, we substitute Bank of 

Tokyo-Mitsubishi UFJ (8315 JP) for MUFG, Dai-Ichi Kangyo Bank (8311 JP, until September 2000) and Mizuho 

Holdings (8305 JP, from October 2000) for MHFG, and Sumitomo Mitsui Banking Corporation (8318 JP) for 

SMFG. 
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normal. The only exception is BOC. Both NTS and normal assumptions are rejected by all 2011 

estimations for the innovations of BOC. However, except BOC, the rejections of the NTS 

assumption are much lower than those of the normal assumption at every significance level. The 

normal assumption is totally rejected by BOC, BK, MUFG, MHFG, STT, and SMFG even at the 

1% significance level. These observations support the usage of AGMNTS model with G-SIFI 

stocks. 

To illustrate the basic risk profiles of G-SIFI stocks, we refer to VaR and AVaR. We adopt an 

equally weighted portfolio as the most representative portfolio, and consider the VaR and AVaR 

of the portfolio to be equally weighted by the 28 G-SIFI stocks. Figure 2.1 represents the time 

series plot of the VaR and AVaR of the equally weighted portfolio estimated by the AGMNTS 

and AGMNormal models. AVaR estimated from the AGMNTS model tends to be higher than 

the AGMNormal model, especially during financial crisis, because of its capability of accounting 

for fat-tailness, whereas both models give similar VaR at the 95% confidence level. Through a 

simple graphic comparison, we find that the AGMNTS model and AVaR is the best combination 

for the purpose of warning of distress of individual institutions or their portfolios in terms of 

micro-prudential perspective. Subsequently, we apply the unconditional and conditional 

Christoffersen’s likelihood ratio tests to the estimated daily VaR of each stock to clarify whether 

the estimations of VaR are reasonable. Tables 2.2 and 2.3 report the number of violation days 

and p-values of the tests for 90% VaR, 95% VaR, and 99% VaR, respectively. Both AGMNTS 

and AGMNormal models show similar performance on the 90% VaR and 95% VaR estimations. 

The AGMNTS model gives fewer VaR violations and higher p-values for some stocks, whereas 

the AGMNormal model does this for other stocks; a higher p-value means less probability of 

rejection of the VaR estimation. However, this is not the case for the 99% VaR estimation; the 
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AGMNTS model clearly gives a better forecast of VaR than the AGMNormal model. The 

AGMNTS model generally has fewer violation days and higher p-values. The number of 99% 

VaR violations based on the AGMNTS model is lower than the AGMNormal model, except for 

BOC and MUFG. In addition, the number of rejections of each stock’s 99% VaR estimation 

under the unconditional and conditional tests are 10 and 17 at the 5% significance level for 

AGMNTS, whereas 22 and 25 for AGMNormal, respectively. The fact that the 99% VaR 

estimation of the AGMNTS model is relatively more accurate than the 90% VaR and 95% VaR 

estimations implies that the deeper tail structure of the distribution is better captured by the 

AGMNTS model than the AGMNormal model. This property of the AGMNTS model is 

desirable for our study because our main interest CoVaR casts a spotlight on the deeper tail 

structure. Therefore, the AGMNTS model is preferable in terms of risk measure estimation as 

well as fitting performance. 
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Table 2.1: Number of Rejections of Distributional Assumptions for Each Stock on the 

Basis of the KS test (Out of 2011 Estimations) 

 

 

 Figure 2.1: Time Series of the VaR and AVaR of the Equally Weighted Portfolio

 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

BAC 1463 2007 1219 2007 400 1979

BOC 2011 2011 2011 2011 2011 2011

BK 1890 2011 1617 2011 997 2011

BARC 4 1635 4 1017 2 302

BNP 16 1527 4 1345 3 841

C 1446 1960 1224 1846 523 1460

CBK 694 2002 486 2002 59 1963

CSGN 1388 2011 943 2011 152 1548

DBK 367 1898 72 1553 6 864

DEXB 1076 2009 547 1888 6 1176

GS 893 1883 591 1608 3 855

ACA 138 1744 38 1502 0 918

HSBA 159 2011 13 2008 1 1421

INGA 1183 1804 765 1551 4 571

JPM 1437 2011 891 1984 82 1601

LLOY 342 1945 93 1838 15 1092

MUFG 1775 2011 1436 2011 436 2011

MHFG 1558 2011 1288 2011 385 2011

MS 1718 1807 1087 1476 272 1205

NDA 663 2011 577 2010 317 1528

RBS 628 2011 396 1927 100 1556

SAN 1677 1930 1453 1640 654 888

GLE 665 1988 334 1855 9 913

STT 1311 2011 1198 2011 961 2011

SMFG 1695 2011 1352 2011 770 2011

UBSN 1449 2010 1012 1960 245 1111

UCG 74 1256 4 1027 1 555

WFC 722 1425 597 1272 409 1164

Significance Level: 10% Significance Level: 5% Significance Level: 1%

0
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Table 2.2: Number of VaR Violations (Out of 2011 Estimations) 

 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

BAC 214 178 111 112 29 46

BOC 155 151 75 79 29 29

BK 188 186 104 104 35 39

BARC 214 196 112 113 31 42

BNP 216 202 118 116 24 35

C 219 203 120 124 34 48

CBK 203 195 102 100 31 34

CSGN 204 189 100 102 21 28

DBK 226 205 126 122 23 36

DEXB 235 216 131 129 33 44

GS 209 187 109 109 25 29

ACA 218 198 109 105 29 35

HSBA 212 188 103 105 31 38

INGA 239 220 126 122 26 35

JPM 211 196 99 94 27 33

LLOY 220 204 107 104 31 39

MUFG 180 167 91 85 26 24

MHFG 186 173 89 80 20 23

MS 217 203 108 111 28 37

NDA 211 180 112 104 27 36

RBS 211 196 104 105 36 45

SAN 239 225 124 130 23 43

GLE 236 206 116 113 32 41

STT 168 141 84 80 22 35

SMFG 179 161 99 87 22 24

UBSN 221 199 118 118 21 34

UCG 247 235 140 139 25 41

WFC 202 195 116 115 33 42

90% VaR 95% VaR 99% VaR
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Table 2.3: p-values of the Christoffersen Test for VaR 

 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

BAC 0.342 0.080 0.175 0.026 0.293 0.250 0.063 0.061 0.062 0.000 0.037 0.000

BOC 0.000 0.000 0.000 0.000 0.006 0.022 0.006 0.012 0.062 0.062 0.043 0.037

BK 0.325 0.256 0.167 0.105 0.726 0.726 0.655 0.457 0.003 0.000 0.001 0.000

BARC 0.342 0.704 0.128 0.052 0.250 0.211 0.061 0.029 0.024 0.000 0.000 0.000

BNP 0.273 0.947 0.040 0.041 0.082 0.122 0.036 0.074 0.398 0.003 0.176 0.001

C 0.189 0.888 0.081 0.394 0.053 0.020 0.050 0.020 0.005 0.000 0.000 0.000

CBK 0.888 0.649 0.015 0.002 0.882 0.955 0.044 0.084 0.024 0.005 0.018 0.004

CSGN 0.830 0.364 0.017 0.008 0.955 0.882 0.364 0.413 0.843 0.095 0.487 0.059

DBK 0.069 0.773 0.068 0.695 0.012 0.033 0.011 0.032 0.527 0.001 0.334 0.001

DEXB 0.014 0.273 0.000 0.001 0.003 0.005 0.000 0.000 0.008 0.000 0.004 0.000

GS 0.559 0.289 0.248 0.048 0.393 0.393 0.393 0.393 0.291 0.062 0.187 0.043

ACA 0.215 0.817 0.003 0.023 0.393 0.651 0.012 0.126 0.062 0.003 0.043 0.002

HSBA 0.421 0.325 0.311 0.294 0.803 0.651 0.019 0.057 0.024 0.000 0.018 0.000

INGA 0.006 0.166 0.001 0.006 0.012 0.033 0.000 0.007 0.207 0.003 0.002 0.000

JPM 0.465 0.704 0.395 0.659 0.874 0.498 0.588 0.307 0.142 0.008 0.087 0.007

LLOY 0.166 0.830 0.000 0.030 0.513 0.726 0.131 0.430 0.024 0.000 0.014 0.000

MUFG 0.111 0.009 0.048 0.003 0.321 0.103 0.320 0.099 0.207 0.398 0.115 0.176

MHFG 0.256 0.033 0.063 0.011 0.228 0.029 0.003 0.009 0.980 0.527 0.015 0.021

MS 0.243 0.888 0.155 0.535 0.451 0.293 0.131 0.193 0.095 0.001 0.062 0.001

NDA 0.465 0.111 0.002 0.027 0.250 0.726 0.232 0.241 0.142 0.001 0.089 0.001

RBS 0.465 0.704 0.019 0.004 0.726 0.651 0.022 0.009 0.001 0.000 0.000 0.000

SAN 0.006 0.081 0.004 0.031 0.020 0.004 0.018 0.004 0.527 0.000 0.334 0.000

GLE 0.011 0.717 0.002 0.062 0.122 0.211 0.025 0.102 0.014 0.000 0.003 0.000

STT 0.012 0.000 0.005 0.000 0.082 0.029 0.078 0.026 0.676 0.003 0.416 0.001

SMFG 0.095 0.002 0.063 0.001 0.874 0.156 0.030 0.120 0.676 0.398 0.212 0.176

UBSN 0.145 0.876 0.006 0.047 0.082 0.082 0.021 0.036 0.843 0.005 0.018 0.000

UCG 0.001 0.014 0.000 0.001 0.000 0.000 0.000 0.000 0.291 0.000 0.020 0.000

WFC 0.947 0.649 0.674 0.608 0.122 0.148 0.052 0.029 0.008 0.000 0.004 0.000

90% VaR 95% VaR 99% VaR

Unconditional Conditional Unconditional Conditional Unconditional Conditional

10 22 17
# of p-values

less than 5%
7 6 16 19 6

3 3 5 6

9 16 13

5 22 8 22

25

# of p-values

less than 1%
4 4 11 10
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We now proceed to the estimation results of systematic risk measures. Figure 2.2 illustrates 

the time series of JPNM
18

. We can see that JPNM has high sensitivity to important financial 

events. We distinguish three turmoil periods when JPNM rapidly goes up: Period 1 is from July 

2007 to September 2008 (subprime loan problem and Lehman’s collapse), Period 2 is from April 

2010 to March 2011 (dawn of Greek sovereign problem), and Period 3 is from August 2011 to 

May 2012 (U.S. credit rating downgrading and Greek political turmoil). It is remarkable that 

JPNM warns the adverse impact of the very recent Greek crisis (Period 3) even more seriously 

than the Lehman shock (Period 1), whereas VaR or AVaR in Figure 2.1 describes Period 3 

relatively moderately. JPNM could be a reference for a forthcoming crisis beyond VaR or AVaR. 

 

Figure 2.2: Time Series of JPNM 

To quantify risk spillover effects, we estimate          
       

 and           
       

. We 

backtest         

        (  
 )

 as well as VaR, on the basis of the Christoffersen tests. Tables 2.4 

and 2.5 report the violation rates and p-values of the tests for 90% CoVaR, 95% CoVaR and 

                                                 
18

 The resulting value of JPNM is in the order of     . The number of simulation,      , is enough for the 

estimation because the standard deviation of the estimated JPNM is about √ ̂    ̂        . 
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99% CoVaR, respectively
19

. Note that it is not the number of CoVaR violations but the rate of 

CoVaR violations to VaR violations that is reported in Table 2.4, because the number of VaR 

violations differs among individual stocks. In general, the rates of CoVaR violations are lower 

and the p-values of the tests are higher for the AGMNTS model than for the AGMNormal model. 

The number of rejections of each stock’s 95% CoVaR estimation under the unconditional and 

conditional tests are 3 and 8 at the 5% significance level for AGMNTS, whereas 26 and 27 for 

AGMNormal, respectively. The AGMNormal estimation of CoVaR is rejected by almost all 

stocks. These imply that, unlike the case of VaR, the AGMNTS model gives a better forecast of 

CoVaR than the AGMNormal model regardless of significance levels. As can be observed from 

the definition, CoVaR addresses tail dependencies among stocks. A better estimation of CoVaR 

reflects the superior descriptive power for tail dependencies of the MNTS distribution. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
19

 We do not deal with the likelihood ratio tests for 99% CoVaR because 99% VaR violations are not frequently 

observed to test 99% CoVaR. 
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Table 2.4: Rate of CoVaR to VaR Violations 

 

 

 

 

 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

BAC 0.150 0.213 0.063 0.143 0.034 0.065

BOC 0.142 0.146 0.067 0.139 0.034 0.103

BK 0.186 0.210 0.087 0.135 0.029 0.051

BARC 0.136 0.179 0.071 0.124 0.032 0.048

BNP 0.144 0.163 0.076 0.138 0.000 0.057

C 0.146 0.197 0.067 0.137 0.029 0.021

CBK 0.138 0.190 0.088 0.170 0.032 0.059

CSGN 0.162 0.196 0.090 0.127 0.048 0.071

DBK 0.128 0.156 0.071 0.139 0.043 0.056

DEXB 0.132 0.190 0.084 0.155 0.030 0.091

GS 0.139 0.182 0.083 0.147 0.040 0.069

ACA 0.147 0.182 0.083 0.143 0.034 0.057

HSBA 0.108 0.149 0.087 0.114 0.000 0.053

INGA 0.121 0.164 0.087 0.139 0.000 0.029

JPM 0.142 0.199 0.111 0.191 0.037 0.061

LLOY 0.118 0.157 0.075 0.144 0.000 0.026

MUFG 0.094 0.120 0.055 0.094 0.000 0.042

MHFG 0.086 0.110 0.022 0.088 0.000 0.000

MS 0.147 0.187 0.056 0.135 0.036 0.081

NDA 0.147 0.222 0.089 0.163 0.037 0.083

RBS 0.133 0.173 0.077 0.143 0.000 0.022

SAN 0.121 0.160 0.081 0.131 0.043 0.070

GLE 0.127 0.155 0.095 0.133 0.000 0.024

STT 0.179 0.213 0.095 0.188 0.045 0.086

SMFG 0.101 0.112 0.051 0.103 0.000 0.000

UBSN 0.140 0.181 0.076 0.144 0.048 0.059

UCG 0.134 0.162 0.079 0.122 0.000 0.000

WFC 0.168 0.200 0.095 0.148 0.030 0.071

90% CoVaR 95% CoVaR 99% CoVaR
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Table 2.5: p-values of the Christoffersen Test for CoVaR 

 

An alternative approach to risk spillover effects is CPNM. We compare  CoAVaR and CPNM 

separately, both in time series and cross-section directions. Recall that CoAVaR is preferable to 

CoVaR for risk assessment. 

To compare time series, we prepare three regional portfolios in the United States, Europe, and 

Asia. These are equally weighted portfolios comprising G-SIFI stocks belonging to each region, 

and are intended to represent the time series of stock returns in each region. In Figure 2.3, the 

AVaR of regional portfolios and  CoAVaR and CPNM of each regional portfolio on the market 

index are plotted in the time series direction. The estimations are made using both AGMNTS and 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

BAC 0.023 0.000 0.023 0.000 0.543 0.000 0.250 0.000

BOC 0.099 0.078 0.082 0.076 0.528 0.003 0.289 0.002

BK 0.000 0.000 0.000 0.000 0.120 0.001 0.115 0.001

BARC 0.098 0.001 0.079 0.001 0.327 0.002 0.138 0.000

BNP 0.044 0.005 0.012 0.001 0.223 0.000 0.084 0.000

C 0.032 0.000 0.019 0.000 0.424 0.000 0.181 0.000

CBK 0.087 0.000 0.067 0.000 0.108 0.000 0.104 0.000

CSGN 0.006 0.000 0.005 0.000 0.097 0.002 0.033 0.000

DBK 0.172 0.013 0.079 0.013 0.298 0.000 0.115 0.000

DEXB 0.118 0.000 0.042 0.000 0.102 0.000 0.102 0.000

GS 0.076 0.001 0.060 0.001 0.152 0.000 0.055 0.000

ACA 0.030 0.000 0.007 0.000 0.152 0.000 0.055 0.000

HSBA 0.684 0.036 0.026 0.010 0.114 0.009 0.039 0.002

INGA 0.286 0.004 0.172 0.002 0.081 0.000 0.023 0.000

JPM 0.053 0.000 0.038 0.000 0.015 0.000 0.003 0.000

LLOY 0.381 0.012 0.380 0.012 0.272 0.000 0.226 0.000

MUFG 0.802 0.408 0.535 0.353 0.831 0.094 0.426 0.034

MHFG 0.516 0.671 0.454 0.307 0.183 0.162 0.172 0.069

MS 0.028 0.000 0.026 0.000 0.795 0.001 0.377 0.000

NDA 0.032 0.000 0.013 0.000 0.084 0.000 0.084 0.000

RBS 0.130 0.002 0.127 0.002 0.241 0.000 0.205 0.000

SAN 0.286 0.005 0.002 0.002 0.149 0.000 0.144 0.000

GLE 0.181 0.013 0.180 0.013 0.047 0.001 0.012 0.000

STT 0.002 0.000 0.001 0.000 0.089 0.000 0.032 0.000

SMFG 0.980 0.624 0.467 0.313 0.982 0.044 0.463 0.044

UBSN 0.058 0.001 0.037 0.001 0.223 0.000 0.084 0.000

UCG 0.092 0.003 0.006 0.003 0.151 0.001 0.047 0.001

WFC 0.003 0.000 0.002 0.000 0.047 0.000 0.012 0.000

90% CoVaR 95% CoVaR

Unconditional Conditional Unconditional Conditional

# of p-values

less than 5%
10 24 16 24 3

0 25 1 25

26 8 27

# of p-values

less than 1%
4 20 7 21
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AGMNormal models. We observe that the AGMNTS model gives more conservative estimations 

of systematic risk measures than the AGMNormal model because of its superior descriptive 

power for tail dependencies. From a comparison among risk measures,  CoAVaR is found to 

move significantly parallel to AVaR in the time series direction. It is a natural consequence that 

higher risk leads to higher risk spillover effects. On the other hand, neither does CPNM show 

strong linkage with AVaR or  CoAVaR, nor it is very sensitive to global adverse impacts. 

However,  CoAVaR and CPNM agree with the magnitude relation; the influence of Asia on the 

system is relatively lower than that of the United States and Europe. It also follows our 

assumption regarding the regional power of influence on the global financial system. 

 

Figure 2.3: Time Series of AVaR,  CoAVaR, and CPNM by Region 

The situation is different in the cross-section direction. To gain visual understanding, the 

scatter plots of cross-sectional  CoAVaR vs. AVaR and  CoAVaR vs. CPNM are depicted in 

the upper and lower halves of Figure 2.4, respectively, where the average of risk measures is 

taken over each stock’s time series during the three turmoil periods suggested by JPNM in 

Figure 2.2. It appears that the cross-sectional AVaR has very weak linkage with the cross-
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sectional  CoAVaR. This result supports the idea that the institution that has higher risk is not 

necessarily the same one as the institution whose risk contribution to the entire system is larger. 

The contribution to systematic risk should be dependent not only on the institution’s stand-alone 

risk measured by, for example, VaR, but also on other factors such as interconnectedness with 

other institutions. By contrast, CPNM has strong positive linear linkage with  CoAVaR. Though 

four points corresponding to the Asian G-SIFIs outlie others in each scatter plot, they still appear 

to be on a line. This suggests that  CoAVaR and CPNM are consistent when ranking the power 

of influence on the entire system among institutions at the same time. This consentience is 

already observed about the ranking among three regions in Figure 2.3. We further investigate the 

relationship among AVaR,  CoAVaR, and CPNM via the single linear regression, where the 

explained variable is  CoAVaR and the explanatory variables are AVaR and CPNM. Because 

we have 2011 daily cross-sectional datasets for 28 G-SIFI stocks, we iteratively run the 

regression 2011 times. Table 2.6 reports the number of significantly non-zero regression 

coefficients at the 1% level by signs and average R
2
 out of 2011 tests by risk measures at three 

different confidence levels. For AVaR, significantly positive coefficients at the 1% level to 

 CoAVaR are obtained from less than 10% of all trials and R square is, on average, quite low 

regardless of confidence levels. For CPNM, in contrast, all trials result in a significantly positive 

coefficient at the 1% level with very high average R
2
. Therefore, from statistical evidence, we 

confirm that AVaR has almost nothing to do with  CoAVaR, but that CPNM has very strong 

positive linkage with  CoAVaR in the cross-section direction. 
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Figure 2.4: Cross-Sectional Linkage among AVaR,  CoAVaR, and CPNM 

Table 2.6: Iterative Single Regression Analysis for 2011 Cross-Sectional Datasets among 

AVaR,  CoAVaR, and CPNM 

 

2.5 Concluding Remarks 

In this chapter, we measure global systematic risk and the marginal contributions to it of the 

institutions by using stock return data of G-SIFIs, which constitute a large portion of the global 

banking system. To generate the future joint distribution of stock returns, we utilize the ARMA–

GARCH–MNTS and ARMA–GARCH–MNormal models. The statistical tests demonstrate that 

the ARMA–GARCH–MNTS model is highly preferable to the ARMA–GARCH–MNormal 
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model, mainly because of its capability of describing fat-tailness and skewness of stock return 

distributions. 

