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Abstract of the Dissertation

Interactive Visual Analytics In Medical Imaging

by

Ievgeniia Gutenko

Doctor of Philosophy

in

Computer Science

Stony Brook University

2017

With the size of volumetric medical data constantly growing, demand
is increasing for e�cient compression, storage, and understanding of data.
Along with an increase in the size of information come two new major forms
of data consumption. First of all, doctors no longer need to be tied to
the hospital room to read through a single patient data but can do it in
comfort of their home or on their mobile device. Secondly, widespread of
browser-based tools enables new collaborative ways of information analysis
and research. In this work, we focus on these two novel ways of analysis
of medical information: a mobile device for single-subject data delivery and
reading and browser-based collaborative research tools for visual analysis of
large groups of subjects.

Mobile devices have a number of unique characteristics that make them
suitable platforms for mobile health applications. They are portable and
can provide always-on connectivity with increasing throughput rates, e↵ec-
tively allowing a medical doctor to conduct the diagnostic process without
being constrained to a static workstation. We construct and evaluate a dual
pipeline for volumetric rendering on the mobile device and a remote render-
ing pipeline. Modern mobile devices also provide us new methods of input
as an alternative to traditional mouse-keyboard interaction. We study two
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new ways of selection within volumetric data via new methods of input and
construct respective models of human interaction. Next, we take a step fur-
ther and evaluate novel mixed reality platform for simple immersive analysis
tasks and interactions with volumetric data.

With easier access to the data through protected hospital network, one
can easily gather larger groups of subjects retrospectively for research in a
specific problem domain. Often forgotten by laypeople, the spleen has risen
as one of the examples of such problems. We develop a browser-based visual
analytics application AnaFe to study changes in the spleen over time through
multiple image-derived features. We take advantage of the amount of largely
reproducible image features to enable construction of similarity-based queries
through interaction with these features. Through rapid visual feedback, the
user can compare several time-varying insights and their correlating features
in a single overview.
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1 Introduction

1.1 Ubiquitous Visualization: In the Doctor’s Pocket
and on the Web

Modern visualization of the medical data is not limited to volumetric render-
ing of Computed Tomography (CT) or Magnetic Resonance Imaging (MRI)
data. While decades ago visualizing even a single stack of subject’s scan
images facilitated a challenge, nowadays such visualization is ubiquitous and
accessible to almost anyone with an average computing device. Topics of
the modern medical visualization research vary from analysis of novel inter-
action techniques with volumetric data on the new visualization platforms
and devices to advanced computer-aided detection diagnoses. Researchers
are concerned with questions on how to fit gigabytes of imaging data into
doctor’s pocket or how to squeeze only relevant multi-subject information on
a single screen of the device.

This dissertation addresses two central topics in the modern medical vi-
sualization and analytics. In the first part of this dissertation, we talk about
the question of “fitting” medical volumetric data on the mobile device of the
doctor. This part of the work addresses visualization of a single-subject’s
imaging data. On the example of CT angiography data (CTA), we investi-
gate two types of pipelines for mobile health (mHealth) applications. Moving
beyond the desktop requires new types of interaction with the data. We look
into interaction with volumetric data on a tablet device and in the mixed re-
ality. In the second part of this thesis, we utilizes advances in visual analytics
research for multi-subject data visualization with a focus on one medical do-
main application.

While some of the research presented here is made possible only due to
advances in the hardware, some contributions to the field of radiology are
independent of technology choices. One can observe rapid advances in visu-
alization and computer-aided detection in certain areas of medicine, partic-
ularly those that facilitate life-threatening conditions and frequently require
immediate attention and action. For example, cardiac imaging is a well re-
searched topic with thousand of publications. At the same time, some other
areas remain stagnant due to lack of focus of both medical and visualization
research. One of the examples of such, is the spleen, organ often forgotten
not only by the laypeople, but also by a number of doctors. It has only re-
cently acquired attention of the radiologists. Monitoring of changes in spleen
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is critical for observation of lymphoma and leukemia and variety of other
diseases. We focus on the spleen as a domain application for visual analyt-
ics research on improving feature exploration in time-varying multi-subject
data.

1.2 Visualization of Medical Data beyond the Desktop

Mobile devices (such as tablets and smartphones) have a number of unique
characteristics that make them suitable platforms for mobile health appli-
cations. They are portable and can provide always-on connectivity with
increasing throughput rates, e↵ectively allowing a medical doctor to conduct
the diagnostic process without being constrained to a static workstation.
Current 4G mobile network technology can provide several megabits worth
of downstream bandwidth, making it a viable channel for the transmission of
medical data to a device. Additionally, the hardware capabilities of portable
devices are increasing at a steady pace. Features like 3D-accelerated render-
ing and programmable shaders, that only were available to desktop computers
a few years ago, are now common place in the mobile segment. Display qual-
ity and resolution has also been constantly improving. While it seems that
we can do almost anything with modern devices, their viability as platforms
for medical diagnosis has a number of key hurdles that must be overcome.