We prepare both probability-based indicators and measures to quantify the marginal 

contribution to systematic risk. To be specific, we estimate the joint probability and conditional 

probability of negative stock return movements, ΔCoVaR, and ΔCoAVaR against the market 

index. The joint probability of negative movements turns out to vividly describe a significant 

increase of systematic risk. It provides information that VaR or AVaR lacks and could be 

referred to as a signal of financial turmoil. The other measures are for risk spillover effects rather 

than systematic risk itself. We find that AVaR has very weak linkage with ΔCoAVaR in the 

cross-section direction, even though both are strongly connected to each other in the time series 

direction, implying that the institution having higher risk is not necessarily the institution which 

has a larger power of influence on the entire system. Therefore, exclusively referring to VaR can 

be misleading for a macro-prudential purpose. These results are consistent with those of Adrian 

and Brunnermeier (2011) for the U.S. financial institutions. On the other hand, the probability of 

negative movements of the market index on the condition of the instituion’s distress tends to 

provide very similar implications to ΔCoAVaR about the ranking of the institution’s power of 

influence on the entire system. The relative merit of ΔCoAVaR to conditional probability is a 

stronger sensitivity to adverse impact on the global financial system and the ability to quantify 

the impact, whereas the relative merit of conditional probability to ΔCoAVaR is the easiness of 

estimation. From these observations, we conclude that combining AVaR and the conditional 

probability of negative movements would give a useful reference for ΔCoAVaR-based 

systematic risk measurement. 
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Chapter 3 Mean–CoAVaR Optimization for Global Banking Portfolios 

3.1 Introduction 

The recent financial turmoil has so severely deteriorated the global investment environment 

that traditional portfolio management theory currently has less effect. The failure of Lehman 

Brothers in September 2008 and the subsequent financial crisis, referred to as the “Lehman 

shock,” had an adverse impact on global financial markets, causing massive spillover effects and 

bringing attention to systemic risk. In such a situation, portfolio managers are exposed to and 

need to address undiversifiable risk; loss is more or less inevitable no matter how they construct 

a portfolio. Undiversifiable risk is likely to be especially applicable to the banking sector because 

global banks are now closely interconnected. Undiversifiable risk is also called systematic risk. 

The benchmark of modern portfolio theory is Markowitz’s mean–variance optimization theory 

(Markowitz, 1952). The framework of mean–variance optimization is to construct a portfolio 

minimizing the variance with a given desired expected return. However, it has been revealed that 

the variance is not always an appropriate risk measure to be minimized. Subsequently, several 

alternative approaches have been proposed to replace the variance in Markowitz’s theory with 

other risk measures such as Value at Risk (VaR) and average VaR (AVaR), which are called 

mean–VaR and mean–AVaR optimization, respectively. Such approaches are collectively called 

mean–risk portfolio optimization. In general, AVaR is preferable to VaR in terms of the 

optimization problem. While VaR optimization is basically a nonconvex and nonsmooth problem 

with multiple local minima, AVaR optimization is a convex and smooth problem. See Rachev et 

al. (2008b) for a general description and history of mean–risk portfolio optimization problems. 
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Recently, Adrian and Brunnermeier (2011) proposed CoVaR or  CoVaR measure for 

systemic risk. CoVaR, specifically         , is defined between two institutions i and j. 

         is the VaR of j on a certain condition of i.           is the difference between the 

VaR of j on the condition of i being distressed and “normal.” Note that either i or j can be the 

entire system. While the case of j being the system usually attracts more attention because 

               can quantify the marginal risk contribution of i to the overall system, Adrian and 

Brunnermeier (2011) also mention the case of i being the system. They refer to                

as “exposure CoVaR” in the sense that it can be interpreted as j’s exposure to systemic risk. 

CoVaR and  CoVaR are directly extended into the counterparts of AVaR, which we call 

CoAVaR and  CoAVaR
 20

. We apply the CoVaR methodology to stock markets, where the 

financial system is approximated by the market index. 

In this chapter, we adopt CoAVaR as the objective function and propose mean–CoAVaR 

portfolio optimization. Even though the loss caused by systematic risk might be inevitable, we 

attempt to at least mitigate it through CoAVaR optimization. Because               captures 

j’s vulnerability to the overall market risk, we expect to make the portfolio immune to systematic 

loss by minimizing the CoAVaR of the portfolio against the market index, i.e.,                 . 

We perform an empirical study by using daily stock return data of 28 listed global systemically 

important financial institutions (G-SIFIs), as of November 2011. A G-SIFI stock is a good choice 

for testing the effect of a mean–CoAVaR strategy against systematic risk because G-SIFIs are 

specified by financial regulators as the institutions with a huge influence on the global financial 

system, and that potentially experience systemic risk in terms of their size, interconnectedness 

and so on (Basel Committee on Banking Supervision, 2011b; Financial Stability Board, 2011). 

                                                 
20

 In Adrian and Brunnermeier (2011), CoAVaR is mentioned as CoES, where ES stands for expected shortfall. 
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By comparing the performance of the portfolio minimizing CoAVaR with that of the portfolio 

minimizing traditional risk measures such as variance and AVaR, we confirm the effectiveness 

of mean–CoAVaR optimization. This chapter is a sequel to Chapter 2. We now focus on the 

management of systematic risk from the perspective of a portfolio manager, whereas we focused 

on the measurement of systematic risk in Chapter 2. See Chapter 2 for more information on 

notations, description of datasets, and methodology because some of these are shared with this 

chapter. 

The rest of this chapter is structured as follows. In Section 3.2, we formulate mean–CoAVaR 

portfolio optimization. Section 3.3 provides an empirical study by using 28 G-SIFI stocks and an 

ARMA–GARCH
21

 forecast. Section 3.4 is devoted to concluding remarks. 

3.2 Mean–CoAVaR Optimization 

In line with the concept of mean–risk optimization, we propose mean–CoAVaR portfolio 

optimization to minimize a portfolio’s potential loss caused by systematic risk. Because exposure 

CoVaR is a measure of vulnerability to systematic distress, it is quite a natural idea to minimize 

it for the purpose of a defense against systematic risk. We select CoAVaR as the objective 

function rather than CoVaR because of the drawbacks of VaR optimization. Note that we also 

select CoAVaR rather than         for the following reason. While                   

focuses on the increase in the risk of a portfolio in the case of financial crisis, i.e., exposure to 

systemic distress,                  accounts for the portfolio’s idiosyncratic risk in addition to 

exposure. The latter quantity should be minimized in terms of portfolio loss mitigation.  

                                                 
21

 Autoregressive moving average generalized autoregressive conditional heteroscedasticity. 
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Let   
  be the return of stock i. The subscript t stands for a time period. We assume that any 

return distribution is continuous. Let  (  
 ) be a certain condition of   

 . Then, the CoAVaR of 

stock j on the condition  (  
 ) at the confidence level     is defined as 
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(3.1)  

where         

   (  
 )

 is the VaR of stock j on the condition  (  
 ) at the confidence level    . 

Let       
    

      
   be a set of weights of stock         in the portfolio. We now 

formulate the mean–CoAVaR portfolio optimization as follows: 
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(3.2)  

where   
 
 is a conditional mean of   

 
 on the information up to t – 1 and  ̅  is an expected return 

of the portfolio. Note that CoAVaR is defined for the portfolio return   
         ∑   

 
  

  
    

against the market index return   
     . The distress condition   (  

     ) is defined as the loss 

of the index being above its VaR: 

   (  
     )  {  

             
     }  (3.3)  

Short selling is prohibited in line with common practice. For simplicity, we do not take 

transaction costs into account. 
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3.3 Empirical Study 

We evaluate a mean–CoAVaR strategy through an empirical study by using daily stock 

logarithmic return datasets of 28 out of 29 G-SIFIs, as of November 2011, where the only 

exclusion is Banque Populaire CdE because it is unlisted. The list of G-SIFIs is given in 

Appendix A. We refer to each stock by its ticker symbol or abbreviation. We use the S&P global 

1200 financial sector index (SGFS) to represent the global banking stock market. 

The procedure of evaluating a mean–CoAVaR strategy is as follows. First, we generate the 

one-period-ahead joint stock return distribution using the multivariate ARMA(1,1)–GARCH(1,1) 

model. We assume that the innovations of the ARMA–GARCH model follow the multivariate 

normal tempered stable (MNTS) distribution
22

 because it is a better model for G-SIFI stocks 

compared with the Gaussian model in terms of both goodness of fit and accuracy of risk measure 

estimation, as demonstrated in Chapter 2. Subsequently, under the predicted stock return joint 

distribution, we find the optimized portfolio    through three different strategies: mean–variance, 

mean–AVaR, and mean–CoAVaR optimization. In other words, we minimize the variance, 

AVaR, and CoAVaR of the portfolio under the same constraints for the three strategies, 

respectively, as given in (3.2). We regard an equally weighted portfolio as the benchmark, and 

thus set the expected return  ̅  as the simple average of conditional means   
 
. We rebalance the 

portfolio to the optinum each business day. Finally, we compare the performance among 

strategies in terms of long-run loss mitigation effects. 

The operation period starts at January 1
st
, 2008 and ends at June 30

th
, 2012, during which 

systemic risk is of great concern. The operation days amount to 1174 in line with the United 

States business days. Each business day, the parameters of the ARMA–GARCH model are 
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 See Kim et al. (2012) and Appendix B for the MNTS distribution. 
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updated on the basis of the most recent 1250 days’ historical stock return data. Historical returns 

are backfilled where missing in the same manner in Chapter 2. The confidence level of risk 

measures is set as         . We use the matlab fmincon command for optimization 

problems. 

The portfolio is constructed from G-SIFI stocks. To see whether the effectiveness of strategies 

depends on portfolio size or regional specificity, we prepare three portfolios constructed from 

different number of stocks and another three portfolios constructed from different regional stocks. 

The three different-sized portfolios are referred to as large, middle, and small. The large group 

includes all 28 G-SIFI stocks; the middle group includes the following 12 stocks: BAC, BARC, 

BNP, C, CBK, CSGN, DBK, HSBA, MUFG, GLE, SMFG, and UBSN; and the small group 

includes the following 6 stocks: BAC, BARC, BNP, CBK, MUFG, and UBSN. For the middle 

and small groups, sample stocks are chosen from six countries, the United States, the United 

Kingdom, France, Germany, Switzerland, and Japan, which play critical roles in the global 

banking system in the sense that more than one institutions are selected as G-SIFIs from those 

countries. The three regional portfolios are constructed from G-SIFI stocks in each region: 8 

stocks from the United States, 16 stocks from Europe, and 4 stocks from Asia. 

The results are summarized in Tables 3.1 and 3.2 for different-sized portfolios and different 

regional portfolios, respectively. They report standard deviation, skewness, kurtosis of the 

realized daily returns of the optimized portfolios, the number of days on which the optimized 

portfolio outperforms the benchmark regarding the return, and cumulative return in percentage 

terms. The statistics of the market index and equally weighted portfolio are also presented as a 

reference. The main remark in Tables 3.1 and 3.2 is that the mean–CoAVaR and mean–AVaR 

portfolios generally incur smaller cumulative loss than the mean–variance portfolio. In Table 3.1, 
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the mean–variance portfolio incurs an even larger cumulative loss than the simple equally 

weighted portfolio in the middle and small groups. We frequently observe that the mean–

variance portfolio yields at most the same performance as the equally weighted portfolio. This 

supports the idea that the variance is not necessarily a proper risk measure during financial 

turmoil. Second, the mean–CoAVaR strategy still has loss mitigation effects compared with the 

mean–AVaR strategy in most cases in Tables 3.1 and 3.2. In Table 3.1, the loss mitigation effect 

is the least in the large group and the greatest in the small group. It can be explained by the size 

of the portfolio. When a portfolio is diversified by incorporating a larger number of stocks, the 

structure of the portfolio becomes closer to the market index. Therefore, the mean–AVaR 

optimization for a larger portfolio captures systematic risk well even without explicitly 

considering the co-movement between the portfolio and entire market as CoAVaR does. In Table 

3.2, the Asia group is the only exception out of all six portfolios where the mean–CoAVaR 

strategy is inferior to the mean–AVaR strategy, and moreover, the mean–AVaR strategy is 

inferior to the mean–variance strategy in terms of the cumulative loss. However, note that the 

mean–CoAVaR strategy incurs the smallest cumulative loss among the three strategies in the 

other five cases. 

The time series of the cumulative return of the portfolios optimized by three different mean–

risk strategies for the small and Europe groups is plotted in Figures 3.1 and 3.2, respectively. In 

addition, the difference in the cumulative return between the mean–CoAVaR and mean–AVaR 

portfolios is also plotted in Figures 3.3 and 3.4. Note that the small and Europe groups constitute 

the portfolio where the mean–CoAVaR strategy has the most pronounced effect of mitigating the 

loss among different-sized portfolios and different regional portfolios, respectively. It is 

observed in the figures that the mean–CoAVaR portfolio has a noticeable difference in the 
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cumulative return from the mean–AVaR portfolio after the collapse of Lehman Brothers, which 

triggered financial turmoil and concern about systemic risk. From the observations above, we 

conclude that the mean–CoAVaR optimization is as effective or even better compared with the 

mean–AVaR optimization, especially when systematic distress is of great concern. 

3.4 Concluding Remarks 

In this chapter, we propose mean–CoAVaR portfolio optimization to mitigate the potential 

loss arising from systematic risk. Since the CoAVaR of the portfolio accounts for the intrinsic 

risk and extent of its vulnerability to systematic downturn, on the condition that the market index 

is in distress, CoAVaR is expected to be a good candidate for the objective function to be 

minimized against undiversifiable risk. Note that CoAVaR is more appropriate than CoVaR for 

the optimization problem because of convexity. 

We examine the effectiveness of the proposed mean–CoAVaR optimization by using 28 listed 

G-SIFI stocks. G-SIFIs are good trial samples to test the mean–CoAVaR strategy because they 

are both highly interconnected and potentially affected by systematic risk in global financial 

markets. We utilize the ARMA(1,1)–GARCH(1,1) model with the MNTS distributed 

innovations to forecast the one-period-ahead joint distribution of stock returns, which is revealed 

to be a better model for G-SIFI stocks in Chapter 2. Throughout the empirical study, we observe 

that the mean–CoAVaR portfolio incurs smaller cumulative loss than the mean–AVaR and 

mean–variance portfolios in most cases. Therefore, we conclude that the mean–CoAVaR 

optimization is effective during the time of global bear markets. Until now, CoVaR has been 

considered primarily a macro-prudential tool for measuring the systemic importance of an 

institution. Our results open its applicability to risk management usage. 
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Table 3.1: Portfolio Performance of Three Mean–Risk Optimizations (by Size) 

 

Note: The cumulative return is the cumulative amount of the weighted average of logarithmic 

returns of stocks in the portfolio and is expressed as a percentage. Thus, it can be lower than –100. 

Table 3.2: Portfolio Performance of Three Mean–Risk Optimizations (by Region) 

 

Note: The cumulative return is the cumulative amount of the weighted average of logarithmic 

returns of stocks in the portfolio and is expressed as a percentage. Thus, it can be lower than –100. 

Portfolio
Standard

Deviation
Skewness Kurtosis

# of Outperforming

Days

Cumulative

Return

SGFS 0.022 -0.041 8.035 N.A. -71.580

Benchmark

(Equally Weighted)
0.026 0.054 9.186 N.A. -127.879

Mean−Variance 0.016 -0.060 6.612 359 -124.692

Mean−AVaR 0.014 -0.028 9.123 599 -78.316

Mean−CoAVaR 0.014 0.068 9.384 606 -77.237

Benchmark

(Equally Weighted)
0.027 0.206 8.323 N.A. -126.879

Mean−Variance 0.022 -0.021 6.902 219 -127.338

Mean−AVaR 0.021 0.059 8.373 611 -99.424

Mean−CoAVaR 0.021 0.048 8.997 610 -96.641

Benchmark

(Equally Weighted)
0.029 0.124 8.312 N.A. -136.908

Mean−Variance 0.025 -0.052 6.885 179 -167.646

Mean−AVaR 0.023 -0.014 7.390 581 -144.940

Mean−CoAVaR 0.023 0.027 7.241 592 -127.064

Large Group (28 G-SIFIs)

Middle Group (12 G-SIFIs)

Small Group (6 G-SIFIs)

Portfolio
Standard

Deviation
Skewness Kurtosis

# of Outperforming

Days

Cumulative

Return

SGFS 0.022 -0.041 8.035 N.A. -71.580

Benchmark

(Equally Weighted)
0.038 -0.041 14.612 N.A. -87.213

Mean−Variance 0.034 -0.580 18.598 165 -130.506

Mean−AVaR 0.032 0.139 14.051 579 -89.881

Mean−CoAVaR 0.033 0.150 14.232 583 -89.520

Benchmark

(Equally Weighted)
0.030 0.162 7.370 N.A. -155.552

Mean−Variance 0.025 0.099 5.989 313 -104.376

Mean−AVaR 0.024 0.126 6.989 621 -38.265

Mean−CoAVaR 0.024 0.173 6.866 620 -34.009

Benchmark

(Equally Weighted)
0.022 0.113 7.674 N.A. -98.517

Mean−Variance 0.020 0.250 7.027 82 -73.763

Mean−AVaR 0.019 0.013 7.862 571 -75.031

Mean−CoAVaR 0.019 -0.012 7.939 570 -76.736

United States Group (8 G-SIFIs)

Europe Group (16 G-SIFIs)

Asia Group (4 G-SIFIs)
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Figure 3.1: Cumulative Return of the Portfolios Optimized by Different Strategies (Small 

Group) 

 

 

Figure 3.2: Cumulative Return of the Portfolios Optimized by Different Strategies 

(Europe Group) 
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Figure 3.3: Difference in the Cumulative Return between the Mean–CoAVaR and 

Mean–AVaR Portfolios (Small Group) 

 

 

Figure 3.4: Difference in the Cumulative Return between the Mean–CoAVaR and 

Mean–AVaR Portfolios (Europe Group) 
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Chapter 4 Tempered Stable GARCH vs. Markov Switching Approaches for OECD 

Currency Exchange Rates 

4.1 Introduction 

The foreign currency exchange market is a particular kind of market in the sense that the 

market has very high liquidity and tradability anytime, and the exchange rate vividly reflects the 

monetary policy of each country. The exchange rate is not only a speculative object but also 

something that greatly affects the lives of citizens. Because it is critical for both investors and 

governments to gain a better understanding of the dynamics of exchange rates after the 

introduction of the floating rate system, it has a long history of research exploring the realistic 

time series models for exchange rates. 

A generalized autoregressive heteroscedasticity (GARCH) model (Bollerslev, 1986) is 

currently regarded as the standard time series model for asset returns, because it can well 

describe the volatility clustering phenomenon which asset returns typically show. However, a 

GARCH model is not always preferred for exchange rate returns by contrast with stock returns, 

partly because structures in time series of exchange rate returns show weaker typical patterns. 

Some studies report negative results for using a GARCH model to describe the dynamics of 

exchange rates of currencies in some countries on the basis of in-sample tests (Bonilla et al., 

2007; Brooks and Hinich, 1998). An alternative description of volatility clustering is provided by 

a Markov regime–switching model, or simply, the Markov–switching (MS) model (Hamilton, 

1989, 1994). An MS model enables us to capture structural breaks in time series, caused by 

external factors such as policy changes, by introducing unobservable regimes. Engel and 
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Hamilton (1990) apply an MS model to exchange rate returns, by which they confirm long 

swings, i.e., exchange rates moving in one direction for long periods of time. Bollen et al. (2000) 

advocate that an MS model outperforms a GARCH model for describing the dynamics of 

exchange rates by comparing log-likelihood values, Ljung-Box (LB) statistics and variance error 

forecasts of both models, in which sample periods are from the beginning of 1973 to the end of 

1996, data frequency is weekly, and sample currencies are three of the major ones during the 

sample periods: the British Pound Sterling, the Deutsche Mark, and the Japanese Yen in terms of 

United States Dollars. 

However, we note that, in most attempts to apply a GARCH model to exchange rate returns, 

residuals are automatically assumed to follow the normal distribution. Mainly through empirical 

studies for stock prices, it has been well recognized that asset returns tend to have fat-tailness 

and skewness which the normal distribution is incapable of capturing. This tendency is especially 

clear after the recent financial crises with the background of a sudden price crash, which brings 

awareness of the tail risk. In line with this fact, Kim et al. (2008, 2011) utilize the classical 

tempered stable (CTS) and other tempered stable distributions for modeling the residuals of a 

GARCH model. They demonstrate that the GARCH model with the CTS distributed residuals is 

clearly superior to that with the normal and student t distributed residuals, by using the S&P 500 

index. By using the stocks comprising the Dow-Jones index, Kim et al. (2012) also demonstrate 

that the normal tempered stable (NTS) distribution and its multivariate extension, called the 

multivariate NTS (MNTS) distribution, are also better models for the market data than the 

multivariate normal distribution. The effectiveness of using the MNTS structure as a copula is 

also studied (Kim and Volkmann, 2013). These results prove the superior descriptive power of 
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the tempered stable distributions for fat-tailness and skewness
23

. The success of the CTS or NTS 

distributions for stock returns motivates us to apply these for exchange rate returns.  

The main goal of this chapter is to reevaluate the performance of the GARCH model for 

exchange rate returns on the basis of the aforementioned developments, comparing the GARCH 

model against the MS model, which has been often preferred. Noting that the advent of the Euro 

may have dramatically altered the structure of the foreign currency exchange market, we take 

sample periods from after it was introduced. The sample periods are also chosen to cover the 

recent financial crises, because the model performance during the turmoil is relatively more 

significant than during tranquil time. Also, we expand the samples to all 18 Organization for 

Economic Co-operation and Development (OECD) currencies from three major currencies in 

Bollen et al. (2000), which seem far from reliable in a statistical sense. In addition, we 

investigate not only weekly data but also daily data as a robustness check. More recent sample 

periods, extended sample currencies, and higher frequency data make the issue worth revisiting. 

To be more concrete, the procedure of comparisons of the model performance is as follows. 

We prepare two popular time series models, i.e., GARCH and MS models. For a GARCH model, 

we assume three distinct distributions for residuals: normal, student t, and NTS. The reason we 

prefer NTS to CTS or other tempered stable distributions is the multivariate extendability, which 

is exploited later for the purpose of multivariate modeling of exchange rates. The performance 

comparisons are on the basis of both in-sample and out-of-sample tests. Following Bollen et al. 

(2000), we adopt the log-likelihood values and LB statistics as in-sample tests, and variance 

forecast errors as an out-of-sample test. More than that, we extend out-of-sample tests by 

backtesting the Value at Risk (VaR) estimation, and independence and tail behavior of the 

                                                 
23

 For general descriptions of tempered stable distributions and the applications to the time series model, see 

Rachev et al. (2011). 
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forecast distribution. The former and the latter can be backtested by the Christoffersen’s 

likelihood ratio (CLR) test (Christoffersen, 1998) and the Berkowitz’s likelihood ratio (BLR) test 

(Berkowitz, 2001), respectively, in the same way as in Kim et al. (2011). These extensions are 

not only used because the performance of out-of-sample tests usually attracts more attention than 

that of in-sample tests but also because VaR is a regulatory-endorsed and thus more important 

risk measure compared with variance, and investigating the tail behavior of asset returns is 

imperative for risk management during financial crises. We are also conscious of average VaR 

(AVaR), the risk measure focusing on the tail risk. The BLR tail test leads to backtesting the 

AVaR estimation. 

We further mention two related topics on the applications of GARCH forecasts for exchange 

rate returns. The first topic is the multivariate extension. We consider the GARCH model with 

the MNTS distributed residuals for exchange rate returns. Because the MNTS distribution can 

account for the interdependencies among exchange rate returns, the model is expected to work 

effectively to describe the co-movements of exchange rates. We also confirm the effectiveness of 

the GARCH model from this perspective. The second topic is the applicability of embedding an 

MS process in the GARCH model with the NTS distributed residuals. We consider how well 

GARCH residuals fit the NTS distribution depending on regimes in an attempt to find evidence 

of regime-switches of the residuals. 

The remainder of the chapter is organized as follows. Section 4.2 introduces our methodology, 

which mainly consists of using GARCH and MS models. Section 4.3 describes the data to be 

used. Section 4.4 reports the empirical results of model parameter estimations and performance 

comparisons. Section 4.5 discusses the multivariate modeling of exchange rates on the basis of 

the multivariate GARCH model. Section 4.6 argues for the applicability of the MS structure to 
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the GARCH model with the NTS distributed residuals. Section 4.7 is devoted to concluding 

remarks.  

4.2 Methodology 

We briefly introduce two popular time series models to be used in this chapter: GARCH and 

MS models. As a standard model specification for asset returns, we use GARCH(1,1) and two-

regime MS models. Moreover, we embed an autoregressive (AR) process in the model, because 

the conditional mean of asset returns frequently shows it. For fairness of comparison, we assume 

an AR(1) process for both models, while Bollen et al. (2000) assume an AR(1) process only for a 

GARCH model. The resulting models are referred to as AR(1)–GARCH(1,1) and MS–AR(1) 

models, respectively. In addition to both models, we examine the performance of the standard 

AR(1) model as a benchmark. The parameters of the models are derived using the maximum 

likelihood estimation (MLE). We also mention how to estimate VaR by using both models. 

4.2.1. AR(1)–GARCH(1,1) Model 

An AR(1)−GARCH(1,1) model is given by 

           ,   

    i.i.d. with zero mean and unit variance, 

          , 

  
       

     
       

   , 

 

 

 

(4.1)  

where    is an asset return,    is a conditional mean,    is a conditional standard deviation, and 

other symbols are model parameters to be estimated.           stands for a time period.    is 

the i.i.d. with zero mean and unit variance, which we adjectively call standardized. Note that we 

hereafter refer to      as residuals and    as standardized residuals. The key structure of a 

GARCH model is that the future standard deviation depends on both the current residual ( ) and 
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the current standard deviation itself ( ). The former and latter are called ARCH and GARCH 

effects, respectively. While    is conventionally assumed to follow the standardized normal i.i.d., 

we assume the standardized student t and NTS distributions for    in addition to the normal one, 

in order to deal with potential fat-tailness and skewness of asset returns. The standardized NTS 

distribution is characterized by three parameters        , where   and   are related to fat-

tailness, and   controls the skewness
24

. Smaller   and   mean a fatter tail. A negative (positive) 

  signifies the left (right) skewness of the distribution, whereas the distribution is symmetric 

when    . The existence of the skewness parameter   makes NTS superior to student t. See 

Kim et al. (2012) and Appendix B for a definition of the NTS distribution. 

We refer to the AR(1)−GARCH(1,1) model with the standardized normal, student t, and NTS 

distributed residuals as AGNormal, AGT, and AGNTS models, respectively. An AGNTS model 

is derived by fitting the NTS distribution to the standardized residuals of an AGT model, in the 

same way as Kim et al. (2008, 2011). We also collectively refer to AGT and AGNTS models as 

an AGFT model, where FT stands for fat-tail, because both models share the same coefficients 

and residuals of an AR(1)–GARCH(1,1) model. 

4.2.2. MS–AR(1) Model 

An MS–AR(1) model with two regimes is given by 

                 𝑆 
     

    i.i.d. with zero mean and unit variance, (4.2)  

where          stands for the latent regime variable and        , and     are regime-dependent 

AR(1) coefficient, intercept, and standard deviation, respectively. We assume the standardized 

normal distribution for    in line with common practice, by contrast with the modification to the 
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 The ranges of parameters are               √
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GARCH model
25

. We expect that regime 1 corresponds to a high-mean and low-standard 

deviation regime, i.e., a tranquil regime, and regime 2 corresponds to a low-mean and high-

standard deviation regime, i.e., a turbulent regime. The switching between regimes is described 

by the following time-homogeneous Markov chain: 

               𝑖       𝑖          (4.3)  

The smoothed probability         𝑖    , where    stands for the set of the information 

available at the end period T, gives the information about the probability of the regime 𝑖      in 

the past and thereby enables us to assess the timing of structural change. This is a conspicuous 

merit of the MS model which the GARCH model lacks. See Appendix D for more information 

on the MS model. 

We should note that Bollen et al. (2000) adopt not only the standard MS model but also the 

modified MS model in which mean and standard deviation have independent switching processes, 

specified by four regimes in total, whereas mean and standard deviation switch simultaneously in 

the standard two-regime MS model. They show that the modified model even has improvements 

on the standard model. Moreover, there is also literature which supports the same modification, 

criticizing the simultaneous switching of mean and standard deviation as too restrictive 

(Dewachter, 2001; Ichiue and Koyama, 2011). Nonetheless, we still adopt the standard 

MS−AR(1) model as given in Eq. (4.2) for the following reasons. First, the standard model is 

literally standard, in the sense that it is the model originally proposed by Hamilton (1989, 1994) 

and is traditionally employed. The estimation algorithm is well established and even some 
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 Note that, even though the normal distribution is assumed for the residuals in the MS model, the resulting 

conditional distribution of    is given by the normal mixture, which is expected to have better descriptive power at 

the tail than a single normal distribution. 
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packages are publicly provided
26

. Second, we focus on the GARCH model, whereas Bollen et al. 

(2000) focus on the MS model. To assess the superiority of the GARCH model, the standard MS 

model sufficiently serves as a counterpart model. In fact, the difference in the log-likelihood 

value of the modified MS model from the standard MS model is much smaller than that of the 

standard MS model from the GARCH model in Bollen et al. (2000). Third, we embed an AR(1) 

process into the standard MS model, which might mitigate the restriction of the simultaneous 

switching to some extent; the mean depends not only on the regime but also on the past mean. 

Fourth, both the AGNTS and the standard MS–AR(1) models have the same number of 

parameters (eight). It makes a fair comparison between both models. 

4.2.3. VaR Estimation 

We estimate VaR on the basis of both AR(1)–GARCH(1,1) and MS–AR(1) models. VaR is 

the standard risk measure among financial institutions, because it is endorsed by financial 

regulators. Let         be the VaR at the     confidence level, or         % VaR, for an 

asset return R. The definition of         is given by 

                              (4.4)  

If R is continuous,         is reduced to the  -quantile of R: 

           ̂ 
     , (4.5)  

where  ̂  is the estimated cumulative distribution function (CDF) of R. Because any return 

distribution is assumed to be continuous in this chapter, it is enough for us to focus on Eq. (4.5). 

From the viewpoint of risk management, the accuracy of the VaR forecast is an important 

criterion of the validity of the time series model. The simplest way to backtest the estimated VaR 

is to see how often VaR is violated, that is, how often the observed loss falls below the pre-

                                                 
26

 For instance, the matlab package for the MLE of the standard MS model is provided by Perlin (2012). We 

exploit it in this chapter. 
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estimated VaR. If the VaR violation occurs at a frequency of around   in the observations as a 

whole, the estimation of the         % VaR is appropriate. In addition to such a simple 

assessment, we employ the CLR test with unconditional and conditional coverage properties
27

 

for backtesting of the VaR estimation. The conditional coverage test has the merit of considering 

the tendency for consecutive VaR violations, which are actually observed during financial 

turmoil. See Christoffersen (1998) for details. 

In spite of its popularity, there are some drawbacks to VaR. The main problem is that it is 

never informative about the risk above the VaR level, i.e., the tail risk, which attracted a fair 

amount of attention during the recent financial crises. AVaR is an alternative risk measure to 

overcome this drawback and thus now gaining in popularity. For the continuous return 

distribution, AVaR at the     confidence level is simply the expected loss on the condition that 

the loss is at levels in excess of         % VaR, which is called the expected tail loss. See 

Chapter 2 for more information on AVaR. 

The accuracy of the AVaR forecast is indirectly backtested through the BLR test. The BLR 

test uses the transformed observations:           ̂          , where   is the standardized 

normal CDF,  ̂    is the CDF of R conditional on the information known up to a period t, and j is 

the forecast length. By using the BLR test, both the independence of the forecast distribution and 

the accuracy of the tail behavior forecast can be tested. Then, the accurate tail behavior forecast 

leads to the accurate AVaR forecast. See Berkowitz (2001) for details. 

We derive a straightforward, one-period-ahead forecast of the return distribution by applying 

both time series models, i.e., Eqs. (4.1) and (4.2). By repeating the one-period-ahead forecast of 

conditional mean and standard deviation, it is also possible to derive a multi-period-ahead 
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 The conditional test is the joint test of unconditional coverage and independence. 
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forecast. On the basis of the forecast distributions, we estimate VaR as the forward-looking risk 

measures. The VaR estimations by using the AGNormal and AGT models are classical. For the 

AGNTS model, we employ a closed-form formula of VaR for infinitely divisible distributions 

provided by Kim et al. (2010). See also Appendix C. To implement the BLR test for the AGNTS 

model and compute the log-likelihood values, we use the formula of the CDF and probability 

density function (PDF) of the NTS distribution given in Kim and Volkmann (2013). See also 

Appendix B. In the framework of the standard MS–AR(1) model, VaR estimations are 

straightforward because the CDF and PDF are explicitly obtained as the normal mixture 

distribution. See Eqs. (D.3) and (D.4) in Appendix D. 

4.3 Data 

We use the dataset of foreign exchange spot rates in United States Dollars (USD) per unit of 

18 currencies circulating in the OECD member countries as samples. Concretely, our 18 samples 

are as follows: Australian Dollar (AUD), Canadian Dollar (CAD), Swiss Franc (CHF), Chilean 

Peso (CLP), Czech Koruna (CZK), Danish Krone (DKK), Euro (EUR), British Pound Sterling 

(GBP), Hungarian Forint (HUF), Israeli Shekel (ILS), Icelandic Krona (ISK), Japanese Yen 

(JPY), Korean Won (KRW), Norwegian Krone (NOK), New Zealand Dollar (NZD), Polish 

Zloty (PLN), Swedish Krona (SEK), and Turkish Lira (TRY). Because the OECD member 

countries are often regarded as economically developed, circulating currencies are expected to be 

so liquid in the market that the time series model is immediately applicable. Data frequency is 

primarily weekly, in line with Bollen et al. (2000). The advantage of weekly data is that we can 

exclude the so-called day-of-the-week effect
28

 from the time series. On the other hand, higher 

frequency trading is now a trend and a significant price change is more likely to happen in the 

                                                 
28

 There is a tendency towards negative returns during the period between Friday close and the next Monday close. 

This is often observed in stock markets. See, for instance, Condoyanni et al. (1987). 
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global market within a week. To address this issue, we supplement our analysis with daily 

frequency data. We utilize the log difference between consecutive Fridays (to be more precise, 

the last business days in the week) as an exchange rate return. For daily datasets, the return is the 

log difference between consecutive business days. Sample periods start with the beginning of 

2000 and terminate with the end of 2011, which results in 625 weekly observations and 3129 

daily observations for each exchange rate return. Sample periods are chosen to cover the advent 

of the Euro and two financial crises: the Lehman shock and the Greek sovereign debt crisis. All 

data are obtained from Bloomberg. 

4.4 Empirical Results of Model Performance 

We present the empirical results of the performance of AR(1)–GARCH(1,1) and MS–AR(1) 

models for OECD currency exchange rate returns. Data frequency is weekly, except for the 

Tables in Appendix E. The estimations are based on the return data within whole sample periods, 

except for the out-of-sample tests. 

Before starting performance comparisons, we address a couple of issues on the model choice. 

Though we decided to embed an AR(1) process, there is a concern about whether embedding a 

moving average (MA) process is significant. Table 4.1 reports the Akaike and Baysian 

information criteria (AIC and BIC, respectively) of AR(1) and ARMA(1,1) models by currencies. 

All AIC and BIC comparisons are in favor of the AR(1) model, except AUD, CHF, and PLN in 

AIC. Therefore, we do not adopt an MA process. In the application of a GARCH model, we are 

concerned about whether the residuals of the AR(1) model have heteroscedasticity. Therefore, 

Table 4.1 also reports the results of Engle’s ARCH test with one lag for AR(1) residuals. We 

find that the null hypothesis of no heteroscedasticity is rejected by 15 out of 18 currencies at the 

10% significance level. This supports the usage of a GARCH model with exchange rate returns. 
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Tables 4.2 and 4.3 give the estimation results of AGNormal and AGFT models. Judging from 

the p-values, ARCH and GARCH effects are critical whereas AR(1) effects are not necessarily 

significant. Table 4.4 gives the estimation results of parameters of the student t ( , degree of 

freedom) and NTS (     ) to AGFT standardized residuals. To investigate the goodness of fit of 

the proposed distributions to standardized residuals, we utilize the Kolmogorov−Smirnov (KS) 

test, where the null hypothesis is that standardized residuals follow the proposed distribution. To 

put more emphasis on the fitting at the tail, the Anderson−Darling (AD) and AD square (AD
2
) 

statistics are also referred to. In this chapter, we define both statistics with n samples of    as 
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(4.6)  

where   
   

 is the empirical CDF of n samples of   . The lower AD and AD
2 

statistics mean 

better fitting at the tail.
 
In Table 4.5, the statistics of KS (with p-values), AD, and AD

2
 are 

reported for the three proposed distributions. The KS test reveals that any distributions are not 

rejected in most cases. Even the normal distribution is not rejected at the 5% significance level 

by all 18 currencies except three; CLP, NZD, and TRY
29

. On the other hand, generally speaking, 

the NTS distribution has the best fitting at the tail whereas the normal distribution has the worst, 

according to the AD and AD
2 

statistics. 

Table 4.6 gives the estimation results of an MS–AR(1) model. Regimes 1 and 2 are defined so 

that  ̂    ̂  . Similar to the AR(1)–GARCH(1,1) model, standard deviations are much more 

                                                 
29

 However, this is not the case for daily data; the normal distribution is mostly rejected. See Table E.1 in 

Appendix E. 
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significant than AR(1) effects. Because  ̂     ̂  and  ̂   ̂  in all 18 currencies except JPY, 

the interpretation is reasonable that regimes 1 and 2 represent a tranquil regime with high-mean 

and low-standard deviation, and a turbulent regime with low-mean and high-standard deviation, 

respectively. The transition probabilities  ̂   and  ̂   are very close to one, implying long swings 

of exchange rates (Engel and Hamilton, 1990). JPY is exceptional in the sense that the high-

mean regime does not coincide with the low-standard deviation regime. See also the footnote 37. 

4.4.1. In-Sample Test 

We compare both models in terms of the in-sample test, on the basis of log-likelihood values 

and LB statistics. 

The comparisons of log-likelihood values of the models are provided in Table 4.7. The 

likelihood ratio (LR) statistics on the basis of the benchmark AR(1) model,       , are also 

provided. In addition, we calculate the LR statistics on the basis of the AGNormal model for the 

AGFT model. Compared with the AR(1) model, the LR statistic of the AGNormal model is 

asymptotically    distributed with two degrees of freedom. Noting that the 0.99-quantile of the 

   distribution with two degrees of freedom is 9.21, all the LR statistics of the AGNormal model 

versus the AR(1) model are significant at the 1% level. The LR statistic of the AGT model has 

one degree of freedom versus the AGNormal model. Noting that the 0.95-quantile of the    

distribution with one degree of freedom is 3.84, the LR statistics of the AGT model versus the 

AGNormal model are significant at the 5% level, except for five currencies; CZK, DKK, EUR, 

GBP, and SEK. Therefore, it is meaningful to introduce the fat-tailed distribution to the GARCH 

structure. The AGNTS model improves the AGNormal model in terms of log-likelihood values 

even more than the AGT model. The MS–AR(1) model also greatly improves the AR(1) model, 

in general. The simple comparisons of log-likelihood values tell that the MS–AR(1) model 
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outperforms the AGNormal model in 13 out of 18 currencies, which is consistent with Bollen et 

al. (2000), but is outperformed by the AGNTS model in 16 out of 18 currencies. It is a sign of 

the superiority of the AGNTS model to the MS–AR(1) model. Statistically speaking, the 

comparisons of log-likelihood values between the AGNTS and MS–AR(1) models are 

insignificant because significance levels are unknown
30

. However, noting that both the AGNTS 

and MS–AR(1) models have the same number of parameters (eight), there is no reason to prefer 

the model with lower log-likelihood values. 