Let us consider CT Angiography (CTA) as a target medical application.
CTA data currently can reach resolutions of approximately 5123 that span
over the time domain (while capturing di↵erent phases of a heart’s beating).
If one assumes 16 bits of precision and 10 snapshots, then a single data set
can exceed 2.5 gigabytes in size. Transmitting this data naively over an
LTE connection with at 10 megabits / second would take approximately 35
minutes. Additionally, even if the data eventually got on the mobile device,
rendering it would pose several challenges due to memory constraints, lack of
computational power and a shortage of support for key graphics processing
features that are considered commonplace on the desktop computer. Thus
we can identify two main bottlenecks in the utilization of a mobile devices for
mobile health: transmission of the data to the device and rendering data on
the device itself. Consequently, we address two di↵erent aspects of mHealth
pipeline. In the first type of the pipeline, we look into data size reduction for
e�cient transmission of the data itself in order to perform rendering directly
on the device. In the second type, we leave the data on the centralized server
location, and construct a remote rendering pipeline.
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1.2.1 Data Size Reduction for On-Device Mobile Rendering

The first bottleneck of the mHealth visualization applications the transmis-
sion of data from some centralized location to the mobile device. This trans-
mission needs to be e�cient and disregard non-essential data. For example,
for CTA data, this implies that only the voxels associated with the heart
chamber and surrounding vessels are transmitted, e↵ectively necessitating
their segmentation from the original volume returned by the scanner. Since
the segmented data may demonstrate redundancy in the spatial and temporal
domains, performing compression will also result in a reduction of the trans-
mission time. This compression needs to be image-quality cognizant since
artifacts in the volume may a↵ect the medical doctor’s ability to properly
diagnose a potential condition.

1.2.2 The Need of Remote Rendering Visualization

The second bottleneck for mobile visualization is centered around the render-
ing capabilities. Since these devices are constrained in terms of raw graphics
power, the algorithms that are utilized must be able to deliver high visual
quality in an e�cient manner that allows for fluid interaction. Additionally,
they must be implementable on the feature set available to mobile devices,
which is a subset of what can be found on the desktop. An alternative
strategy would have the rendering actually take place on a computationally
powerful workstation and the results transmitted wirelessly to the mobile
device. This remote rendering approach would mitigate the computational
constraints of a mobile device but impose an even greater burden on the
compression/transmission aspect of the pipeline, since the rapid delivery of
high quality rendering results would be imperative for an interactive visu-
alization and a fluid user experience. In this dissertation, we show one of
the approaches to the construction of the remote rendering pipeline that is
essentially mobile-platform independent.

1.3 Immersive Analytics for Volumetric Data

The rapidly developing field of mixed reality environments is creating novel
ecosystems for immersive analytics applications. High visual immersion has
shown to be beneficial for data analysis and exploration with further benefits
from immersion from interaction, such as direct touch. Hybrid systems utilize
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tangible and tactile interaction to achieve high immersion in mixed reality.
The use of tangible controls, for example, gamepads, is common to virtual
reality environments.

However, not all application scenarios may accommodate this type of in-
teraction, either by design or due to hygiene issues. Rising mixed reality
applications present the use with a “virtual” hologram visualization. The
user can interact with such hologram at a distance of up close in mid-air.
However, mid-air interaction is often deemed insu�cient for the lack of haptic
feedback. In the absence of any such meaningful interactive experience, one
must communicate the result of successful interaction to the user via other
channels. One may use visual feedback to indicate and change visual prop-
erties of an interactive object or its parts. Another channel may be the use
of audio feedback to signal the beginning or the end of a particular action.

Interaction with volumetric data consists of a set of goal-oriented and
supporting tasks [92]. Most commonly, interactions with 3D volumetric data
have been mapped to a 2D screen. Transition to immersive environments
requires careful mapping of the input device properties to this set of required
interactions.

1.4 Browser-based Visual Analytics

Improvements in the hardware of mobile devices go in parallel with an in-
crease in the power of an average grade personal computers and software.
In fact, modern mobile browsers that support WebGL specification allow
to create powerful visualization tools without significant di�culties in im-
plementation. Primarily, this is due to the simplicity of implementation in
modern scripting languages (such as JavaScript), and ready availability of a
set of visualization libraries. The existence of convenient libraries and tools
fosters a rapid prototyping of a wide variety of visual analytics applications
that target narrow domain specific problems with a focus on analytical ap-
proaches, approaches for data discovery and exploration.

1.4.1 Visual Analysis of Heterogeneous Medical Data

Heterogeneous medical data is frequently analyzed for retrospective studies.
In such studies basic patient information from health records, and imag-
ing data is obtained retrospectively for one or a sequence of patient visits.
Such data presents a particular challenge for medical researchers. Frequently
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the number of datasets available is limited in quantity, while the number
of derived features to be analyzed is high. Due to the high dimensionality
of features, experts might focus only on a subset of data, thus potentially
limiting generation of a new hypothesis. Additionally, one might only fo-
cus on trends observed during data collection, thus making the hypothesis
generation biased towards observations.

Interactive visual analytics introduces several new patterns into the work-
flow of researchers at various stages. First, one must select apart of popu-
lation for an observational or exploration study. Cohort studies evaluate
hypothesis in samples sharing common characteristics, such as age, gender,
or specific risk factors. Visual analytics introduces an interactive cohort se-
lection with visualization of resulting population. Using this new step in the
workflow the researcher can select a sample of a population and get immedi-
ate overview of this sample and its characteristics.