The p-values of LB statistics of the standardized and squared standardized residuals of the 

models are provided in Tables 4.8 and 4.9, respectively, where we choose three lags: one, five, 

and twenty. Because the AGT and AGNTS models have the same (standardized) residuals, the 

LB statistics for both models are presented in a lump as the AGFT model. Through the LB test 

for standardized and squared standardized residuals, we can examine whether the proposed 

models eliminate the autocorrelations in the mean and variance processes, respectively. Note that 

we do not use usual residuals but standardized residuals for the LB test, because the GARCH 

model explicitly forecasts the variance and we are interested in whether the standardized 

residuals still have the autocorrelations after considering the clustering of the variance (the 

second moment)
31

. The remarkable result is that the null of no autocorrelation is rejected for the 

AR(1) model in any lags and most currencies at the 5% significance level, in the case of squared 

                                                 
30

 There are statistical difficulties in the comparisons of log-likelihood values even between the AGNTS and 

AGNormal models and between the MS-AR(1) and AR(1) models.The asymptotic distribution of the LR statistic of 

the AGNTS model versus the AGNormal model is no longer   , though the normal distribution is recovered by the 

NTS distribution with    . It is because the case     lies on the boundary of the parameter space, which 

violates the regularity conditions for the LR statistic to have the asymptotic    distribution (McCulloch, 1997). The 

asymptotic distribution of the LR statistic of the MS–AR(1)  model versus the AR(1) model also is not   , because 

the transition probabilities are not identified under the null (Hansen, 1992). 

31
 Even in the case of the MS model, using standardized residuals for the LB test is common (see, for instance, the 

textbook of Bhar and Hamori, 2009). Note that Bollen et al. (2000) appear to use usual residuals for the LB test, 

though no explicit statement is given. Also note that there is a criticism about using the LB test with the residuals of 

the MS model, because, strictly speaking, they are not supposed to be i.i.d. (see, for instance, Henneke et al., 2011). 

However, we dare to use the LB test with the MS model in line with conventional practice. 
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standardized residuals, whereas it is not rejected for either the AR(1)–GARCH(1,1) or MS–

AR(1) models. In other words, both the AR(1)–GARCH(1,1) and MS–AR(1) models describe 

the variance process much better than the AR(1) constant standard deviation model. Meanwhile, 

all the models work fairly well for the mean process, though the AR(1) model is slightly negative. 

Regarding the LB test, no significant differences are found between the AR(1)–GARCH(1,1) and 

MS–AR(1) models, though the former does a slightly better job in the variance process 

compared with the latter, in the five and twenty lags. 

As a robustness check, we also investigate daily data. The results of the in-sample test for 

daily data are selectively given in Appendix E. Compared with the case of weekly data, the 

superiority of the AGNTS to the AGNormal and MS–AR(1) models is clearer. The result of the 

KS test is that the assumption of the normal distribution to GARCH standardized residuals is 

rejected in 14 out of 18 currencies at the 5% significance level. The normal distribution also 

performs much worse than the student t and NTS distributions, regarding AD and AD
2
 statistics 

(Table E.1). The log-likelihood values of the MS–AR(1) model are even smaller than those of 

the AGNormal model in 14 out of 18 currencies (Table E.2), though the direct comparisons of 

the log-likelihood values are not statistically valid. The results of the LB test (Tables E.3 and 

E.4) reveal that the MS–AR(1) model is greatly outperformed by the AR(1)–GARCH(1,1) model 

in describing the variance dynamics; the null of no autocorrelations with twenty lags of squared 

standardized residuals of the MS–AR(1) model is rejected in 15 out of 18 currencies at the 5% 

significance level. From the above observations, we conclude that the MS model is less effective 

for high frequency data of exchange rate returns. 

To summarize the results of the in-sample test, we find that the results tend to be in favor of 

the AGNTS model against the MS–AR(1) model for weekly data, though the improvements are 



 

65 

 

not so clear. By contrast, the AGNTS model is clearly preferable to the MS–AR(1) model for 

daily data. Therefore, we further investigate the model performance through the out-of-sample 

test for weekly data, whereas we omit it for daily data. 

4.4.2. Out-of-Sample Test 

More important than the in-sample test is the out-of-sample test, which we conduct on the 

basis of variance and VaR forecasts and independence and tail behavior of the forecast 

distribution. The basic framework of the out-of-sample test is as follows. First, we prepare a 

moving window with the length of 260 weeks, i.e., five years. The first window is from the first 

week of 2000 to the last week of 2004, and proceeds week by week until the last week of 2011, 

which forms 366 distinct windows. Second, we iteratively estimate the time series models by 

using the return data within each window, and forecast the future conditional mean and standard 

deviation, and the future return distribution. We adopt one, four, and eight weeks as forecast 

lengths, in line with Bollen et al. (2000). Finally, we assess the out-of-sample forecast accuracy 

of the models. 

The accuracy of variance forecasts is measured by the root mean squared forecast errors 

(RMSE) and mean absolute errors (MAE). The definitions of RMSE and MAE for j-week 

forecasts are given by 
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where        and        are the mean and standard deviation at a period t + j conditional on the 

information of the window whose end period is t, respectively
32

. Tables 4.10, 4.11, and 4.12 

compare the results of the RMSE and MAE of the models for one-week, four-week, and eight-

week forecasts, respectively. The AGNormal and AGFT models have a smaller RMSE for one-

week forecasts than the AR(1) model in 17 and 16 currencies, respectively. Except for the RMSE 

for one-week forecasts, we find no comprehensive improvements across the currencies of the 

AGNormal and even AGFT models from the AR(1) model. The differences in the RMSE and 

MAE between the AGFT and MS–AR(1) models are also reported in the Tables. The AGFT 

model has a smaller RMSE (MAE) for one-week, four-week, and eight-week forecasts than the 

MS-AR(1) model in 16 (12), 15 (9), and 10 (9) currencies, respectively. Thus, a half or more 

than half of the 18 sample currencies are in favor of the AGFT model rather than the MS–AR(1) 

model regarding the accuracy of variance forecasts, though the superiority is less noticeable in 

longer forecast lengths. 

The VaR forecasts are assessed by the CLR test with unconditional and conditional coverages. 

We adopt the 99% confidence level for VaR in line with the Basel accord. Tables 4.13, 4.14, and 

4.15 compare the results of the CLR test for the 99% VaR of one-week, four-week, and eight-

week forecasts
33

, respectively. While both the AGNTS and MS–AR(1) models generally reduce 

the number of violations compared with the AR(1) model, the excellence of the AGNTS model 

is much clearer than in the previous tests. The number of currencies on which the 99% VaR of 

one-week, four-week, and eight-week forecasts is rejected at the 1% (5%) significance level by 

                                                 
32

 Note that the variance of a j-week forecast is not defined for the cumulative return for a j-week horizon but for a 

j-week-ahead return. This is because it is not straightforward to derive the variance for a cumulative return except 

using the Gaussian model, where the variance for a cumulative return is simply a summation of the variances at each 

period. We consider that it is enough to assess the variance forecast at each period, because the accuracy of the 

variance forecast at each period leads to the accuracy of the variance forecast for a multi-period horizon. 

33
 Note that the VaR of a j-week forecast is defined for a j-week-ahead return. See also the footnote 32. 
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the conditional test is 2 (7), 4 (12), and 6 (13), respectively, in the AGNTS model, whereas the 

number is 8 (15), 6 (14), and 7 (15), respectively, in the MS–AR(1) model. Regardless of 

forecast length, the rejections happen less frequently in the AGNTS model than in the MS–

AR(1) model. On the other hand, the corresponding number in the AGNormal model is 11 (15), 

11 (15), and 12 (15), respectively. As long as we rely on the normal distribution, the MS model 

can outperform the GARCH model regarding the VaR forecast. However, if we introduce the 

tempered stable distribution, the performance of the GARCH model is so enhanced that the MS 

model is beaten, because of the superior descriptive power for fat-tailness and skewness. 

The BLR test is a test for the distribution of           ̂          ,          , in 

terms of independence and accuracy of tail behavior forecasts, where  ̂    is estimated by the 

models fitted to the return data within the window whose end period is t. We regard the loss 

above 99% VaR as the tail for the tail test. Tables 4.16, 4.17, and 4.18 compare the results of the 

BLR test with one-week, four-week, and eight-week forecast lengths, respectively. While there 

are no large differences among the models, even including the AR(1) model, in the independence 

test, the AGNTS model undoubtedly has the best performance in the tail test. The number of 

currencies on which the tail behavior forecast is rejected at the 1% (5%) significance level is 1 

(7), 9 (9), and 11 (13), respectively, in the AGNTS model, whereas the number is 15 (16), 15 

(16), and 16 (17), respectively, in the MS–AR(1) model. The corresponding number in the 

AGNormal model is 17 (17), 17 (17), and 17 (17), respectively. Therefore, similar to the case of 

the CLR test, the MS-AR(1) model outperforms the AGNormal model, but it is outperformed by 

the AGNTS model in the BLR tail test. This is also due to the descriptive power of the NTS 

distribution for the tail behavior. 
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To summarize the results of the out-of-sample test, we obtain clearer evidence that the 

AGNTS model is preferable to the MS–AR(1) model for weekly data. 

4.5 Multivariate Extension 

In this section, we consider the multivariate modeling of OECD currency exchange rates. In 

Section 4.4, we demonstrated that the AGNTS model is much more effective for risk 

management, i.e., VaR and tail risk forecasts, compared with the MS–AR(1) model. We note that 

the significant advantage of the NTS distribution is a multivariate extension, i.e., the MNTS 

distribution (Kim et al., 2012). The AR(1)−GARCH(1,1) model with the standardized MNTS 

distributed residuals, denoted by the AGMNTS model, is expected to account for not only the 

fat-tailness and skewness of each exchange rate return but also interdependencies among 

exchange rate returns. It is crucial to model the co-movements of asset returns because asset 

returns are highly correlated with each other in the modern global financial markets and co-

movements should be considered for the portfolio management. The multivariate extension of 

the MS model has a number of computational difficulties for a high-dimensional system, though 

some studies tackle them (for instance, Sims et al., 2008). By contrast, the MNTS distribution 

can be used with a considerably high-dimensional system. Therefore, we apply the AGMNTS 

model to the multivariate dynamics of OECD currency exchange rates to further demonstrate the 

usefulness of the tempered stable distribution to exchange rate returns. See Kim et al. (2012), 

Kurosaki and Kim (2013a, 2013b), and Appendix B for the definition and detailed information 

on the MNTS distribution and AGMNTS model
34

. 

We briefly explain how to estimate the AGMNTS model for exchange rate returns. After 

fitting the AGFT structure to each exchange rate return, we describe standardized multivariate 

                                                 
34

 Both Kim et al. (2012) and Kurosaki and Kim (2013a, 2013b) use the MNTS distribution with an around 30 

dimensional system. 
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residuals by using the standardized MNTS distribution. The standardized MNTS distribution has 

the parameters          .   and   are common parameters related to fat-tailness.   is a vector 

parameter, each component of which controls the skewness of each marginal.   is a matrix 

parameter to govern correlations among marginals. First, we estimate the univariate NTS 

parameters         ( ̂  ̂  ̂) of the standardized residuals of the AGFT model for the time 

series to represent OECD currency exchange rates. Here, we adopt the equally weighted 

portfolio of all 18 OECD currencies as the representative. Then, we utilize the estimated 

parameters ( ̂  ̂)  as those of MNTS. Subsequently, we estimate the parameter   of the 

univariate NTS distribution for the AGFT standardized residuals of each currency exchange rate 

under the common parameters ( ̂  ̂). Thereby, we obtain the vector parameter  ̂ of MNTS. 

Finally, we straightforward derive the matrix parameter  ̂ from the variance-covariance matrix 

of the standardized residuals
35

. The variance-covariance matrix is easily estimated from samples. 

We investigate the performance of the AGMNTS model through in-sample tests. To this end, 

we first estimate the AGMNTS model by using all the weekly return data within whole sample 

periods. At the same time, we also estimate the AR(1)–GARCH(1,1) model with the 

standardized multivariate normal distributed residuals, denoted by the AGMNormal model, as 

the benchmark model. The AGMNormal model is derived through the AGNormal models and 

the variance-covariance matrix of the standardized residuals. The log-likelihood value of the 

AGMNTS model is 36689
36

, whereas that of the AGMNormal model is 36415. The LR statistic 

(548) appears large enough, just referring to the 0.99-quantile of the    distribution with 20 

degrees of freedom (37.6). To see the descriptive power of MNTS for interdependencies at the 

                                                 
35

 See the formula (B.5) in Appendix B. 

36
 We utilize the formula (B.9) in Appendix B for the calculation of the log-likelihood value of the standardized 

MNTS distribution. 
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tail, we adopt the bivariate distress probability, which we define as the joint probability that two 

exchange rate losses     and    , where i and j stand for currencies, will simultaneously 

exceed their respective 95% VaR levels:                       
             

 
 . We 

compare the values of      estimated by the AGMNTS and AGMNormal models with the 

empirical values, denoted by     
     𝑆     

           and     
   

, respectively, where     
   

 is 

estimated from the empirical joint distribution of the AGFT standardized residuals of currencies i 

and j. Because listing the results for all currency pairs involves excessive work, we confine 

ourselves to the pairs involving CAD, EUR, GBP, and JPY. These four are selected as major 

currencies in the sense that the countries where they circulate are members not only of OECD 

but also of the G7. The results are given in Table 4.19. It is found that the multivariate normal 

distribution is generally insufficient to describe tail dependencies between exchange rate returns; 

    
          is sometimes even less than half of the empirical value. By contrast, the MNTS 

distribution can capture the tail dependencies much better.     
     𝑆  is usually closer to the 

empirical value, and is always greater than 60 percent of the empirical value, at worst. Now, we 

observe the better performance of the AGMNTS model. 

4.6 GARCH Residuals by Regimes 

In this section, we make short remarks on the perspective of associating the AGNTS model 

with the MS structure. 

We have so far shown the greater usefulness of the AGNTS model for the purpose of risk 

management, in comparison with the MS model. However, we have no intention of suggesting 

that the MS model is useless. The significant advantage of the MS model is the ability to give 

insights about the timing of structural changes. Figure 4.1 plots the time series of the smoothed 

probability of the second regime, considered as the turbulent regime, specified by the MS–AR(1) 
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model, for each exchange rate. The regimes of exchange rates generally switched into the 

turbulent one around the 2008 financial crisis. In addition, the concern about the recent Greek 

sovereign debt problem, which was accelerated by the downgrading of Greece in April 2010, 

created regime turbulent in EUR and some currencies near the Eurozone, whereas CHF and GBP, 

considered as hard currencies, were not affected by the problem in 2010. Even a simple MS–

AR(1) model gives such implications about the structural changes of the market
37

. 

It is quite a natural idea to combine GARCH and MS models for a better description of time 

series; the parameters of the GARCH-type model are allowed to switch among regimes. This 

type of model is referred to as an MS−GARCH model, which has a long history of research 

(Hamilton and Susmel, 1994; Cai, 1994; Gray, 1996). In addition, Henneke et al. (2011) develop 

an algorithm for the estimations of a full range of the MS–ARMA–GARCH models with the 

normal and student t distributed residuals on the basis of Markov chain Monte Carlo methods. 

Given the results provided in the previous sections, it is also quite a natural expectation that the 

MS−GARCH model with the NTS distributed residuals, i.e., the MS–GARCH–NTS model, 

would work very well to describe the dynamics of exchange rates. However, there have so far 

been no attempts to embed the MS structure in the parameters of the tempered stable distribution, 

to the best of our knowledge. Though some previous studies have achieved successful results by 

allowing for the MS structure in the degrees of freedom of the student t distribution which 

GARCH residuals follow (for example, Marcucci, 2005), even more development seems to be 

required to overcome the computational difficulty of associating the tempered stable distribution 

with the MS structure. This problem will be addressed in our future study. 

 

                                                 
37

 In addition to the strange regime structure mentioned in Section 4.4, JPY shows exceptionally infrequent 

regime−switching in Figure 4.1, because of a relatively low value of  ̂  . These suggest that the standard two-

regime structure is not necessarily appropriate for JPY at least within our sample periods. 
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Figure 4.1: Smoothed Probability of a Turbulent Regime in the MS−AR(1) Model 
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Figure 4.1(Cont.): Smoothed Probability of a Turbulent Regime in the MS−AR(1) Model 

We provide simple diagnostic results to motivate the study of the MS–GARCH–NTS model. 

Let our sample periods including 625 weeks for each exchange rate return be divided into 

regimes 1 and 2, so that the week on which the smoothed probability of regimes 1 and 2 

specified by the MS–AR(1) model is larger than 0.5 belongs to regimes 1 and 2, respectively. 

Accordingly, let the standardized residuals of the AGFT model for each exchange rate return be 

separated by the weeks in regimes 1 and 2. Then, we have two different AGFT standardized 

residuals belonging to regimes 1 and 2 by exchange rates. Table 4.20 reports the results of the 

KS test of the NTS distribution assumption for the AGFT standardized residuals by regimes, 

where the assumed NTS distribution is fitted by using the data within whole sample periods
38

. 

Obviously, the NTS distribution is more frequently rejected in regime 2 compared with regime 1. 

This implies that the residuals in regime 2 follow a fatter and more skewed NTS distribution and 

                                                 
38

 We omit the results of AD and AD
2
 statistics, because comparing those statistics obtained from different 

numbers of observations is not meaningful. 
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we may obtain a better description of the dynamics of exchange rates by considering the NTS 

distributed residuals with the switching parameters in the GARCH framework, i.e., the MS–

GARCH–NTS model. 

4.7 Concluding Remarks 

In this chapter, we investigate the dynamics of time series of OECD foreign currency 

exchange rates by using both the GARCH and MS models. We employ the NTS distribution as 

the distribution of standardized residuals in the GARCH model as well as normal and student t 

distributions, motivated by the recent studies to demonstrate that the modification on the basis of 

tempered stable distributions greatly improves the performance of the GARCH-type model for 

stock returns. The success of tempered stable distributions is attributed to the descriptive power 

of the stylized properties of asset returns: fat-tailness and skewness. Expanding on the previous 

study, we renew the sample periods to include the recent financial crises, expand the sample 

currencies, including all 18 OECD currencies, and use not only weekly data but also daily data. 

The criteria of model performance are based on both in-sample and out-of-sample tests. The 

in-sample tests consist of the log-likelihood value and the LB test. The results appear to favor the 

AGNTS model against the MS–AR(1) model for weekly data. The same conclusion is derived 

more clearly for daily data; the GARCH model is preferable for high frequency data. More 

importantly, the out-of-sample tests are based on variance and VaR forecasts, and independence 

and tail behavior of the forecast distribution. We test the accuracy of forecasts of VaR and tail 

behavior because they are crucial for the purpose of risk management, especially in our sample 

periods. The results show that the AGNTS model gives significantly better forecasts of VaR and 

tail behavior than the MS–AR(1) model, reflecting the descriptive power of the NTS distribution 

for fat-tailness and skewness. 
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We also extend the AGNTS model into the multivariate version, i.e., the AGMNTS model, to 

model the co-movements of OECD currency exchange rates. As an in-sample test, we 

demonstrate that the AGMNTS model can explain bivariate tail dependencies between exchange 

rate returns much better than the AGMNormal model by estimating bivariate distress 

probabilities and comparing them with the empirical probabilities. The better description of the 

tail dependencies leads to better management of the portfolio tail risk. 

To summarize, we show the usefulness of the GARCH model with the NTS distributed 

residuals in terms of risk management. This fact has been well confirmed for stock returns, and 

our results reveal that it is also the case for exchange rate returns. Through the empirical results, 

we find that the GARCH model with the NTS distributed residuals greatly improves the GARCH 

model with the normally distributed residuals, and is as effective as or even better than the 

standard MS model. Note that as long as the normal distribution is utilized, the GARCH model 

has a very high chance of being outperformed by the MS model for weekly data, which agrees 

with Bollen et al. (2000). The introduction of the NTS distribution reverses the situation, 

implying the significance of describing tail risk during the financial crises covered by our sample 

periods. Although the MS model has some descriptive power for the tail behavior of the asset 

return distribution via the normal mixture distribution, it turns out to be much more insufficient 

than the descriptive power of the AGNTS model in spite of the same number of parameters. We 

expect that an even more superior model would be derived by combining the NTS-based 

GARCH and MS structures. The effectiveness of the MS–GARCH–NTS model is implied by the 

difference in the fitting performance of the NTS distribution to the GARCH residuals in different 

regimes, discussed in Section 4.6. This challenging problem will be addressed in our future work. 
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Table 4.1: AIC and BIC of AR(1) and ARMA(1,1) Models, and Engle’s ARCH Test for 

AR(1) Residuals (625 Weekly Observations) 

 

Note: The lag is one in Engle’s ARCH test. 

 

 

AR(1) ARMA(1,1) AR(1) ARMA(1,1) Statistic (p-value)

AUD -3125.41 -3125.68 -3112.09 -3107.92 33.339 (0.000)

 CAD -3628.28 -3627.33 -3614.97 -3609.58 42.953 (0.000)

 CHF -3400.61 -3401.03 -3387.30 -3383.28 0.516 (0.473)

 CLP -3377.47 -3376.69 -3364.16 -3358.94 27.124 (0.000)

 CZK -3227.45 -3226.26 -3214.14 -3208.51 19.734 (0.000)

 DKK -3490.47 -3489.03 -3477.15 -3471.28 2.731 (0.098)

 EUR -3488.58 -3487.21 -3475.26 -3469.46 3.317 (0.069)

 GBP -3576.66 -3574.97 -3563.34 -3557.21 16.620 (0.000)

 HUF -3007.59 -3005.59 -2994.28 -2987.84 59.147 (0.000)

 ILS -3718.26 -3717.74 -3704.95 -3699.99 10.047 (0.002)

 ISK -2928.04 -2926.05 -2914.72 -2908.30 79.057 (0.000)

 JPY -3529.96 -3528.73 -3516.65 -3510.98 0.186 (0.666)

 KRW -3488.34 -3487.00 -3475.03 -3469.25 78.802 (0.000)

 NOK -3300.32 -3298.34 -3287.01 -3280.59 12.693 (0.000)

 NZD -3119.40 -3117.58 -3106.08 -3099.83 7.136 (0.008)

 PLN -3055.07 -3055.19 -3041.76 -3037.44 31.100 (0.000)

 SEK -3263.01 -3261.94 -3249.70 -3244.19 15.166 (0.000)

 TRY -2632.72 -2630.75 -2619.41 -2612.99 1.236 (0.266)

AIC BIC
Engle's ARCH Test

for AR(1) Residuals
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Table 4.2: Estimated Parameters of AGNormal Model (625 Weekly Observations) 

 

 

 

a (p-value) b (p-value) ω (p-value) ξ (p-value) ψ (p-value)

AUD 0.0092 (0.856) 0.0012 (0.073) 0.1513 (0.000) 0.7928 (0.000) 2.2349E-05 (0.009)

 CAD -0.0078 (0.852) 0.0006 (0.174) 0.1134 (0.000) 0.8714 (0.000) 3.4775E-06 (0.040)

 CHF -0.0052 (0.905) 0.0009 (0.130) 0.0668 (0.003) 0.9101 (0.000) 6.5795E-06 (0.236)

 CLP 0.0690 (0.142) 0.0000 (0.943) 0.1346 (0.000) 0.8406 (0.000) 8.4936E-06 (0.001)

 CZK 0.0255 (0.548) 0.0014 (0.035) 0.0687 (0.000) 0.9117 (0.000) 6.9519E-06 (0.082)

 DKK -0.0074 (0.859) 0.0007 (0.227) 0.0634 (0.001) 0.9159 (0.000) 4.7470E-06 (0.161)

 EUR -0.0059 (0.887) 0.0007 (0.225) 0.0635 (0.001) 0.9157 (0.000) 4.7720E-06 (0.158)

 GBP 0.0121 (0.773) 0.0002 (0.743) 0.1047 (0.000) 0.8303 (0.000) 1.1339E-05 (0.011)

 HUF -0.0081 (0.842) 0.0005 (0.528) 0.0826 (0.000) 0.8834 (0.000) 1.5635E-05 (0.035)

 ILS -0.0325 (0.467) -0.0001 (0.695) 0.1110 (0.000) 0.8804 (0.000) 1.7816E-06 (0.047)

 ISK -0.0461 (0.347) 0.0006 (0.349) 0.1976 (0.000) 0.7749 (0.000) 1.9421E-05 (0.001)

 JPY -0.0729 (0.107) 0.0004 (0.430) 0.0237 (0.054) 0.9544 (0.000) 4.3930E-06 (0.281)

 KRW 0.0606 (0.171) 0.0005 (0.154) 0.2173 (0.000) 0.7555 (0.000) 7.6202E-06 (0.000)

 NOK -0.0379 (0.401) 0.0006 (0.364) 0.0462 (0.009) 0.9209 (0.000) 9.8193E-06 (0.126)

 NZD 0.0081 (0.866) 0.0009 (0.247) 0.0974 (0.000) 0.8213 (0.000) 3.1255E-05 (0.003)

 PLN -0.0136 (0.754) 0.0011 (0.125) 0.0848 (0.000) 0.8873 (0.000) 1.2364E-05 (0.050)

 SEK 0.0092 (0.830) 0.0007 (0.272) 0.0559 (0.000) 0.9256 (0.000) 5.8090E-06 (0.106)

 TRY -0.0198 (0.735) -0.0014 (0.420) 0.0475 (0.029) 0.6778 (0.000) 2.3298E-04 (0.002)
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Table 4.3: Estimated Parameters of AGFT Model (625 Weekly Observations) 

 

a (p-value) b (p-value) ω (p-value) ξ (p-value) ψ (p-value)

AUD 0.0087 (0.838) 0.0019 (0.003) 0.1021 (0.001) 0.8419 (0.000) 1.9271E-05 (0.039)

 CAD -0.0046 (0.914) 0.0007 (0.112) 0.0911 (0.001) 0.8924 (0.000) 3.2211E-06 (0.089)

 CHF 0.0042 (0.920) 0.0009 (0.113) 0.0540 (0.070) 0.9071 (0.000) 9.6661E-06 (0.273)

 CLP 0.0617 (0.144) 0.0004 (0.454) 0.1364 (0.000) 0.8392 (0.000) 8.5554E-06 (0.030)

 CZK 0.0300 (0.476) 0.0016 (0.016) 0.0730 (0.001) 0.9050 (0.000) 7.7975E-06 (0.118)

 DKK -0.0010 (0.980) 0.0008 (0.144) 0.0624 (0.006) 0.9141 (0.000) 5.2638E-06 (0.184)

 EUR 0.0009 (0.982) 0.0008 (0.136) 0.0630 (0.005) 0.9138 (0.000) 5.2373E-06 (0.183)

 GBP 0.0111 (0.788) 0.0003 (0.616) 0.0986 (0.001) 0.8340 (0.000) 1.1594E-05 (0.024)

 HUF -0.0077 (0.849) 0.0011 (0.154) 0.0794 (0.002) 0.8927 (0.000) 1.3160E-05 (0.089)

 ILS -0.0429 (0.336) 0.0001 (0.815) 0.1100 (0.001) 0.8828 (0.000) 1.6445E-06 (0.120)

 ISK -0.0417 (0.344) 0.0007 (0.257) 0.1559 (0.000) 0.7726 (0.000) 2.9909E-05 (0.004)

 JPY -0.0620 (0.143) 0.0002 (0.648) 0.0251 (0.099) 0.9567 (0.000) 3.6476E-06 (0.369)

 KRW 0.0340 (0.433) 0.0007 (0.060) 0.2566 (0.000) 0.7285 (0.000) 7.5344E-06 (0.006)

 NOK -0.0342 (0.432) 0.0011 (0.095) 0.0499 (0.029) 0.9147 (0.000) 1.0640E-05 (0.200)

 NZD -0.0045 (0.915) 0.0019 (0.010) 0.0747 (0.015) 0.8571 (0.000) 2.6103E-05 (0.066)

 PLN -0.0308 (0.456) 0.0016 (0.018) 0.0879 (0.001) 0.8802 (0.000) 1.4065E-05 (0.091)

 SEK 0.0195 (0.644) 0.0009 (0.169) 0.0600 (0.002) 0.9191 (0.000) 6.5651E-06 (0.154)

 TRY -0.0434 (0.282) 0.0005 (0.401) 0.1846 (0.003) 0.7558 (0.000) 4.2025E-05 (0.003)
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Table 4.4: Estimated Fat-tailness Parameters of AGFT Standardized Residuals (625 

Weekly Observations) 

 

 

 

 

 

Student t

ν α θ β

AUD 6.5608 1.3798 0.8710 -0.7143

 CAD 10.7199 1.8149 0.3492 -0.4619

 CHF 14.3737 1.9291 0.1000 0.0087

 CLP 5.3602 1.6997 0.1201 -0.1907

 CZK 18.8295 0.2500 7.1979 -0.7376

 DKK 19.2979 0.2500 7.5198 -1.0000

 EUR 18.8617 0.3047 6.9718 -1.0000

 GBP 25.2991 0.2500 14.7740 -1.0000

 HUF 10.9777 0.3024 4.6867 -1.0000

 ILS 11.2103 1.2568 1.5365 -0.4258

 ISK 6.9270 1.6836 0.4136 -0.5069

 JPY 11.1664 1.7992 0.5669 0.5523

 KRW 6.2819 1.6840 0.1831 -0.1604

 NOK 12.7760 0.2500 4.4118 -0.9371

 NZD 7.0711 0.2500 2.0993 -0.5739

 PLN 7.4309 0.2500 2.2330 -0.4152

 SEK 18.6338 0.2529 7.0468 -0.9954

 TRY 3.7613 0.7195 1.6815 0.0005

NTS
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Table 4.5: KS, AD, and AD
2
 Statistics of AR(1)−GARCH(1,1) Standardized Residuals against the Proposed Distributions 

 

 

AD AD
2 AD AD

2 AD AD
2

Statistic (p-value) Statistic Statistic Statistic (p-value) Statistic Statistic Statistic (p-value) Statistic Statistic

AUD 0.048 (0.110) 8.288 4.621 0.031 (0.574) 0.146 2.457 0.042 (0.217) 0.091 2.332

 CAD 0.028 (0.694) 0.412 1.297 0.028 (0.690) 0.107 0.701 0.020 (0.967) 0.053 0.391

 CHF 0.026 (0.780) 31.405 0.905 0.035 (0.424) 0.716 1.197 0.031 (0.570) 0.191 0.869

 CLP 0.061 (0.017) 18.840 4.459 0.020 (0.954) 0.104 0.539 0.032 (0.554) 0.063 0.669

 CZK 0.024 (0.866) 0.127 1.125 0.021 (0.938) 0.110 0.769 0.026 (0.775) 0.061 0.489

 DKK 0.023 (0.880) 0.297 1.109 0.030 (0.607) 0.122 0.989 0.032 (0.543) 0.064 0.600

 EUR 0.027 (0.735) 0.333 1.226 0.026 (0.787) 0.132 1.061 0.033 (0.507) 0.066 0.590

 GBP 0.024 (0.859) 0.248 1.027 0.022 (0.914) 0.117 0.931 0.020 (0.962) 0.092 0.442

 HUF 0.040 (0.273) 0.908 2.565 0.029 (0.665) 0.125 1.765 0.035 (0.422) 0.072 1.336

 ILS 0.044 (0.182) 0.239 2.388 0.039 (0.303) 0.104 1.198 0.021 (0.929) 0.090 0.338

 ISK 0.042 (0.206) 33.827 3.062 0.024 (0.839) 0.183 1.537 0.037 (0.365) 0.085 2.345

 JPY 0.027 (0.726) 2.172 0.900 0.016 (0.996) 0.144 0.338 0.020 (0.956) 0.066 0.335

 KRW 0.040 (0.268) 3.706 2.952 0.032 (0.525) 0.126 0.964 0.039 (0.284) 0.081 1.597

 NOK 0.040 (0.254) 0.250 3.371 0.034 (0.473) 0.158 2.314 0.028 (0.697) 0.079 0.883

 NZD 0.063 (0.013) 1.421 6.036 0.039 (0.296) 0.151 3.377 0.041 (0.242) 0.084 2.227

 PLN 0.045 (0.156) 5.674 3.601 0.031 (0.556) 0.126 1.900 0.040 (0.256) 0.104 1.897

 SEK 0.029 (0.639) 0.309 1.457 0.032 (0.547) 0.125 1.438 0.033 (0.495) 0.076 0.976

 TRY 0.125 (0.000) 4.203E+29 41.758 0.033 (0.499) 1.361 2.616 0.056 (0.036) 0.192 6.268

# of p-values

less than 1%
1 0 0

# of p-values

less than 5%
3 0 1

Normal Student t NTS

KS KS KS
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Table 4.6: MS–AR(1) Estimated Parameters (625 Weekly Observations) 

 

 

 

a 1 (p-value) a 2 (p-value) b 1 (p-value) b 2 (p-value) σ 1 (p-value) σ 2 (p-value)

AUD 0.0132 (0.765) -0.1499 (0.194) 0.0017 (0.015) -0.0068 (0.153) 0.0147 (0.000) 0.0386 (0.000)

 CAD 0.0166 (0.744) -0.0175 (0.801) 0.0009 (0.035) -0.0003 (0.833) 0.0088 (0.000) 0.0195 (0.000)

 CHF -0.0015 (0.978) -0.0212 (0.977) 0.0009 (0.164) -0.0005 (0.981) 0.0146 (0.000) 0.0366 (0.017)

 CLP 0.1145 (0.023) -0.1366 (0.108) 0.0007 (0.164) -0.0030 (0.215) 0.0105 (0.000) 0.0269 (0.000)

 CZK 0.0377 (0.398) -0.0370 (0.760) 0.0018 (0.008) -0.0064 (0.090) 0.0156 (0.000) 0.0302 (0.000)

 DKK -0.0306 (0.553) 0.0500 (0.474) 0.0014 (0.026) -0.0015 (0.276) 0.0120 (0.000) 0.0188 (0.000)

 EUR -0.0271 (0.603) 0.0482 (0.487) 0.0014 (0.025) -0.0015 (0.276) 0.0119 (0.000) 0.0189 (0.000)

 GBP 0.0140 (0.729) -0.1376 (0.355) 0.0002 (0.631) -0.0048 (0.282) 0.0116 (0.000) 0.0289 (0.002)

 HUF 0.0027 (0.964) -0.0619 (0.509) 0.0012 (0.115) -0.0053 (0.138) 0.0168 (0.000) 0.0353 (0.000)

 ILS 0.0448 (0.427) -0.1678 (0.016) 0.0004 (0.336) -0.0005 (0.716) 0.0076 (0.000) 0.0182 (0.000)

 ISK -0.0617 (0.097) -0.1400 (0.200) 0.0009 (0.132) -0.0126 (0.000) 0.0150 (0.000) 0.0479 (0.089)

 JPY -0.0562 (0.161) -1.3772 (0.000) 0.0004 (0.479) 0.0568 (0.000) 0.0138 (0.000) 0.0040 (0.391)

 KRW 0.0046 (0.922) 0.1033 (0.289) 0.0010 (0.020) -0.0043 (0.098) 0.0092 (0.000) 0.0289 (0.000)

 NOK -0.0499 (0.264) -0.0537 (0.647) 0.0012 (0.069) -0.0049 (0.129) 0.0155 (0.000) 0.0255 (0.000)

 NZD -0.0121 (0.778) -0.0246 (0.846) 0.0013 (0.044) -0.0036 (0.386) 0.0165 (0.000) 0.0353 (0.016)

 PLN -0.0438 (0.345) -0.1739 (0.101) 0.0021 (0.004) -0.0111 (0.006) 0.0161 (0.000) 0.0358 (0.000)

 SEK 0.0222 (0.626) -0.0398 (0.734) 0.0007 (0.273) -0.0026 (0.436) 0.0153 (0.000) 0.0288 (0.000)

 TRY -0.0138 (0.741) -0.3157 (0.021) 0.0004 (0.570) -0.0350 (0.000) 0.0162 (0.000) 0.0772 (0.000)
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Table 4.6(Cont.): MS–AR(1) Estimated Parameters (625 Weekly Observations) 

 

 

 

p 11 (p-value) p 22 (p-value)

AUD 0.9859 (0.000) 0.9073 (0.000)

 CAD 0.9909 (0.000) 0.9820 (0.000)

 CHF 0.9948 (0.000) 0.8472 (0.000)

 CLP 0.9720 (0.000) 0.9076 (0.000)

 CZK 0.9941 (0.000) 0.9628 (0.000)

 DKK 0.9918 (0.000) 0.9888 (0.000)

 EUR 0.9919 (0.000) 0.9890 (0.000)

 GBP 0.9977 (0.000) 0.9686 (0.000)

 HUF 0.9922 (0.000) 0.9714 (0.000)

 ILS 0.9858 (0.000) 0.9716 (0.000)

 ISK 0.9877 (0.000) 0.9219 (0.006)

 JPY 0.9979 (0.000) 0.7061 (0.090)

 KRW 0.9887 (0.000) 0.9456 (0.000)

 NOK 0.9943 (0.000) 0.9649 (0.000)

 NZD 0.9925 (0.000) 0.9496 (0.004)

 PLN 0.9868 (0.000) 0.9277 (0.000)

 SEK 0.9957 (0.000) 0.9772 (0.000)

 TRY 0.9773 (0.000) 0.7620 (0.000)
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Table 4.7: Log-likelihood 

 

 

 

AR(1)

AGNormal

LR Statistic

vs.

AR(1)

AGT

LR Statistic

vs.

AR(1)

LR Statistic

vs.

AGNormal

AGNTS

LR Statistic

vs.

AR(1)

LR Statistic

vs.

AGNormal

LR Statistic

vs.