Secondly, a concept of hypothesis-free exploration aims to help hypothesis
generation through a system of complex and interactive data visualizations
of the data itself and its features. Through interactive exploration of fea-
tures via multiple linked data charts and plots, the researcher is able to find
a suitable subset of features and get the feedback on whether the hypoth-
esis requires further investigation. Hence, quality information visualization
should help clinicians not only to discover previously unknown patterns, but
also identify similarity in groups of subjects with certain symptoms or sub-
jects that match specific criteria.

1.4.2 Focusing on the Spleen

Our work is concentrated around spleen, as one of the “forgotten” and under
researched organs. Spleen is one of the organs that is often left behind by the
medical imaging community due to the lack of immediate risk to patient’s life
imposed by splenic abnormalities. However, it is often looked at much more
carefully when it comes to disease progression or treatment. In particular,
increase in splenic size, also known as splenomegaly, is a common finding in
a wide range of abnormal conditions, including immunologic, hematopoietic,
infectious, and storage diseases. While splenic size and changes in organ’s
morphology are important, they have not been looked at in scale and compar-
ison. We design a novel visual analytics system for exploration of multiple
parameters involved into change of splenic shape and size. Our system is
entirely web-based and designed with modern web technologies. Using our
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system, in just few minutes, radiologist can gain insight into a large set of
time-varying patient data that has been has been previously looked at only
on the individual basis. In this work, we focus on hypothesis-free exploration
of robust imaging-derived features. Thus, our work is not limited to one
anatomic organ or one imaging modality. We show an extension of our work
to prostate data derived from MRI scans.
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2 Related Work

In this section we address related work in two domains of medical visualiza-
tion. First, we talk about volumetric rendering of 3D data on mobile devices,
challenges, and existing solutions. We also address specific aspects of inter-
action with volumetric data rendering, for which modern mobile devices pro-
vide unique solutions. Secondly, we talk about visualization of heterogenous
medical data. Visualization of such data is frequently built to address a cer-
tain problem within a narrow domain application. In this section, however,
we abstract from the problem domain and focus only the ways to visualize
heterogenous data for groups of subjects for retrospective and cohort studies.

2.1 Mobile Visualization of Single-Subject Data

In this section we will overview some volume rendering techniques including
seminal work and state of the art approaches to visualizing volumetric MRI
and CT data, and, specifically, approaches to volumetric rendering on mobile
devices.

2.1.1 Defining Volumetric Rendering

In 1988 Levoy has introduced the technique for visualizing surfaces from
volume data with application to CT to first display a “transparent jello” [96].
The volume rendering scheme introduced in the paper is the first attempt
to visualize surfaces without approximation by geometric primitives. This
technique also allows to separate shading and classification operations. The
main idea is to compute the light transport equation by sampling colors
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, z0) would be a fully
opaque background color and opacity at the point is equal to 1. The discrete
compositing scheme introduced in the paper is an approximation of a well-
known rendering integral.

In our work we use only two of the volumetric rendering approaches: ray
casting and texture slicing based on seminal works.

Ray Casting. The idea of ray casting is to calculate the volume render-
ing integral based on points sampled from the volume when rays are cast from
the camera into the volume for every pixel on the image plane. This method
has been introduced by Levoy in the simple form and was further extended
to benefit from acceleration on the graphics hardware and its rapid devel-
opment. Ray casting allows to render the data at interactive frame rates.
It can also benefit from various techniques such as early ray termination or
empty space skipping [91].

Texture Slicing. In texture slicing the volume is represented as a stack
of adjacent polygons that are aligned with one axis of the volume. Image
coordinates of a 2D slice are used to access points in the volume. However,
this requires to store three stacks of texture images in the memory to allow
for the change of the viewing direction for more than 90 degrees. When the
hardware supports 3D textures, when the viewing direction is changed, slices
can be recomputed in real time [25].

2.1.2 Native Volumetric Rendering on Mobile Devices

Can modern mobile devices actually achieve high enough frame rate and
maintain quality of rendering?

In 2012, Noguera et al. [107] has considered a platform specific imple-
mentation of basic volume rendering pipeline by considering limitations of
OpenGL ES 2.0. They have presented results of implementation of the ray
casting and texture slicing volume rendering on iPad2, 4th generation iPod
touch, and browser implementation with WebGL. Authors suggest packing
3D stack of images into a pattern of a 2D texture, thus addressing lack of
3D textures in OpenGL ES 2.0. Later, this technique has been improved by
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utilizing a RGBA texture to store the volume [107]. Based on the experi-
ments, it can be concluded that the resolution of the volumetric data does
not a↵ect rendering performance, as long as data fits in memory. Results ob-
tained from the WebGL prototype on a desktop PC were significantly better
since they do not have limitations similar to the mobile device, and are only
constrained by the response of the browser.

2.1.3 Remote Volumetric Rendering

When the server is used for rendering the data, much higher interactive
frame rates can be achieved. However, this model requires reliable connec-
tivity which is not always possible in remote areas that rely on mobile devices
as their primary visualization source. Hence, use of this model would signifi-
cantly benefit mostly densely populated areas, where this reliable connection
can be established.