AR(1)

AUD 1565.70 1640.27 149.13 1656.88 182.34 33.22 1666.85 202.29 53.16 1644.56 157.71

 CAD 1817.14 1895.21 156.15 1900.11 165.93 9.79 1902.45 170.63 14.48 1891.74 149.20

 CHF 1703.31 1719.67 32.72 1725.68 44.75 12.03 1728.65 50.69 17.97 1723.87 41.13

 CLP 1691.73 1771.13 158.78 1796.39 209.30 50.52 1798.67 213.87 55.09 1779.70 175.92

 CZK 1616.73 1649.75 66.04 1650.83 68.20 2.16 1653.52 73.59 7.54 1648.82 64.19

 DKK 1748.23 1765.75 35.03 1767.21 37.95 2.92 1771.78 47.10 12.07 1768.85 41.24

 EUR 1747.29 1765.18 35.78 1766.69 38.81 3.03 1771.63 48.69 12.91 1768.68 42.78

 GBP 1791.33 1839.85 97.04 1840.66 98.66 1.63 1843.58 104.51 7.47 1845.54 108.42

 HUF 1506.80 1555.75 97.91 1560.54 107.49 9.58 1569.10 124.60 26.69 1561.50 109.41

 ILS 1862.13 1962.80 201.34 1967.22 210.18 8.84 1969.57 214.87 13.53 1953.46 182.66

 ISK 1467.02 1597.33 260.63 1613.06 292.09 31.46 1617.31 300.58 39.96 1603.75 273.46

 JPY 1767.98 1774.35 12.74 1779.42 22.88 10.13 1781.29 26.61 13.87 1784.49 33.01

 KRW 1747.17 1899.50 304.65 1917.02 339.71 35.05 1918.32 342.30 37.64 1889.86 285.38

 NOK 1653.16 1666.26 26.19 1668.91 31.50 5.30 1678.13 49.93 23.74 1668.52 30.72

 NZD 1562.70 1594.16 62.92 1603.97 82.54 19.62 1616.44 107.48 44.56 1603.44 81.49

 PLN 1530.54 1585.86 110.64 1596.22 131.38 20.74 1601.96 142.85 32.21 1592.69 124.31

 SEK 1634.51 1667.11 65.20 1668.72 68.43 3.22 1673.47 77.93 12.73 1665.16 61.30

 TRY 1319.36 1339.95 41.17 1584.11 529.50 488.32 1591.66 544.60 503.43 1551.86 464.99

AR(1)–GARCH(1,1) MS–AR(1)
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Table 4.8: p-values of the LB Test for Standardized Residuals 

 

 

 

AR(1) AGNormal AGFT MS–AR(1) AR(1) AGNormal AGFT MS–AR(1) AR(1) AGNormal AGFT MS–AR(1)

AUD 0.936 0.444 0.483 0.276 0.366 0.966 0.966 0.906 0.291 0.711 0.740 0.660

 CAD 0.993 0.514 0.533 0.674 0.439 0.630 0.685 0.769 0.013 0.170 0.179 0.159

 CHF 0.995 0.692 0.916 0.886 0.102 0.377 0.361 0.320 0.173 0.296 0.299 0.293

 CLP 0.952 0.461 0.374 0.348 0.711 0.499 0.472 0.678 0.163 0.774 0.758 0.678

 CZK 0.983 0.544 0.620 0.714 0.774 0.726 0.748 0.886 0.801 0.725 0.735 0.777

 DKK 0.996 0.537 0.648 0.802 0.723 0.309 0.338 0.549 0.628 0.571 0.581 0.632

 EUR 0.995 0.536 0.656 0.810 0.681 0.259 0.287 0.495 0.603 0.520 0.531 0.596

 GBP 0.964 0.464 0.479 0.519 0.017 0.706 0.704 0.770 0.000 0.736 0.727 0.836

 HUF 0.999 0.531 0.555 0.327 0.748 0.538 0.549 0.572 0.404 0.699 0.699 0.685

 ILS 0.910 0.835 0.634 0.772 0.611 0.150 0.135 0.634 0.017 0.128 0.129 0.485

 ISK 0.987 0.446 0.594 0.434 0.307 0.023 0.032 0.172 0.179 0.069 0.080 0.184

 JPY 0.957 0.967 0.766 0.904 0.773 0.781 0.766 0.215 0.228 0.390 0.397 0.049

 KRW 0.900 0.264 0.096 0.291 0.066 0.438 0.306 0.468 0.000 0.058 0.039 0.014

 NOK 0.995 0.715 0.796 0.785 0.905 0.886 0.900 0.942 0.941 0.945 0.948 0.971

 NZD 0.996 0.757 0.652 0.549 0.946 0.986 0.983 0.958 0.405 0.747 0.730 0.734

 PLN 0.910 0.592 0.363 0.171 0.068 0.504 0.441 0.467 0.110 0.489 0.445 0.169

 SEK 0.999 0.594 0.771 0.769 0.990 0.614 0.642 0.558 0.811 0.954 0.957 0.943

 TRY 0.974 0.580 0.913 0.970 0.047 0.369 0.897 0.738 0.016 0.157 0.974 0.448

# of p-values

less than 5%
0 0 0 0 2 1 1 0 5 0 1 2

One Lag Five Lags Twenty Lags
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Table 4.9: p-values of the LB Test for Squared Standardized Residuals 

 

 

 

AR(1) AGNormal AGFT MS–AR(1) AR(1) AGNormal AGFT MS–AR(1) AR(1) AGNormal AGFT MS–AR(1)

AUD 0.000 0.075 0.008 0.063 0.000 0.250 0.055 0.117 0.000 0.638 0.407 0.529

 CAD 0.000 0.092 0.035 0.017 0.000 0.385 0.212 0.001 0.000 0.358 0.294 0.016

 CHF 0.471 0.719 0.841 0.757 0.028 0.761 0.825 0.789 0.278 0.965 0.977 0.949

 CLP 0.000 0.443 0.471 0.700 0.000 0.834 0.842 0.963 0.000 0.993 0.995 0.038

 CZK 0.000 0.902 0.857 0.715 0.000 0.972 0.982 0.613 0.000 0.980 0.981 0.898

 DKK 0.097 0.993 0.979 0.885 0.002 0.837 0.826 0.905 0.000 0.733 0.728 0.437

 EUR 0.068 0.884 0.918 0.819 0.002 0.880 0.873 0.913 0.000 0.801 0.804 0.536

 GBP 0.000 0.946 0.877 0.407 0.000 0.407 0.349 0.717 0.000 0.768 0.723 0.854

 HUF 0.000 0.364 0.344 0.415 0.000 0.429 0.443 0.681 0.000 0.774 0.779 0.811

 ILS 0.001 0.129 0.142 0.288 0.000 0.446 0.458 0.753 0.000 0.907 0.923 0.589

 ISK 0.000 0.802 0.427 0.322 0.000 0.885 0.740 0.775 0.000 0.868 0.705 0.000

 JPY 0.665 0.263 0.257 0.888 0.012 0.010 0.009 0.002 0.039 0.261 0.246 0.336

 KRW 0.000 0.577 0.855 0.141 0.000 0.210 0.400 0.421 0.000 0.407 0.548 0.005

 NOK 0.000 0.330 0.253 0.228 0.000 0.724 0.733 0.537 0.000 0.988 0.989 0.918

 NZD 0.007 0.485 0.707 0.730 0.000 0.110 0.057 0.021 0.000 0.619 0.584 0.400

 PLN 0.000 0.835 0.820 0.804 0.000 0.709 0.711 0.943 0.000 0.988 0.992 0.923

 SEK 0.000 0.349 0.303 0.425 0.000 0.721 0.726 0.835 0.000 0.971 0.978 0.906

 TRY 0.265 0.932 0.949 0.944 0.755 1.000 1.000 1.000 0.986 1.000 1.000 1.000

# of p-values

less than 5%
13 0 2 1 17 1 1 3 16 0 0 4

One Lag Five Lags Twenty Lags
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Table 4.10: Variance Forecast Performance (One-week Forecast) 

 

Note: The figures are scaled by     . 

ΔRMSE ΔMAE

AR(1) AGNormal AGFT MS–AR(1)

MS–AR(1)

−

AGFT

AR(1) AGNormal AGFT MS–AR(1)

MS–AR(1)

−

AGFT

AUD 2.023 1.878 1.886 9.299 7.414 0.528 0.530 0.525 1.015 0.490

 CAD 0.598 0.567 0.566 1.071 0.505 0.236 0.252 0.251 0.332 0.081

 CHF 0.800 0.810 0.806 0.819 0.013 0.258 0.285 0.283 0.275 -0.008

 CLP 0.991 0.951 0.950 0.950 0.000 0.364 0.382 0.386 0.379 -0.007

 CZK 0.691 0.650 0.654 0.733 0.079 0.375 0.390 0.392 0.423 0.031

 DKK 0.430 0.428 0.428 0.443 0.014 0.223 0.243 0.242 0.244 0.002

 EUR 0.429 0.428 0.428 0.443 0.015 0.224 0.243 0.244 0.246 0.002

 GBP 0.558 0.525 0.524 0.548 0.023 0.231 0.232 0.231 0.241 0.010

 HUF 1.173 1.080 1.097 1.308 0.211 0.589 0.588 0.599 0.677 0.078

 ILS 0.425 0.397 0.397 0.399 0.002 0.204 0.201 0.200 0.188 -0.012

 ISK 2.871 2.596 2.624 2.893 0.270 0.946 0.844 0.873 0.811 -0.062

 JPY 0.433 0.430 0.435 0.427 -0.009 0.227 0.233 0.239 0.231 -0.009

 KRW 1.010 0.851 0.844 1.071 0.228 0.333 0.323 0.325 0.353 0.027

 NOK 0.580 0.576 0.579 0.692 0.113 0.334 0.339 0.341 0.374 0.033

 NZD 1.052 1.019 1.039 1.122 0.083 0.482 0.484 0.487 0.517 0.030

 PLN 1.418 1.358 1.362 1.380 0.018 0.558 0.607 0.606 0.641 0.035

 SEK 0.632 0.591 0.593 0.761 0.168 0.350 0.339 0.343 0.420 0.077

 TRY 1.353 1.199 1.289 1.163 -0.126 0.690 0.579 0.638 0.587 -0.051

RMSE MAE
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Table 4.11: Variance Forecast Performance (Four-week Forecast) 

 

Note: The figures are scaled by     . 

ΔRMSE ΔMAE

AR(1) AGNormal AGFT MS–AR(1)

MS–AR(1)

−

AGFT

AR(1) AGNormal AGFT MS–AR(1)

MS–AR(1)

−

AGFT

AUD 1.997 2.189 2.086 75.851 73.765 0.513 0.628 0.582 4.533 3.951

 CAD 0.592 0.613 0.608 0.801 0.193 0.232 0.268 0.265 0.293 0.028

 CHF 0.786 0.803 0.797 0.811 0.014 0.253 0.288 0.283 0.265 -0.017

 CLP 0.994 1.001 1.000 0.997 -0.003 0.359 0.398 0.403 0.393 -0.010

 CZK 0.683 0.664 0.668 0.754 0.086 0.371 0.398 0.399 0.419 0.020

 DKK 0.425 0.426 0.425 0.439 0.014 0.219 0.242 0.240 0.240 0.000

 EUR 0.425 0.426 0.425 0.438 0.012 0.220 0.243 0.242 0.240 -0.002

 GBP 0.555 0.552 0.551 0.562 0.011 0.229 0.236 0.235 0.236 0.002

 HUF 1.142 1.101 1.115 1.185 0.069 0.585 0.597 0.612 0.651 0.039

 ILS 0.429 0.393 0.393 0.404 0.010 0.205 0.201 0.201 0.190 -0.011

 ISK 2.857 2.989 2.859 2.872 0.013 0.935 0.985 0.958 0.841 -0.117

 JPY 0.440 0.440 0.444 0.440 -0.003 0.229 0.231 0.237 0.232 -0.005

 KRW 0.905 0.897 0.900 0.941 0.041 0.330 0.354 0.356 0.363 0.007

 NOK 0.576 0.585 0.585 0.605 0.020 0.332 0.343 0.343 0.351 0.008

 NZD 1.054 1.047 1.058 1.058 0.000 0.481 0.499 0.499 0.503 0.004

 PLN 1.389 1.417 1.420 1.432 0.012 0.553 0.625 0.623 0.613 -0.010

 SEK 0.630 0.592 0.594 0.694 0.100 0.347 0.339 0.342 0.384 0.042

 TRY 1.317 1.303 1.478 1.313 -0.165 0.688 0.630 0.770 0.662 -0.108

RMSE MAE
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Table 4.12: Variance Forecast Performance (Eight-week Forecast) 

 

Note: The figures are scaled by     . 

ΔRMSE ΔMAE

AR(1) AGNormal AGFT MS–AR(1)

MS–AR(1)

−

AGFT

AR(1) AGNormal AGFT MS–AR(1)

MS–AR(1)

−

AGFT

AUD 2.005 2.206 2.090 334.077 331.987 0.519 0.641 0.589 18.016 17.427

 CAD 0.594 0.618 0.613 0.610 -0.002 0.235 0.270 0.267 0.265 -0.002

 CHF 0.784 0.816 0.807 0.787 -0.020 0.253 0.298 0.294 0.258 -0.035

 CLP 1.001 1.037 1.035 1.017 -0.017 0.362 0.427 0.435 0.401 -0.034

 CZK 0.684 0.672 0.676 0.737 0.060 0.373 0.409 0.410 0.419 0.009

 DKK 0.426 0.426 0.427 0.442 0.015 0.221 0.245 0.242 0.241 -0.001

 EUR 0.426 0.426 0.425 0.448 0.023 0.222 0.246 0.243 0.243 0.000

 GBP 0.559 0.540 0.539 0.573 0.034 0.231 0.231 0.229 0.243 0.014

 HUF 1.147 1.113 1.135 1.202 0.066 0.590 0.598 0.622 0.660 0.038

 ILS 0.431 0.389 0.389 0.407 0.017 0.207 0.202 0.202 0.190 -0.011

 ISK 2.858 2.907 2.892 2.853 -0.038 0.947 1.005 1.009 0.871 -0.137

 JPY 0.440 0.439 0.442 0.439 -0.003 0.230 0.233 0.237 0.232 -0.005

 KRW 0.910 0.988 0.989 0.937 -0.053 0.334 0.412 0.416 0.378 -0.038

 NOK 0.578 0.587 0.586 0.610 0.024 0.333 0.348 0.347 0.348 0.001

 NZD 1.059 1.045 1.060 1.052 -0.008 0.485 0.488 0.495 0.497 0.002

 PLN 1.395 1.442 1.439 1.452 0.013 0.559 0.632 0.626 0.633 0.007

 SEK 0.634 0.607 0.609 0.712 0.102 0.351 0.355 0.357 0.397 0.040

 TRY 1.318 1.335 1.635 1.313 -0.322 0.689 0.666 0.907 0.670 -0.236

RMSE MAE



 

89 

 

 

 

Table 4.13: Numbers of Violations and p-values of the Christoffersen Test for 99% VaR (One-week Forecast) 

 

 

 

 

AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1)

AUD 10 12 12 10 10 0.006 0.001 0.001 0.006 0.006 0.003 0.000 0.000 0.003 0.003

 CAD 12 9 8 8 9 0.001 0.018 0.049 0.049 0.018 0.000 0.007 0.015 0.015 0.007

 CHF 5 5 5 5 4 0.505 0.505 0.505 0.505 0.860 0.456 0.456 0.456 0.456 0.755

 CLP 13 5 5 6 7 0.000 0.505 0.505 0.260 0.119 0.000 0.038 0.038 0.036 0.026

 CZK 10 10 8 6 8 0.006 0.006 0.049 0.260 0.049 0.005 0.005 0.040 0.226 0.040

 DKK 10 8 9 7 7 0.006 0.049 0.018 0.119 0.119 0.005 0.040 0.014 0.103 0.022

 EUR 11 8 9 7 8 0.002 0.049 0.018 0.119 0.049 0.001 0.040 0.014 0.103 0.013

 GBP 11 7 7 7 6 0.002 0.119 0.119 0.119 0.260 0.000 0.100 0.100 0.100 0.036

 HUF 13 12 11 6 9 0.000 0.001 0.002 0.260 0.018 0.000 0.000 0.001 0.231 0.007

 ILS 18 8 6 5 7 0.000 0.049 0.260 0.505 0.119 0.000 0.040 0.231 0.456 0.103

 ISK 19 13 11 10 10 0.000 0.000 0.002 0.006 0.006 0.000 0.000 0.001 0.004 0.004

 JPY 4 4 3 4 5 0.860 0.860 0.720 0.860 0.505 0.729 0.729 0.673 0.729 0.445

 KRW 17 11 8 8 11 0.000 0.002 0.049 0.049 0.002 0.000 0.000 0.015 0.015 0.000

 NOK 14 13 13 7 10 0.000 0.000 0.000 0.119 0.006 0.000 0.000 0.000 0.026 0.003

 NZD 12 13 12 5 10 0.001 0.000 0.001 0.505 0.006 0.000 0.000 0.000 0.445 0.004

 PLN 15 11 9 7 11 0.000 0.002 0.018 0.119 0.002 0.000 0.001 0.014 0.100 0.000

 SEK 10 11 8 8 8 0.006 0.002 0.049 0.049 0.049 0.005 0.001 0.040 0.040 0.040

 TRY 8 13 5 4 5 0.049 0.000 0.505 0.860 0.505 0.015 0.000 0.445 0.729 0.038

 # of p-values

less than 1%
15 10 5 2 6 15 11 5 2 8

 # of p-values

less than 5%
16 14 12 5 11 16 15 13 7 15

# of Violations (out of 366 Weeks) p-value (Unconditional Test) p-value (Conditional Test)
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Table 4.14: Numbers of Violations and p-values of the Christoffersen Test for 99% VaR (Four-week Forecast) 

 

AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1)

AUD 10 12 12 9 8 0.006 0.001 0.001 0.018 0.049 0.003 0.000 0.000 0.007 0.015

 CAD 11 8 8 8 9 0.002 0.049 0.049 0.049 0.018 0.001 0.015 0.015 0.015 0.007

 CHF 4 4 5 7 4 0.860 0.860 0.505 0.119 0.860 0.729 0.729 0.445 0.026 0.729

 CLP 12 8 7 7 7 0.001 0.049 0.119 0.119 0.119 0.000 0.015 0.026 0.026 0.026

 CZK 9 10 8 7 8 0.018 0.006 0.049 0.119 0.049 0.014 0.004 0.039 0.100 0.039

 DKK 9 8 7 5 5 0.018 0.049 0.119 0.505 0.505 0.014 0.015 0.026 0.038 0.038

 EUR 9 9 6 6 5 0.018 0.018 0.260 0.260 0.505 0.014 0.007 0.036 0.036 0.038

 GBP 11 10 10 8 9 0.002 0.006 0.006 0.049 0.018 0.000 0.000 0.000 0.001 0.001

 HUF 11 11 8 7 9 0.002 0.002 0.049 0.119 0.018 0.001 0.001 0.015 0.026 0.007

 ILS 18 6 5 4 7 0.000 0.260 0.505 0.860 0.119 0.000 0.226 0.445 0.729 0.100

 ISK 18 13 11 9 8 0.000 0.000 0.002 0.018 0.049 0.000 0.000 0.001 0.014 0.039

 JPY 5 5 2 4 5 0.505 0.505 0.340 0.860 0.505 0.445 0.445 0.334 0.729 0.445

 KRW 17 12 12 12 14 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

 NOK 12 12 11 8 9 0.001 0.001 0.002 0.049 0.018 0.000 0.000 0.000 0.000 0.000

 NZD 12 13 10 4 8 0.001 0.000 0.006 0.860 0.049 0.000 0.000 0.004 0.729 0.039

 PLN 14 11 10 6 10 0.000 0.002 0.006 0.260 0.006 0.000 0.000 0.000 0.226 0.000

 SEK 9 9 8 7 5 0.018 0.018 0.049 0.119 0.505 0.014 0.014 0.039 0.100 0.445

 TRY 9 12 7 5 4 0.018 0.001 0.119 0.505 0.860 0.000 0.000 0.000 0.038 0.027

 # of p-values

less than 1%
11 10 7 1 2 12 11 8 4 6

 # of p-values

less than 5%
16 15 11 6 10 16 15 15 12 14

# of Violations (out of 366 Weeks) p-value (Unconditional Test) p-value (Conditional Test)
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Table 4.15: Numbers of Violations and p-values of the Christoffersen Test for 99% VaR (Eight-week Forecast) 

 

 

 

AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1)

AUD 11 12 12 9 7 0.002 0.001 0.001 0.018 0.119 0.001 0.000 0.000 0.007 0.026

 CAD 11 10 9 9 8 0.002 0.006 0.018 0.018 0.049 0.001 0.003 0.007 0.007 0.015

 CHF 3 3 1 3 3 0.720 0.720 0.098 0.720 0.720 0.673 0.673 0.097 0.673 0.673

 CLP 12 9 9 9 8 0.001 0.018 0.018 0.018 0.049 0.000 0.007 0.007 0.007 0.015

 CZK 9 10 9 8 9 0.018 0.006 0.018 0.049 0.018 0.014 0.004 0.014 0.039 0.014

 DKK 9 8 7 6 5 0.018 0.049 0.119 0.260 0.505 0.014 0.015 0.026 0.036 0.038

 EUR 9 9 7 6 5 0.018 0.018 0.119 0.260 0.505 0.014 0.007 0.026 0.036 0.038

 GBP 12 12 12 10 10 0.001 0.001 0.001 0.006 0.006 0.000 0.000 0.000 0.000 0.000

 HUF 11 8 8 8 9 0.002 0.049 0.049 0.049 0.018 0.001 0.015 0.015 0.015 0.007

 ILS 19 6 5 5 10 0.000 0.260 0.505 0.505 0.006 0.000 0.226 0.445 0.445 0.003

 ISK 19 15 11 9 11 0.000 0.000 0.002 0.018 0.002 0.000 0.000 0.001 0.014 0.001

 JPY 4 4 1 4 5 0.860 0.860 0.098 0.860 0.505 0.729 0.729 0.097 0.729 0.445

 KRW 17 16 13 12 13 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

 NOK 11 12 10 8 9 0.002 0.001 0.006 0.049 0.018 0.000 0.000 0.000 0.000 0.000

 NZD 12 12 12 6 8 0.001 0.001 0.001 0.260 0.049 0.000 0.000 0.000 0.226 0.039

 PLN 14 12 10 8 10 0.000 0.001 0.006 0.049 0.006 0.000 0.000 0.000 0.015 0.000

 SEK 9 9 6 5 4 0.018 0.018 0.260 0.505 0.860 0.014 0.014 0.226 0.445 0.729

 TRY 9 17 8 6 4 0.018 0.000 0.049 0.260 0.860 0.000 0.000 0.000 0.036 0.027

 # of p-values

less than 1%
11 10 7 2 5 12 12 10 6 7

 # of p-values

less than 5%
16 15 12 10 11 16 15 14 13 15

# of Violations (out of 366 Weeks) p-value (Unconditional Test) p-value (Conditional Test)
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Table 4.16: p-values of the Berkowitz Test for Independence and Tail (One-week Forecast) 

 

AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1)

AUD 0.049 0.675 0.997 0.724 0.784 0.000 0.000 0.000 0.013 0.000

 CAD 0.475 0.816 0.716 0.698 0.331 0.000 0.000 0.004 0.010 0.000

 CHF 0.785 0.672 0.538 0.256 0.932 0.000 0.001 0.033 0.974 0.000

 CLP 0.202 0.896 0.931 0.947 0.606 0.000 0.000 0.031 0.031 0.000

 CZK 0.734 0.796 0.956 0.996 0.868 0.000 0.010 0.134 0.467 0.003

 DKK 0.833 0.506 0.666 0.699 0.514 0.000 0.001 0.010 0.244 0.002

 EUR 0.808 0.496 0.654 0.697 0.589 0.000 0.001 0.010 0.242 0.002

 GBP 0.651 0.514 0.529 0.552 0.791 0.000 0.006 0.014 0.017 0.000

 HUF 0.864 0.410 0.473 0.514 0.176 0.000 0.000 0.003 0.243 0.000

 ILS 0.625 0.813 0.933 0.965 0.863 0.000 0.004 0.243 0.523 0.015

 ISK 0.387 0.509 0.353 0.275 0.657 0.000 0.000 0.003 0.022 0.000

 JPY 0.106 0.153 0.146 0.187 0.566 0.914 0.978 0.024 0.665 0.443

 KRW 0.008 0.642 0.404 0.464 0.812 0.000 0.000 0.081 0.054 0.004

 NOK 0.820 0.784 0.704 0.664 0.598 0.000 0.000 0.001 0.043 0.003

 NZD 0.652 0.953 0.896 0.885 0.776 0.000 0.000 0.002 0.613 0.000

 PLN 0.549 0.725 0.721 0.748 0.367 0.000 0.000 0.010 0.137 0.001

 SEK 0.768 0.709 0.777 0.754 0.456 0.000 0.000 0.002 0.009 0.003

 TRY 0.598 0.779 0.864 0.729 0.686 0.000 0.000 0.612 0.798 0.270

 # of p-values

less than 1%
1 0 0 0 0 17 17 8 1 15

 # of p-values

less than 5%
2 0 0 0 0 17 17 14 7 16

p-value (Independence Test) p-value (Tail Test)
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Table 4.17: p-values of the Berkowitz Test for Independence and Tail (Four-week Forecast) 

 

AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1)

AUD 0.153 0.275 0.455 0.000 0.235 0.000 0.000 0.000 0.001 0.000

 CAD 0.718 0.569 0.630 0.733 0.736 0.000 0.000 0.000 0.000 0.000

 CHF 0.896 0.441 0.385 0.000 0.401 0.000 0.000 0.046 0.406 0.000

 CLP 0.331 0.486 0.603 0.645 0.581 0.000 0.000 0.000 0.000 0.000

 CZK 0.506 0.352 0.393 0.460 0.167 0.000 0.006 0.120 0.240 0.000

 DKK 0.390 0.655 0.734 0.761 0.154 0.000 0.000 0.004 0.327 0.000

 EUR 0.360 0.646 0.645 0.708 0.146 0.000 0.000 0.003 0.267 0.000

 GBP 0.704 0.543 0.584 0.589 0.636 0.000 0.000 0.000 0.000 0.000

 HUF 0.658 0.151 0.228 0.350 0.206 0.000 0.000 0.002 0.055 0.000

 ILS 0.130 0.582 0.598 0.620 0.709 0.000 0.004 0.184 0.419 0.075

 ISK 0.051 0.008 0.048 0.018 0.021 0.000 0.000 0.000 0.005 0.000

 JPY 0.010 0.006 0.019 0.017 0.012 0.585 0.632 0.500 0.632 0.172

 KRW 0.000 0.699 0.285 0.436 0.351 0.000 0.000 0.000 0.000 0.000

 NOK 0.515 0.955 0.935 0.965 0.978 0.000 0.000 0.000 0.002 0.002

 NZD 0.505 0.350 0.490 0.365 0.309 0.000 0.000 0.002 0.064 0.000

 PLN 0.378 0.851 0.827 0.971 0.906 0.000 0.000 0.001 0.002 0.000

 SEK 0.865 0.357 0.389 0.446 0.301 0.000 0.000 0.000 0.000 0.000

 TRY 0.602 0.505 0.493 0.319 0.331 0.000 0.000 0.200 0.348 0.016

 # of p-values

less than 1%
1 2 0 2 0 17 17 13 9 15

 # of p-values

less than 5%
2 2 2 4 2 17 17 14 9 16

p-value (Independence Test) p-value (Tail Test)
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Table 4.18: p-values of the Berkowitz Test for Independence and Tail (Eight-week Forecast) 

 

AR(1) AGNormal AGT AGNTS MS−AR(1) AR(1) AGNormal AGT AGNTS MS−AR(1)

AUD 0.149 0.175 0.406 0.074 0.580 0.000 0.000 0.000 0.000 0.000

 CAD 0.762 0.786 0.825 0.939 0.548 0.000 0.000 0.000 0.000 0.000

 CHF 0.952 0.771 0.609 0.256 0.556 0.000 0.000 0.000 0.557 0.000

 CLP 0.334 0.838 0.867 0.893 0.949 0.000 0.000 0.001 0.000 0.000

 CZK 0.578 0.597 0.639 0.703 0.372 0.000 0.004 0.055 0.139 0.000

 DKK 0.426 0.695 0.794 0.873 0.119 0.000 0.000 0.001 0.002 0.000

 EUR 0.395 0.651 0.742 0.774 0.108 0.000 0.000 0.001 0.014 0.000

 GBP 0.624 0.709 0.715 0.729 0.518 0.000 0.000 0.000 0.000 0.000

 HUF 0.708 0.311 0.398 0.575 0.614 0.000 0.000 0.000 0.001 0.000

 ILS 0.140 0.512 0.539 0.597 0.428 0.000 0.003 0.200 0.450 0.007

 ISK 0.073 0.010 0.101 0.035 0.037 0.000 0.000 0.000 0.001 0.000

 JPY 0.018 0.022 0.058 0.056 0.016 0.489 0.804 0.256 0.887 0.056

 KRW 0.000 0.260 0.175 0.327 0.240 0.000 0.000 0.000 0.000 0.000

 NOK 0.460 0.735 0.687 0.714 0.880 0.000 0.000 0.001 0.001 0.003

 NZD 0.519 0.299 0.443 0.327 0.251 0.000 0.000 0.000 0.013 0.000

 PLN 0.279 0.785 0.830 0.768 0.469 0.000 0.000 0.000 0.000 0.000

 SEK 0.987 0.606 0.648 0.724 0.478 0.000 0.000 0.000 0.000 0.000

 TRY 0.534 0.222 0.474 0.242 0.267 0.000 0.000 0.050 0.159 0.015

 # of p-values

less than 1%
1 1 0 0 0 17 17 14 11 16

 # of p-values

less than 5%
2 2 0 1 2 17 17 14 13 17

p-value (Independence Test) p-value (Tail Test)
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Table 4.19: Bivariate Tail Dependencies between Exchange Rate Returns 

 

 

j

AUD 0.0207 0.0163 0.0192 0.0194 0.0153 0.0208

 CAD n.a. n.a. n.a. 0.0149 0.0111 0.0128

 CHF 0.0107 0.0079 0.0128 0.0309 0.0282 0.0352

 CLP 0.0101 0.0068 0.0144 0.0099 0.0064 0.0080

 CZK 0.0135 0.0100 0.0176 0.0325 0.0300 0.0288

 DKK 0.0149 0.0111 0.0128 0.0479 0.0476 0.0480

 EUR 0.0149 0.0111 0.0128 n.a. n.a. n.a.

 GBP 0.0129 0.0092 0.0144 0.0228 0.0193 0.0224

 HUF 0.0147 0.0106 0.0176 0.0290 0.0258 0.0224

 ILS 0.0113 0.0078 0.0096 0.0124 0.0085 0.0064

 ISK 0.0113 0.0077 0.0096 0.0199 0.0164 0.0192

 JPY 0.0049 0.0031 0.0064 0.0105 0.0075 0.0096

 KRW 0.0110 0.0079 0.0160 0.0112 0.0077 0.0064

 NOK 0.0158 0.0116 0.0176 0.0301 0.0270 0.0320

 NZD 0.0173 0.0130 0.0224 0.0175 0.0132 0.0160

 PLN 0.0149 0.0111 0.0192 0.0243 0.0208 0.0240

 SEK 0.0157 0.0118 0.0160 0.0317 0.0290 0.0288

 TRY 0.0088 0.0069 0.0144 0.0088 0.0062 0.0096

i  = CAD i  = EUR

 𝑖 , 
𝐴𝐺𝑀𝑁    𝑖 , 

𝐴𝐺𝑀𝑁  𝑚 𝑙   𝑖 , 
𝐸𝑚 

  𝑖 , 
𝐴𝐺𝑀𝑁    𝑖 , 

𝐸𝑚 
  𝑖 , 

𝐴𝐺𝑀𝑁  𝑚 𝑙  
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Table 4.19(Cont.): Bivariate Tail Dependencies between Exchange Rate Returns 

 

 

j

AUD 0.0168 0.0125 0.0160 0.0067 0.0038 0.0080

 CAD 0.0129 0.0092 0.0144 0.0049 0.0031 0.0064

 CHF 0.0185 0.0155 0.0208 0.0109 0.0095 0.0160

 CLP 0.0090 0.0056 0.0096 0.0045 0.0028 0.0032

 CZK 0.0205 0.0170 0.0224 0.0088 0.0063 0.0048

 DKK 0.0226 0.0191 0.0208 0.0104 0.0075 0.0112

 EUR 0.0228 0.0193 0.0224 0.0105 0.0075 0.0096

 GBP n.a. n.a. n.a. 0.0075 0.0050 0.0064

 HUF 0.0193 0.0153 0.0208 0.0077 0.0047 0.0080

 ILS 0.0109 0.0072 0.0112 0.0061 0.0039 0.0064

 ISK 0.0158 0.0121 0.0112 0.0070 0.0045 0.0080

 JPY 0.0075 0.0050 0.0064 n.a. n.a. n.a.

 KRW 0.0109 0.0074 0.0112 0.0065 0.0046 0.0032

 NOK 0.0194 0.0153 0.0192 0.0092 0.0059 0.0112

 NZD 0.0160 0.0117 0.0192 0.0063 0.0035 0.0096

 PLN 0.0181 0.0142 0.0208 0.0065 0.0040 0.0048

 SEK 0.0203 0.0166 0.0176 0.0087 0.0059 0.0112

 TRY 0.0079 0.0057 0.0112 0.0032 0.0020 0.0032

i  = GBP i  = JPY

 𝑖 , 
𝐴𝐺𝑀𝑁    𝑖 , 

𝐴𝐺𝑀𝑁  𝑚 𝑙   𝑖 , 
𝐸𝑚 

  𝑖 , 
𝐴𝐺𝑀𝑁    𝑖 , 

𝐸𝑚 
  𝑖 , 

𝐴𝐺𝑀𝑁  𝑚 𝑙  
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Table 4.20: p-values of the KS Test of AGFT Standardized Residuals against the NTS 

Distribution by Regimes 

 

Note: The result of JPY for regime 2 is not available because the number of observations is 

insufficient.

Regime 1 Regime 2

AUD 0.562 0.003

 CAD 0.721 0.269

 CHF 0.702 0.082

 CLP 0.198 0.001

 CZK 0.926 0.000

 DKK 0.701 0.008

 EUR 0.550 0.007

 GBP 0.884 0.246

 HUF 0.807 0.002

 ILS 0.273 0.020

 ISK 0.658 0.000

 JPY 0.950 n.a.

 KRW 0.622 0.002

 NOK 0.935 0.027

 NZD 0.362 0.002

 PLN 0.659 0.000

 SEK 0.613 0.001

 TRY 0.028 0.000

# of p-values

less than 1%
0 12

# of p-values

less than 5%
1 14
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Chapter 5 Conclusion 

In this dissertation, we discuss risk measurement and management in global markets by using 

tempered stable distributions. We deal with two sectors of global markets; stocks and currencies. 

Through empirical studies, it is revealed that tempered stable distributions have wide uses in risk 

measurement and management. We briefly review the analysis in each chapter as follows. 

In Chapter 2, we measure the systematic risk in the global banking sector, focusing on global 

banking stocks comprising global systemically important financial institutions (G-SIFIs). We 

estimate four systematic risk measures: joint probability and conditional probability of negative 

stock return movements, ∆CoVaR, and ∆CoAVaR. We find that the joint probability of negative 

movements is a good indicator of a significant increase in systematic risk. Subsequently, we 

investigate the relationship among the other three measures and find the following. Cross-

sectional linkages between AVaR and ∆CoAVaR are few, if any, but there is a strong time series 

linkage. On the other hand, the conditional probability of negative movements and ∆CoAVaR 

show similar cross-sectional magnitude relations, though their time series linkage is not clear. 

Thus, we conclude that both AVaR and conditional probability of negative movements reinforce 

each other and serve as useful references for ∆CoAVaR-based systematic risk measurement. At 

the same time, we also statistically demonstrate that the multivariate autoregressive moving 

average generalized autoregressive conditional heteroscedasticity (ARMA–GARCH) model with 

the multivariate normal tempered stable (MNTS) distributed residuals is a more realistic model 

for G-SIFI stocks compared with that with the multivariate normal distributed residuals. 
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In Chapter 3, we propose mean−CoAVaR portfolio optimization to mitigate the potential loss 

brought by the systematic risk. It is a strategy to minimize the portfolio’s CoAVaR with a given 

desired expected return. We perform empirical studies for six portfolios comprising G-SIFI 

stocks. The future returns of G-SIFI stocks are forecast by the ARMA–GARCH model with the 

MNTS distributed residuals because it is a better model to use with G-SIFI stocks, as is 

demonstrated in Chapter 2. As a result, we observe that the mean–CoAVaR portfolio incurs 

relatively smaller cumulative loss in most cases compared with the mean–AVaR and mean–

variance portfolios. This implies that the mean–CoAVaR strategy is effective during a financial 

crisis. Our results open the applicability of CoVaR methodology to risk management. 

In Chapter 4, we examine the usefulness of the GARCH model for use with 18 Organization 

for Economic Co-operation and Development (OECD) foreign currency exchange rate returns 

against United States Dollars, compared with the Markov–switching (MS) model. We introduce 

the NTS distribution to GARCH residuals of exchange rate returns, in order to capture fat-

tailness and skewness. A previous study suggests that the MS model is a better model to use with 

exchange rate returns than the GARCH model, as long as GARCH residuals are assumed to be 

the normal i.i.d. in line with convention. We are interested in whether the introduction of the 

NTS distribution alters the situation. To examine the issue more comprehensively, we renew 

sample periods and expand samples, using not only weekly data but also daily data. The 

comparisons of the model performance are based on both in-sample and out-of-sample tests. We 

find that the results are in favor of the GARCH model with the NTS distributed residuals against 

the MS model. This is particularly demonstrated by the tests for the accuracy of VaR and tail 

behavior forecasts, reflecting the superior descriptive power of the NTS distribution for fat-

tailness and skewness. Note that the GARCH model with the normally distributed residuals is 
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often outperformed by the MS model, which is consistent with the previous study. However, the 

introduction of the NTS distribution to the GARCH model inverts the situation. In addition, for 

higher frequency data, the clear superiority of the MS model disappears even in the in-sample 

tests. To further demonstrate the usefulness of the GARCH model with exchange rate returns, we 

apply the GARCH model with the MNTS distributed residuals for 18 OECD currency exchange 

rate returns. From the in-sample test, we confirm that the MNTS distribution accounts for tail 

dependencies between exchange rate returns much better than the multivariate normal 

distribution. Finally, the possibility of combining the GARCH model with the NTS distributed 

residuals and MS structure is discussed. Given that the residuals in the turbulent regime appear to 

have a fatter tail than those in the tranquil regime, it is expected that a better model can be 

derived by introducing the regime-dependent parameters to the NTS distribution. 

To summarize, the contribution of this dissertation is threefold. The first is to measure 

systematic risk through the standpoint of the global markets, the second is to propose portfolio 

optimization against systematic risk, and the third is to find a better model for global foreign 

currency exchange rate returns in terms of risk management. Given that risk management and 

management now need a worldwide perspective, the findings of this dissertation are useful and 

can serve as a reference when the related topics are studied elsewhere. There are several possible 

areas for future study that would be in line with this dissertation. We propose these directions in 

the closing remarks. 

One of the most important extensions of our studies would be the improvement of data 

frequency. Because of the developments of computer technologies, the financial dealings and 

price changes get more and more frequent. The frequency is now about to reach the nanosecond, 

i.e.,      second level (Barry, 2012). The positive aspect of these advancements is to provide 
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liquidity to the market and thus make trading smooth therein. At the same time, however, it 

should be noted that it will be critical to measure and manage the intra-day market and liquidity 

risk in the near future. The significance of the intra-day risk management became apparent in the 

May 6
th

, 2010 Flash Crash, when the Dow Jones Industrial Average plunged by about 1000 

points within just five minutes. Exchanges, research institutions, and financial regulators are now 

starting to store and provide intra-day market data to market participants, so that they can 

analyze the intra-day risk. Through investigating such data, new types of risk will be gradually 

clarified. 

Next, we should pay attention to the cross-cutting linkages among market sectors, whereas our 

analysis is performed by market sector; stocks and currencies. The influences of devastating 

systemic events would appear in all sectors of markets simultaneously, and the conditions of 

individual market sectors would deteriorate even more through interactions among themselves. 

We could construct a better early-warning system for forthcoming financial crises by 

investigating global financial markets and identifying every symptom of the systemic downturn 

in a cross-sectional manner. Because not only trading at exchanges but also over-the-counter 

trading play important roles in the global market, over-the-counter should be considered 

ultimately in the construction of the early-warning system, overcoming the unavailability of 

trading data. Moreover, the macroeconomic variables must be significant to the early warning 

system because they also vividly reflect the market conditions.  

Finally, it would be an intriguing and practical problem to perform risk management for more 

global samples. Given that investment activity now has a global context, the portfolio managers 

in the largest investment companies can choose from a great number of securities from across the 

world to construct profitable portfolios. Accordingly, they need to manage the risk of a massive 
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portfolio through analysis of the depending structures among securities. Considering the growing 

high frequency trading, it is imperative for portfolio managers to analyze the risk profiles of 

many securities and optimize the portfolio in a very short time. This problem has not only a 

theoretical aspect to develop advanced techniques to analyze the risk, but also a practical aspect 

to make such analysis feasible with a given computational resource. We should note that, in this 

sense, modern quantitative finance is becoming more associated with computer science. It may 

be easily imagined that researchers in the field of quantitative finance and computer science will 

collaborate with each other very intensively in the near future. 
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Appendix A List of 29 G-SIFIs as of November 2011 

Table A.1: List of 29 G-SIFIs as of November 2011
39

 

 

 

Note: Characters in parentheses stand for the ticker symbols in each domestic market. We refer to G-SIFIs by 

their ticker symbol except the Asian G-SIFIs. We refer to the Asian G-SIFIs by their abbreviations: BOC (Bank of 

China), MUFJ (Mitsubishi UFJ FG), MHFG (Mizuho FG), and SMFG (Sumitomo Mitsui FG.) 

 

 

 

 

 

 

 

                                                 
39

 The most recent list at the time of this writing contains revisions owing to the update on November 2012 and 

2013. Compared to the list given here, two institutions were added (BBVA and Standard Chartered) and three 

institutions were removed (Commerzbank, Dexia, and Lloyds Banking Group) in 2012, and one institution 

(Industrial and Commercial Bank of China Limited) was added in 2013, which still remains in 29 G-SIFIs in total. 

The Financial Stability Board announces that the list of G-SIFIs will be updated every November. See Financial 

Stability Board (2011, 2012, 2013). 