Lamberti and Sanna [95] have proposed an approach to remote rendering
of 3D graphics and have presented a deep analysis of the system based on two
applications: surface and volume rendering. The method is a three-tier archi-
tecture with a Remote Visualization Server (RVS) cluster consisting of PCs
driven by Chromium software. It showcases a streaming-based approach
to remote rendering. This solution requires significantly smaller bandwidth,
however the main bottleneck of it is a time needed for decompression on
the client. The requirements of a streaming-based solution can be evaluated
quantitatively in terms of total latency based on the amount of time required
to perform rendering on the server, amount of time required to extract im-
age data from the frame bu↵er, resampling and encoding, amount of time to
stream new frame and updating resulting visualization on the client, amount
of time required for a command from a client to reach the server side, in-
fluence of the frame rate on the server on the frame rate on the client, and
even window size on both client and server side. Using these measurements
authors evaluate the 3D volume rendering system with simple Mobile 3D
Viewer on the client side [95]. For the volume size 5123 the authors claim to
achieve 30 fps when 8 rendering servers are involved and streaming video size
is 240x240 pixels. By increasing streaming video size to 512x512 pixels, the
same configuration loses more than twice in performance. The paper eval-
uates the system only in “perfect” laboratory conditions and claims packet
loss of around 0.3 percent for wireless LAN and 0.5 percent in GPRS/UMTS
environments. These conditions clearly do not correspond to the real world
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scenario, where signal loss and deterioration, especially in remote areas, that
could benefit from this kind of visualization, will play a significant role.

Campoalegre et al. [26] propose an image-based client-server model for
visualization on a mobile device. The paper introduces a transfer function
aware compression scheme that basically disregards fully opaque regions of
the volume. Since the bricking scheme is used for volume representation,
a convenient property of Haar wavelets can be utilized for transformation:
applying n steps of the Haar transformation to entire volume gives the same
result as locally applying these n Haar steps to each individual block. This
method allows for multi-scale resolution representation and progressive ren-
dering.

2.1.4 Interacting with Volumetric Rendering Data on Touchscreen
Devices

As Butson et al. [23] noted, use of the devices that doctors are already
familiar with in everyday life makes an educational process much easier due
to ease of navigation compared to complicated workstation application. One
of the contributing factors is a natural use of a finger as a pointing device.
However, it is also expected that fast frame rate has to follow this fast finger
movement. Assuming that we can achieve high enough frame rate on the
modern mobile device, will the finger itself be su�cient for interaction with
volumetric data?

In our work, we consider specifics of interaction with volumetric data.
Particularly, we focus on the problem of picking in volumetric rendering.
Volumetric picking is a method of a point acquisition within a volumetric
rendering of the 3D data [96]. Such picking may be based on one or many rays
cast through the volume from a 2D point on the screen. There are several
types of known volumetric selection techniques: first hit-based, the user-
defined threshold of opacity accumulation along the ray profile, intersection
of rays, metadata-based, and based on a known structure of interest. First-hit
ray picking results in “touching” a first non-transparent point in the volume.
Thus, it constrains the user’s ability to pick points inside the volume itself.
Threshold-based selection [56] compares opacity accumulated along the ray
to the user-defined threshold value.

Structure-aware or contextual picking is mostly used in a medical domain.
For example, blobby structures within the volume can be selected using mean
shift algorithm for the center of mass projection of the ray [115]. Peng et al.
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use this method for direct pinpointing in gigabyte-sized microscopy images.
Additionally, they introduce a method of picking based on the intersection
of two rays cast from di↵erent angles.

Unknown structures within volumetric data can be revealed with opacity
[125] or feature [103] peeling techniques. The first technique considers opac-
ity accumulation along the ray. The second one considers extrema points
of accumulation along several simultaneously traced rays. However, these
methods do not allow picking of the target point within the volume. Wiebel
et al. [147, 148] inspect opacity change along the ray profile to determine the
selected object based on its visibility. They introduce a single slice rendering
at the target point. Such rendering provides feedback to the user and allows
to adjust the position of this slice.

Most of these techniques are concerned with the precision of picking of
the exact location within the volume by resolving ambiguities associated
with perceived rendering. It is important to notice that all of the above
techniques perform picking by casting a straight ray through the volume.
Our technique provides the user control over both angle and depth of the
picking ray. We study whether both of these parameters improve volumetric
target acquisition time.

Unlike our problem, a 2D target picking is well studied. Fitt’s law [49]
provides a quantitative model of a human motor system and speed-accuracy
trade-o↵s in the tasks of pointing and selection. Paul Fitt notes that it is
possible to determine experimentally the amount of noise that interferes with
information transmission (selection). We believe that our study may serve
as a base for deriving a quantitative model of human behavior for volumet-
ric selection. Importantly, we point to perceptual “noise” (accumulation of
volumetric intensities) along the picking ray.

In our work, we propose considering an angle of a digital stylus to alter
picking ray direction. Kopper et al. [89] studied target acquisition at an
angle for a distal pointing task. Trivariate target selection model includes
depth of the target [59] but no angle. More importantly, the latter model
is limited to a specific type of 3D environment, and might not generalize to
volumetric rendering.
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2.1.5 Interacting with Volumetric Data in Mixed and Virtual En-
vironments

In immersive virtual reality environments and on large display surfaces, inter-
action with virtual objects has been widely studied [77] though various types
of inputs: direct manipulation, tangible, tactile interaction, or the combi-
nation known as hybrid approaches. Overall, the choice of types of input
and their mappings has always been evasive [51]. The combination of several
interaction paradigms, frequently a touchscreen device, creates a hybrid type
of interaction [12, 14, 99, 133] or can be used in a locally coupled interaction
paradigm [80]. The recent study by Besancon et al. [14] discusses the hy-
brid interaction design through the combination of both tactile and tangible
paradigms for 3D scientific visualization. Lopez et al. [99] propose to use
a touch navigation on a mobile device (such as a tablet) to interact with
rendering in a combined monoscopic and stereoscopic viewing environment.
Such setup addresses the issue of combing high visual immersion with high
immersion through interaction. What-you-see-is-what-you-feel (WYSIWYF)
approach [133] integrates the natural user interface of a wall display and a
handheld device with multi-touch and 3D-tilt sensing capabilities. Ballagas
et al. [12] also propose to use a smartphone as a universal input device for
a set of interaction to manipulate position, orientation, and selection tech-
niques. Direct touch interactions provide an immersion from interaction in
addition to immersion from the visualization [93]. Some of the carefully de-
signed touch wall displays or touch surface interactions [37, 53, 87, 156] can
be utilized in the hybrid interaction settings. Interaction with a medication
data on a 3D touch table for for orthopedic surgery planning was introduced
by Lundstrom et al. [101].

Common interaction tasks for exploration of 3D data, and specifically,
volumetric data, require usage of a set of interaction techniques. Most of
these techniques have been widely studied and provide excellent modeling of
both experienced and inexperienced user behavior.

Object selection techniques, such as ray casting, have been evaluated
both in virtual and stereoscopic environments [9]. Commonly, the user is
provided with a cursor feedback during the selection task. For example,
a ray cursor is often recognized to be superior to a 3D point cursor in a
single target environment by Grossman et al. [60]. Hincapié-Ramos et al.
introduce a ray casting technique for augmented reality HMDs [73] with the
use of orientation sensor held in users’ hand.
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While a selection of 3D objects in a 3D environment is studied for subjects
of accuracy, it may not always be straightforward in various data types, due
to their complexities and ambiguities. In this sense, a selection is referring to
selection of an area/volume of interest within the dataset itself. Such
selection may be done by placing an encapsulating object such as bounding
box or sphere within the dataset. More intricate selection techniques may
be employed for selecting regions of particle data Yu et al. [154]. TeddyS-
election and CloudLasso techniques [154, 155] address the need to spatially
select a subset of a 3D particle cloud by simply encircling the target parti-
cles on the screen using either the mouse or direct-touch input. SpaceCast,
TraceCast, and PointCast [155] are able to infer a user’s subtle selection in-
tention from gestural input. These can deal with complex situations such
as partially occluded point clusters or multiple cluster layers, and can all
be fine-tuned after the selection interaction has been completed. Owada et
al. [110] introduce a volume catcher technique for selection of the region of
interest via user interaction with volumetric rendering. The user performs a
free-form 2D stroke, and the system performs a sweeping plane selection and
segmentation based on this selection.

Picking refers to selecting a single point within the dataset (check with
reviewer feedback). Such interaction is essential for working with volumetric
data. Previous section describes related works for volumetric picking. Mea-
surements for volumetric data can be conducted by picking several points
within the data or by utilizing a more complex set of tools [68, 123, 128].

View adjustment and manipulation can be as complex as the “world
in miniature” (WIM) metaphor [36] for supporting interactive querying and
data exploration. In such setting, large-scale detailed data visualization is
accompanied with an interactive miniature which can be adjusted and ma-
nipulated to interrogate volume data. Alternatively, view adjustments can
include removal of several “layers” of the volumetric data [103, 125], or a
style setting. We refer to some of these works to show a possible way to
adjust the view in the mixed reality setting.

Clipping / cutting plane positioning is a form of view adjustment
that allows the user to clip part of the view. For example, in the hybrid
setting, a cutting plane can be directly manipulated using a commonly avail-
able mobile device [133]. Issartel et al. [79] propose a method of clipping
plane slicing for handheld augmented reality via a set of tangible tools. De
Guzman et al. [41] develop two physical forks that allow school children to
explore a 3D virtual model of the human body with a cutting plane.
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Bare hand interactions are commonly generalized as a set of gestures
or postures aimed at a set of data/widget manipulations. Among such bare
hand interactions, Isenberg et al. [78] di↵erentiate between gestures, pos-
tures, and quasi-postures for interaction in 3D context for a direct-touch en-
vironment. Camera- and sensor-based tracking (Microsoft Kinect1 and Leap
Motion2) with or without the help of fiducial markers is frequently used to
recognize gestures and map them to manipulations required by the applica-
tion [21, 85, 153]. Either one or both hands may perform the interaction.
Based on such usage, manual activities can be classified into unimanual (per-
formed with a single hand), bimanual symmetric, and bimanual asymmetric
(where two hands perform same coordinated gesture or require a complex
coordination, respectively) [63]. This theory of two-handed interaction de-
sign is followed by Cuttler et al. [40] through a synergistic combination of
3D tools and interactive techniques.

The “touching the void” metaphor applies to intangible displays [30] that
essentially float in mid-air. Mid-air interactions with 3D data are most
commonly found in stereoscopic environments or augmented reality settings
[10, 16, 28]. As the dimensionality of the visualized data is the same as an
interaction space, one can take advantage of an additional depth. In this
scenario, the fundamental tasks of object manipulation no longer require
mapping of 3DOF to 2D interactions [18]. When a 2D surface is used as an
input, a common parallax problem occurs between the two images shown to
both eyes [19, 20, 38, 77, 142, 143]. In some cases, the input is performed
in the space of the data visualization itself. Such input may su↵er from
touch-through [30, 138] or invisible wall problems.