United States Europe Asia

Bank of America (BAC) Banque Populaire CdE Bank of China (3988)

Bank of New York Mellon (BK) Barclays (BARC) Mitsubishi UFJ FG (8306)

Citigroup (C) BNP Paribas (BNP) Mizuho FG (8411)

Goldman Sachs (GS) Commerzbank (CBK) Sumitomo Mitsui FG (8316)

JP Morgan Chase (JPM) Credit Suisse (CSGN)

Morgan Stanley (MS) Deutsche Bank (DBK)

State Street (STT) Dexia (DEXB)

Wells Fargo (WFC) Group Crédit Agricole (ACA)

HSBC (HSBA)

ING Bank (INGA)

Lloyds Banking Group (LLOY)

Nordea (NDA)

Royal Bank of Scotland (RBS)

Santander (SAN)

Société Générale (GLE)

UBS (UBSN)

Unicredit Group (UCG)
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Appendix B Multivariate Normal Tempered Stable Distribution 

In this appendix, we present the mathematical definition of the multivariate normal tempered 

stable (MNTS) distribution proposed by Kim et al. (2012). We begin with the univariate NTS 

distribution. The NTS distributed random variable X is defined by 

 𝑋           𝛾√    (B.1)  

where     𝑁      and T is the classical tempered stable (CTS) subordinator whose characteristic 

function is 
 

𝜙  𝑢   x [ 
       

 
{   𝑖𝑢         }]  (B.2)  

The characteristic function of X is given by 

 
𝜙𝑋 𝑢   x [𝑖     𝑢  

       

 
{(  𝑖 𝑢  

𝛾 𝑢 

 
)

   

     }]  (B.3)  

The real parameter set        𝛾    characterizes the NTS distribution. The parameters       

dominate the fat-tailness,   dominates the skewness, 𝛾 scales the distribution and   is the mean 

𝐸[𝑋], noting that 𝐸[ ]   . The variance is given by    [𝑋]  𝛾    (
   

  
). The constraints 

of parameters are             𝛾 . If we set     𝛾  √    (
   

  
)  with      

√
   

   
, the NTS distribution is standardized into zero mean and unit variance, which we call the 

standard NTS distribution. 
Based on Eq. (B.1), the NTS distribution is easily extended into the multivariate version. The 

N-dimensional MNTS distributed random variable    𝑋  𝑋    𝑋   is defined by 

   𝝁         𝜸√ 𝝐  (B.4)  

Here, 𝝁                                , and 𝜸   𝛾  𝛾    𝛾   are the N-dimensional 

real vector parameters. The parameter set         𝛾      functions as the parameters of the 

univariate NTS distribution for the n-th marginal      𝑁 . Thus, every 𝛾  is larger than 0. 

The N-dimensional random variable 𝝐               follows the multivariate normal 

distribution 𝑁     , where          is the correlation matrix. In summary, the real parameter 

set        𝜸 𝝁    characterizes the MNTS distribution. Note that   and   are common 

parameters among every marginal. The variance-covariance matrix of   is given by 
 

c v 𝑋  𝑋       𝛾 𝛾      (
   

  
)    𝑘 𝑙  𝑁  (B.5)  

Given the other parameters, we can estimate   from the variance and the covariance of   by 

using Eq. (B.5) in an opposite manner. If we set 𝝁             𝛾  √    
 (

   

  
)  with 
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      √
   

   
 ∀ , the MNTS distribution is standardized such that 𝐸[𝑋 ]       [𝑋 ]    ∀ , 

which we call the standard MNTS distribution. 

It is critical that the NTS distribution has a reproductive property. Let the joint stock return 

distribution                be modeled by the MNTS distribution with the parameters 

       𝜸 𝝁   . Consider the portfolio whose weight on stock n is   . The portfolio return R is 

given by 

 

  ∑     

 

   

 ∑     

 

   

 ∑   

 

   

{        𝛾 √   }  

 ∑     

 

   

 (∑   

 

   

  )       √ ∑   

 

   

𝛾        (B.6)  

Since we have 

 

∑   

 

   

𝛾      √∑∑    

 

   

𝛾 𝛾     

 

   

          𝑁       (B.7)  

by the reproductive property of the normal distribution, R follows the NTS distribution by 

definition. Thereby, we can estimate the VaR or AVaR of the portfolio under the MNTS model. 

It is also worth mentioning the analytic formulae of the cumulative distribution function and 

probability density function of the MNTS distribution (Kim and Volkmann, 2013). The N-

dimensional cumulative distribution function of the standard MNTS distributed random variable 

  with the parameters           and 𝜸  √    (
   

  
) is given by 

 
             𝑋       𝑋      ∫ 𝐺  ; 𝒂 𝑓       

∞

 

  

𝑓     
 

 𝜋
∫ 𝑒  𝑢 𝜙  𝑢   𝑢

∞

 ∞

  

𝐺  ; 𝒂  ∏∫ 𝑓  𝑥    𝑥    𝑥 

   𝛽      

𝛾 √ 

 ∞

 

   

  
(B.8)  

and 𝑓  𝑥    𝑥   is the probability density function of the N-dimensional normal distribution 𝑁     . 

The N-dimensional probability density function of the standard MNTS distributed random 

variable   is given by 

 

𝑓𝑋 𝒙  ∏
𝜕 

𝜕𝑥 
  𝑥    𝑥  

 

   

                                                                                     

 ∫
 

  𝜋 
 
  𝚺    

 
 

 x [ 
 

 
(𝒙  𝒎   )(𝚺   )

  
(𝒙  𝒎   )] 𝑓       

∞

 

  

𝒙   𝑥    𝑥   𝒎           (                 )  

and  𝚺    (Σ      )  (𝛾 𝛾      )   𝑘 𝑙  𝑁  (B.9)  
Note that the integral kernel of 𝑓𝑋 𝒙  is equivalent to the probability density function of the N-

dimensional normal distribution 𝑁 𝒎    𝚺    . 
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Appendix C VaR and AVaR in Infinitely Divisible Distribution 

In this appendix, we present the closed-form formulae of Value at Risk (VaR) and average 

Value at Risk (AVaR) for infinitely divisible distributions
40

, including the normal tempered 

stable (NTS) and classical tempered stable (CTS) distributions.  The proof is given in Kim et al. 

(2010). 

Let VaR and AVaR be defined for the infinitely divisible and continuously distributed return R, 

whose characteristic function is given by 𝜙  𝑢  𝐸[𝑒 𝑢 ]. We denote         and         , 

respectively, where   stands for the significance level (     .) If there is     such that 

 𝜙  𝑢  𝑖      for ∀𝑢   , then the cumulative distribution function of   is expressed as 

 
   𝑥  

𝑒 𝛿

𝜋
  ∫ 𝑒   𝑢

𝜙  𝑢  𝑖  

  𝑖𝑢

∞

 

  𝑢  (C.1)  

Accordingly,         is derived because, in the continuous case,         is the  -quantile of  . 

Under the same condition for  ,          is derived as 

                                                                                                   

         
𝑒 VaR𝜖   𝛿

𝜋 
  ∫ 𝑒  𝑢VaR𝜖   𝜙   𝑢  𝑖  

  𝑢  𝑖   
  𝑢

∞

 

  (C.2)  

We utilize the presented formulae to calculate VaR and AVaR for the NTS distribution in 

Chapters 2 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
40

 See Rachev et al. (2011) for more information about infinitely divisible distributions. 
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Appendix D Markov Switching Model 

In this appendix, more detail of a two-regime Markov–switching AR(1) model is presented. A 

two-regime Markov–switching AR(1) model is expressed as 

                         𝑁       (D.1)  
where          stands for the latent regime variable and             are regime-dependent 

parameters. The switching between regimes is described by the following time-homogeneous 

Markov chain: 

               𝑖       𝑖          (D.2)  
In the two-regime Markov–switching model, the conditional probability density distribution 

𝑓          is given by the mixture distribution of two states: 

 

𝑓          ∑          𝑖    

 

   

𝑓              𝑖   (D.3)  

where    is the set of information known up to t. Under the conditional normal assumption, 

𝑓              𝑖  is in the form of 

 
𝑓              𝑖  

 

√ 𝜋  
 

 x [
                

 

   
 ]  

(D.4)  

At the initial period    , we use the ergodic probability for the conditional probability: 

 

  
∗          𝑖             𝑖  

     

         
  (D.5)  

There are two key probabilities associated with the Markov–switching model: filtered 

probability         𝑖     and smoothed probability         𝑖    , where T denotes the 

end period. Filtered probability is calculated through the forward recurrence formula regarding 

        𝑖      , 

 

          𝑖     ∑                

 

   

                                                      

                ∑
                  𝑓              

𝑓         

 

   

   (D.6)  

Given           𝑖    , the filtered probability is updated as follows: 

 
          𝑖       

          𝑖    𝑓              𝑖 

𝑓         
  (D.7)  

On the other hand, the smoothed probability is calculated through the backward recurrence 

formula, 
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        𝑖     ∑        𝑖           

 

   

                                         

                ∑
                          𝑖    

               

 

   

   (D.8)  

Smoothed probability represents the probability of the regime 𝑖      in the past, given all the 

observations. It gives us insights into the timing of structural changes. 

Note that, by combining Eqs. (D.3) - (D.7), the maximum likelihood estimation for the 

Markov–switching model (D.1) is feasible. The maximum likelihood estimation is easily 

applicable when the number of regimes is two, as is the case in this dissertation. However, it 

does not work effectively when the number of regimes increases. In that case, Hamilton (1990) 

suggests using the EM algorithm instead. 
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Appendix E Results of In-Sample Tests on the Basis of Daily Datasets of 18 OECD Currency Exchange Rate Returns (3129 

Observations) 

Table E.1: KS, AD, and AD
2
 Statistics of AR(1)−GARCH(1,1) Standardized Residuals against the Proposed Distributions 

(Daily Data) 

 

AD AD
2 AD AD

2 AD AD
2

Statistic (p-value) Statistic Statistic Statistic (p-value) Statistic Statistic Statistic (p-value) Statistic Statistic

AUD 0.034 (0.002) 0.535 2.042 0.015 (0.502) 0.070 0.708 0.019 (0.186) 0.044 0.717

 CAD 0.021 (0.125) 0.056 0.565 0.014 (0.585) 0.044 0.214 0.011 (0.849) 0.041 0.144

 CHF 0.033 (0.002) 147.771 1.691 0.018 (0.240) 0.082 0.345 0.012 (0.770) 0.532 0.175

 CLP 0.038 (0.000) 6.949E+11 3.512 0.016 (0.363) 0.235 0.247 0.020 (0.155) 0.922 0.304

 CZK 0.030 (0.008) 0.301 1.583 0.013 (0.623) 0.031 0.193 0.014 (0.566) 0.030 0.146

 DKK 0.025 (0.035) 0.073 0.873 0.018 (0.257) 0.047 0.288 0.016 (0.378) 0.037 0.216

 EUR 0.025 (0.038) 0.079 0.889 0.017 (0.312) 0.046 0.280 0.014 (0.590) 0.039 0.193

 GBP 0.018 (0.262) 0.078 0.674 0.013 (0.682) 0.058 0.238 0.016 (0.419) 0.045 0.215

 HUF 0.031 (0.005) 3.632E+06 1.754 0.013 (0.634) 0.348 0.364 0.022 (0.083) 0.123 0.603

 ILS 0.037 (0.000) 201.098 3.686 0.015 (0.474) 0.051 0.182 0.016 (0.412) 0.068 0.161

 ISK 0.045 (0.000) 2.217E+04 3.852 0.020 (0.154) 0.053 0.535 0.026 (0.028) 0.053 0.733

 JPY 0.033 (0.002) 45.186 2.574 0.011 (0.836) 0.040 0.173 0.017 (0.321) 0.037 0.258

 KRW 0.050 (0.000) 2693.934 5.882 0.019 (0.201) 0.082 0.853 0.031 (0.005) 0.068 0.993

 NOK 0.019 (0.204) 0.116 0.729 0.012 (0.796) 0.049 0.196 0.016 (0.383) 0.036 0.198

 NZD 0.029 (0.010) 0.237 1.439 0.016 (0.380) 0.071 0.614 0.019 (0.230) 0.042 0.532

 PLN 0.028 (0.017) 8384.285 1.827 0.017 (0.353) 0.116 0.499 0.030 (0.006) 0.080 0.887

 SEK 0.017 (0.296) 0.116 0.594 0.009 (0.966) 0.049 0.138 0.014 (0.524) 0.030 0.157

 TRY 0.114 (0.000) 1.755E+129 25.671 0.018 (0.264) 2.338 1.040 0.032 (0.004) 0.147 2.482

# of p-values

less than 1%
10 0 3

# of p-values

less than 5%
14 0 4

Normal Student t NTS

KS KS KS
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Table E.2: Log-likelihood (Daily Data) 

 

 

 

AR(1)

AGNormal

LR Statistic

vs.

AR(1)

AGT

LR Statistic

vs.

AR(1)

LR Statistic

vs.

AGNormal

AGNTS

LR Statistic

vs.

AR(1)

LR Statistic

vs.

AGNormal

LR Statistic

vs.

AR(1)

AUD 10307.49 10794.13 973.28 10835.62 1056.26 82.99 10850.27 1085.57 112.29 10717.77 820.58

 CAD 11511.34 11954.32 885.97 11959.62 896.56 10.59 11960.80 898.92 12.96 11857.83 692.99

 CHF 10957.80 11136.88 358.16 11178.86 442.11 83.95 11181.14 446.67 88.50 11112.02 308.44

 CLP 11350.97 11677.88 653.80 11804.58 907.21 253.40 11801.84 901.74 247.94 11709.48 717.01

 CZK 10548.72 10825.33 553.24 10859.95 622.46 69.22 10862.33 627.22 73.98 10779.31 461.19

 DKK 11219.78 11393.42 347.26 11404.55 369.53 22.27 11406.86 374.14 26.88 11351.52 263.46

 EUR 11225.09 11396.71 343.25 11408.02 365.87 22.62 11410.33 370.49 27.24 11354.95 259.73

 GBP 11603.55 11831.96 456.80 11838.97 470.82 14.02 11841.27 475.43 18.62 11791.17 375.22

 HUF 10000.60 10319.41 637.61 10384.51 767.81 130.20 10391.39 781.57 143.96 10325.57 649.93

 ILS 12105.84 12589.84 968.00 12695.24 1178.80 210.80 12695.83 1179.98 211.99 12569.72 927.75

 ISK 9746.02 10781.70 2071.37 10904.05 2316.06 244.70 10904.06 2316.09 244.72 10765.84 2039.65

 JPY 11306.38 11454.28 295.81 11547.04 481.32 185.51 11548.37 483.98 188.17 11488.63 364.51

 KRW 10926.95 12097.07 2340.24 12241.35 2628.80 288.56 12250.46 2647.01 306.77 11979.68 2105.46

 NOK 10637.58 10868.65 462.15 10881.23 487.29 25.15 10885.82 496.48 34.33 10831.55 387.94

 NZD 10327.98 10577.27 498.58 10599.80 543.65 45.08 10613.17 570.40 71.82 10558.47 461.00

 PLN 10155.24 10644.79 979.10 10698.95 1087.42 108.32 10705.60 1100.73 121.63 10609.45 908.43

 SEK 10567.08 10834.74 535.32 10847.58 561.01 25.68 10850.03 565.90 30.58 10791.58 449.01

 TRY 9249.32 9755.41 1012.18 10635.82 2773.00 1760.82 10637.63 2776.62 1764.45 10393.57 2288.50

AR(1)−GARCH(1,1) MS−AR(1)
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Table E.3: p-values of the LB Test for Standardized Residuals (Daily Data) 

 

 

 

AR(1) AGNormal AGFT MS−AR(1) AR(1) AGNormal AGFT MS−AR(1) AR(1) AGNormal AGFT MS−AR(1)

AUD 0.981 0.455 0.370 0.321 0.034 0.126 0.110 0.244 0.002 0.196 0.187 0.179

 CAD 0.971 0.904 0.764 0.967 0.030 0.683 0.674 0.592 0.000 0.152 0.153 0.031

 CHF 0.998 0.938 0.329 0.947 0.437 0.585 0.403 0.598 0.003 0.202 0.132 0.111

 CLP 0.981 0.149 0.177 0.311 0.187 0.032 0.035 0.216 0.001 0.024 0.030 0.038

 CZK 0.998 0.883 0.569 0.884 0.111 0.223 0.210 0.597 0.013 0.123 0.126 0.400

 DKK 0.993 0.785 0.407 0.477 0.502 0.627 0.536 0.497 0.376 0.581 0.551 0.637

 EUR 0.996 0.778 0.407 0.473 0.450 0.540 0.459 0.447 0.388 0.571 0.538 0.638

 GBP 0.971 0.590 0.536 0.851 0.756 0.941 0.921 0.944 0.210 0.958 0.954 0.939

 HUF 0.990 0.929 0.621 0.772 0.668 0.975 0.972 0.835 0.265 0.473 0.422 0.392

 ILS 0.991 0.603 0.538 0.756 0.267 0.697 0.678 0.661 0.031 0.419 0.417 0.411

 ISK 0.964 0.353 0.338 0.249 0.000 0.540 0.506 0.424 0.000 0.148 0.145 0.109

 JPY 0.950 0.740 0.493 0.519 0.433 0.888 0.856 0.727 0.017 0.636 0.706 0.457

 KRW 0.993 0.162 0.003 0.108 0.002 0.015 0.001 0.041 0.000 0.248 0.065 0.090

 NOK 0.978 0.728 0.568 0.379 0.425 0.609 0.597 0.439 0.203 0.819 0.806 0.726

 NZD 0.997 0.675 0.394 0.447 0.207 0.211 0.181 0.319 0.096 0.678 0.658 0.720

 PLN 0.996 0.984 0.318 0.697 0.057 0.577 0.422 0.503 0.006 0.688 0.602 0.772

 SEK 0.960 0.826 0.505 0.547 0.053 0.424 0.371 0.395 0.050 0.598 0.575 0.691

 TRY 0.929 0.281 0.272 0.197 0.105 0.176 0.205 0.269 0.000 0.572 0.719 0.456

# of p-values

less than 5%
0 0 1 0 4 2 2 1 11 1 1 2

One Lag Five Lags Twenty Lags
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Table E.4: p-values of the LB Test for Squared Standardized Residuals (Daily Data) 

 

AR(1) AGNormal AGFT MS−AR(1) AR(1) AGNormal AGFT MS−AR(1) AR(1) AGNormal AGFT MS−AR(1)

AUD 0.000 0.076 0.014 0.004 0.000 0.095 0.009 0.000 0.000 0.267 0.047 0.000

 CAD 0.000 0.077 0.082 0.016 0.000 0.461 0.478 0.000 0.000 0.417 0.416 0.000

 CHF 0.051 0.324 0.768 0.104 0.000 0.594 0.417 0.439 0.000 0.000 0.000 0.000

 CLP 0.000 0.296 0.726 0.537 0.000 0.945 0.973 0.772 0.000 1.000 1.000 0.576

 CZK 0.000 0.154 0.200 0.571 0.000 0.749 0.823 0.118 0.000 0.501 0.529 0.004

 DKK 0.000 0.062 0.059 0.694 0.000 0.211 0.180 0.564 0.000 0.723 0.723 0.000

 EUR 0.000 0.037 0.036 0.606 0.000 0.107 0.092 0.527 0.000 0.581 0.580 0.000

 GBP 0.000 0.782 0.895 0.961 0.000 0.582 0.651 0.537 0.000 0.493 0.487 0.000

 HUF 0.000 0.818 0.444 0.581 0.000 0.922 0.844 0.566 0.000 0.998 0.999 0.737

 ILS 0.000 0.130 0.082 0.065 0.000 0.171 0.107 0.010 0.000 0.479 0.404 0.002

 ISK 0.000 0.061 0.025 0.000 0.000 0.015 0.004 0.000 0.000 0.177 0.112 0.000

 JPY 0.000 0.986 0.893 0.459 0.000 0.902 0.898 0.502 0.000 0.981 0.987 0.000

 KRW 0.000 0.336 0.940 0.245 0.000 0.862 0.750 0.001 0.000 0.002 0.000 0.000

 NOK 0.000 0.214 0.109 0.005 0.000 0.600 0.485 0.050 0.000 0.303 0.219 0.001

 NZD 0.000 0.331 0.262 0.105 0.000 0.874 0.830 0.090 0.000 0.418 0.459 0.000

 PLN 0.000 0.111 0.056 0.045 0.000 0.602 0.454 0.001 0.000 0.903 0.837 0.000

 SEK 0.000 0.617 0.597 0.856 0.000 0.281 0.304 0.062 0.000 0.641 0.682 0.005

 TRY 0.002 0.935 0.964 0.915 0.004 1.000 1.000 1.000 0.011 1.000 1.000 1.000

# of p-values

less than 5%
17 1 3 5 18 1 2 6 18 2 3 15

One Lag Five Lags Twenty Lags
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