Lack of important tactile [127] and tangible feedback in mid-air interac-
tion calls for a stronger emphasis on other types of feedback, for example,
visual and audio. The importance of multimodal feedback in mobile aug-
mented reality has been studied by Hurst et al. [75]. Alternatively, some
studies aim to overcome the limitations of traditional planar displays and
to provide missing haptic feedback through the use of commodity materials
[122].

In the virtual reality environments, it might be important to visualize
user’s hands (i.e. in the form of an avatar) as means of providing feedback.
In stereoscopic environment setting, visual feedback should work under all

1
https://developer.microsoft.com/en-us/windows/kinect

2
https://www.leapmotion.com
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viewing conditions [8] and not cause a distraction to the user. In the mixed or
augmented reality, the user can see their hands. However, during the direct
touch interaction with objects, user’s hand may become occluded, and the
user may not have the knowledge of the precise hand position. In fact, even
imprecision of tracking hardware may cause errors in a variety of tasks [102].
Thus, the system must provide visual feedback for the location of the user’s
hand.

2.2 Visual Analytics of Multi-Subject Data

The majority of related works have addressed the visualization and explo-
ration of several types of medical information: heterogeneous data from co-
hort studies (including temporal information), data from electronic health
records (EHR), and visual analysis of physical and feature spaces for medical
data. Here we combine the analysis of image and non-image data, but focus
on user interactions with imaging-derived features that change over time.

2.2.1 Interactive Visual Analysis of Heterogeneous Data

Recent visual analytics research focuses on the creation of highly interactive
tools [88, 141] and data organization solutions [7, 135]. The power of such
tools is in hypothesis-free [135, 141] exploration that allows domain experts
to iterate over multiple data variables. Thus, researchers do not need to
rely solely on intuition and observations from clinical practice, but can get a
visual summary of multiple parameters at once.

Steenwijk et al. [135] have proposed a conceptual framework for het-
erogeneous temporal patient data organization analysis. This framework
defines domains, features, mappings, and studies, and combines them into a
relational database. The data-cube model [7] for cohort studies handles par-
tially overlapping data subsets and provides higher computation e�ciency in
comparison to a relational database. While the proposed model accounts for
the aggregation of multi-timepoint data (included in the study), there are no
visualizations presented that allow direct comparison over the course of time.
Their visual linking of spatial and non-spatial views is limited to viewing a
single set in a 3D view at a time. We find the need to align temporal subject
sequences based on imaging-derived features and allow simultaneous viewing
of multiple 3D sets.
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Klemm et al. [88] have introduced an interactive visual analysis (IVA)
workflow for epidemiological cohort studies targeted at domain experts. Their
work supports the definition of demographics subgroups, among subjects
with lower back pain, driven by spine shape clustering features. The mean
representative 3D spine shape is visualized over a familiar information visu-
alization with statistical information. In the epidemiology domain, Chui et
al. [35] study role of age, time in disease progression through a combination
of outcome pyramids, time-series and image plots. Through such combina-
tion health professionals are able to gain insights into distribution of disease
outcomes.

Keefe et al. [83] have highlighted the importance of combining a 3D
data overview and 2D information visualization for muti-dimensional data
analysis. They take advantage of an overview visualization of 3D small mul-
tiples of pig mandibles and related chewing traces. We find their overview
display particularly helpful for rapid visual pinpointing of di↵erences when
compared to single [7] or mean shapes [88]. For our application, small mul-
tiples overview of temporal spleen data substitutes for traditional sequential
analysis. Highly interactive visual analytics tools for cohort studies are par-
ticularly powerful with the addition of descriptive statistics of multiple data
dimensions [141]. In this form they enable dual analysis for hypothesis gen-
eration. In our work we focus on a combination of imaging-derived features
and physical objects to enable a rapid comparison of disease progression.

2.2.2 Visual Analytics of Physical and Feature Space

Researches have combined the visualization of physical and feature spaces
for medical data. Feature space may be defined as measurements taken by
clinicians or features derived from imaging data. For example, WEAVE [58]
combines the visualization of measurements and an anatomical representa-
tion for cardiac simulation. Raicu [120] has summarized mining knowledge
from medical imaging data based on features derived from CT. He pays
particular attention to tissue classification, which includes classification of
spleen tissues with lowest sensitivity and precision values due to its similar
attenuation to liver.

The feature space can further be divided into higher level representations,
for example models of shape, or lower level representations per voxel. Per-
voxel features are explored in works by Fang et al. [47] and Blass et al. [17].
Per-voxel features enable the creation of time activity curves (TAC) which are
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important in the areas of nuclear medicine [47]. Tightly coupled views of per-
voxel feature projections enable pattern finding and interactive segmentation
from multi-dimensional data [17]. In the same domain, Raidou et al. [121]
proposes visual analysis of tumor characterization based on dimensionality
reduction techniques.

Higher level representations allow for the exploration of larger collections
of data. For example, shape variation can be explored through visualization
of a given 3D shape within a projected shape space [22]. Busking et al. [22]
introduce a framework comprised of three views. It supports the exploration
of shapes over a population and individual shape progression. Statistical
deformation models (SDM) (Hermann et al. [72]) are used to study anatom-
ical shape covariation interactively. Caban et al. [24] give an overview on
visualization of SDM. However, it is important to note that per-voxel feature
visualization result in significant clutter and might no necessarily emphasize
the di↵erences among shapes.

2.2.3 Interactive Visual Analysis of Temporal Patient Data

Multi-subject visualization of temporal data necessitates the organization of
a wide range of information (5 W’s [157]), allows one to focus on patterns and
specific scenarios of events in the emergency room during patient intake [45,
106], and finds di↵erences and similarities in temporal patient data (CoCo
[104]). Finding similarities in patient cohorts is addressed in: LifeFlow [150],
CareFlow [117], DecisionFlow [57], and OutFlow [149]. Not only analysis,
but also construction of the cohort is a challenging question when dealing
with large amounts of information [90].

It is important to emphasize that while these works focus on visualiza-
tion of similarities and di↵erences in temporal patient histories, they do not
include analysis of imaging-derived features.
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Medical Visualization beyond the Desktop

The rapid advancement of mobile platforms and platforms for virtual and
augmented reality brings unique challenges to the field of medical data anal-
ysis and visual analytics. In this chapter, we address two major bottlenecks
associated with an expansion of the medical data analysis beyond the desktop
or workstation: rendering and interaction of large medical data on mobile
devices and in mixed reality. Briefly, contributions of this chapter can be
summarized as follows:

• First, we consider possibilities of rendering volumetric medical data
on the mobile device. We introduce transfer function guided saliency-
aware lossy-to-lossless compression scheme.

• Secondly, we built a framework for remote rendering of volumetric data
for thin clients. We leverage the rendering power of a server computer
and portability of a mobile device for always-on connectivity.

• Next, we look into di↵erences in the interaction paradigms between the
2D touchscreen devices and a traditional desktop workstation. We take
advantage of the new pressure-sensitive touchscreen display to explore
in depth interaction with volumetric data. Our work studies a problem
in volumetric picking based on angle and pressure of the input stylus
device.

• Finally, we explore mid-air interaction with scientific volumetric data in
mixed reality. We map hand position and orientation to a set of natural
mid-air gestures for volumetric data navigation and exploration.
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3 Towards On-Device Mobile Volumetric Ren-
dering

On-device volumetric rendering requires full transmission of the data to the
device. Data compression is performed to reduce the size of information to
be transmitted. Specifically for medical data loss of any information is not
permissible. Hence, while lossy compression schemes provide much higher
compression ratio, one cannot use them for data such as CTA. Progressive
compression schemes enable transmission of the data first at low resolution
and quality and up to fully lossless data reconstruction. Thus, the data
can be initially presented to the user at low quality or resolution and fur-
ther progressively refined. Additionally, often only a certain region/volume
(ROI/VOI) of a large dataset is of interest to the user. Extraction of this
region can help reducing compression, transmission, and visualization time,
as well as storage space. For example, non-uniform encoding allocates fewer
bits or completely disregards less significant regions, thus providing a higher
compression ratio. Another option is the transmission of the VOI first at
low quality or resolution and progressive refinement. Such techniques signif-
icantly reduce the amount of information that needs to be transmitted first
and provide an initial subset of data for evaluation much faster.

3.1 Saliency-aware Compression of Volumetric Data

We consider the situation when the relevance of specific regions within the
volume is unknown but can be derived from the underlying data values. In
particular, we suggest reordering data based on a computational model of
the transfer function-guided (TF) visual saliency. In the following work we
first present a 3D visual saliency model for volumetric data, then integrate
and evaluate it with a set of lossy-to-lossless compression schemes.

3.1.1 Role of the Transfer Function

Medical software used in clinical practice utilizes a set of pre-set TFs and
facilitates a simplified interface for their adjustment. Analysis of CTA data
follows a protocol, for example, CTA of thoracic aorta [50] includes pre-set
TFs in the software, such as that of TeraRecon (San Mateo, CA). In the
user interface of the software, the default value of the TF is specified in two
ways. First, the default TF is grayscale, set as a linear ramp from black
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(a) (b)

Figure 1: A histogram (a) for two 5123 chest CTA datasets (b - top and
bottom) with the same fixed TF used for both datasets. The histogram
is separated into components based on the material properties: I - Pul-
monary parenchyma; II - Pericardium, diaphragm; III - Myocardium, hepat-
ica parenchyma, coronary arteries without contrast; IV - Ventricles, coronary
arteries with contrast, vein, aorta, bone, pulmonary vessels. The results of
progressive transmission and rendering at the first through fourth iteration
(I-IV).

to white (window center 324, window length 186) at full opacity. Second,
TF is set in a red to a yellow range on a triangle ramp (window center 200,
window length 106) at opacity 0.4. Properties of CT allow for such fixed
di↵erentiation between tissues types (Figure 1 (a)) [61]. Figure 1 (b) shows
a use case, where we select identical TFs for two datasets, similar to those
used in the medical software, and produce progressive volume rendering, on
the target device. Availability of pre-defined transfer functions, allow us to
utilize this data to determine saliency of the data.

3.1.2 3D DCT-based Visual Saliency

We introduce a 3D block-based saliency and transfer function guided com-
pression scheme of volumetric data that is content- and spatially scalable.
Saliency map is constructed by weighted averaging the coe�cients of the 3D
Discrete Cosine Transform (DCT) by analyzing low-level features: intensity,
color di↵erences, texture energy, orientation, and gradient.
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Saliency of each volumetric region is computed from the coe�cients of the
3D discrete cosine transform on the 3D volume, that is fully in the transform
domain. Our method of saliency detection is largely based on the work by
Fang et al. [46]. We have extended the idea of the method to 3D and
constructed the saliency map of the 3D volume based on the five features:
intensity, color, opacity, orientation, and texture (Figure 2).

Figure 2: Saliency maps for given transfer function of a chest CT: (a) appli-
cation of transfer function; saliency map features: (b) opacity, (c) Cr color
component, (d) Cb color component, (e) intensity, (f) orientation, and (g)
texture features.

3.1.3 Lossy-to-lossless Compression

Our method is integrated into a resolution scalable coding scheme with inte-
ger wavelet transform of the image, so it allows the rendering of each signif-
icant region at a di↵erent resolution and even lossless reconstruction can be
achieved. At the target device, the received data is rendered progressively
based on its saliency. The benchmarking is performed using three coding
schemes with the proposed saliency detection method: SPIHT [84], EBCOT
[137], and ESCOT [151] (Table 1).

Prioritized streaming of the data helps to achieve data reduction by ren-
dering regions based on their saliency, and disregarding less essential compo-
nents. Thus, only after one fifth of the data has been transmitted, the user
is able to get overall representation of salient volume regions (Figure 3).
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Table 1: Compression rate (bits per voxel) comparison. We compare our
multi-iteration (It.) transmission based on our saliency-guided scheme, as
well as it’s total - combined sum of all iterations, with lossless compression
ratio for the full dataset. Three coding algorithms (SPIHT, EBCOT, ES-
COT) have been evaluated with Haar wavelet transform. All the datasets
are in 8-bit precision.

Dataset Size It. 1 It. 2 It. 3 It. 4 1-4 1-3 Full

1 (SPIHT) 512⇥512⇥512 0.71 0.24 0.08 1.36 2.40 1.03 2.04

1 (EBCOT) 512⇥512⇥512 0.37 0.11 0.03 0.97 1.47 0.51 1.34

1 (ESCOT) 512⇥512⇥512 0.48 0.13 0.03 1.07 1.71 0.64 1.30

2 (SPIHT) 512⇥512⇥512 0.64 0.46 0.25 0.96 2.30 1.35 1.93

2 (EBCOT) 512⇥512⇥512 0.35 0.24 0.12 0.70 1.41 0.71 1.26

2 (ESCOT) 512⇥512⇥512 0.49 0.30 0.13 0.80 1.73 0.93 1.22

3 (SPIHT) 512⇥512⇥1024 0.78 0.14 0.03 1.43 2.27 0.96 2.03

3 (EBCOT) 512⇥512⇥1024 0.48 0.14 0.04 1.00 1.65 0.65 1.52

3 (ESCOT) 512⇥512⇥1024 0.60 0.13 0.04 1.01 1.78 0.77 1.34

3.1.4 Conclusions

In this work, we have presented a novel framework for progressive saliency-
based visualization of the compressed volumetric data. Our method detects
the 3D volumetric salient region by incorporating a block-based weighted
averaging (3D DCT) with a predefined or user-defined TF. The size of the
created saliency map is orders of magnitude smaller than the original volume,
which results in a block structure of the map. To utilize these maps for
progressive transmission and rendering, as a first step, we separate the volume
into several parts. These salient volume parts are constructed based on the
ranges of the values in the saliency map. The ranges can be set constant
or varied dynamically. More importantly, we reduce additional redundancy
in the transform coe�cients before the coding step of the compression by
combining blocks with their neighbors depending on the saliency similarity.
Compression and transmission of the 3D volumetric data are scheduled based
on the ranges of the saliency values starting from the highest. The receiver
obtains only a set of data from one saliency range at a time without losing
any details, decompresses and renders it after combining it with previously
obtained data.
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Figure 3: Progressive rendering of the chest CT: (Left) Saliency map, (Top)
progressive rendering in four steps, (Bottom) corresponding energy maps.

4 Remote Volume Rendering Pipeline for
mHealth Applications

4.1 Enabling Remote Volumetric Rendering

With widely available wireless network connectivity, the proliferation of mo-
bile devices, and the constant increase in the graphics processing power, it
is intuitive to remotely process large amounts of medical imaging data on
the powerful server, while allowing fast and responsive streaming to mo-
bile devices. The development of these components individually, enables
the framework presented in this paper, which is significantly advanced when
compared to previous attempts of remote rendering [27, 81]. First, we con-
sider the server side for the processing of medical data that is essentially
the driving force in our system. The commodization of GPUs has resulted
in the development of clustered visualization applications. While many of
those applications involve o↵-line rendering, for example when dealing with
very large scientific datasets or complex movie scenes, remote visualization
has been used in certain interactive applications as well. One such example
is cloud-based gaming services, where high-quality images are generated in a
data center, streamed over a network connection, and the user controls the
game on the client side.

Secondly, due to the significant increase in the role of mobile computing
over the past few years, we are able to consider advanced mobile devices as
suitable clients for our system architecture. Current mobile devices, includ-
ing various smartphones and tablet devices, have powerful CPU and GPU
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characteristics that make them suitable platforms for various mHealth ap-
plications. Their configuration, computing capability, display quality and
resolution are comparable to desktop counterparts available only a few years
ago. However, due to the large amount of volumetric data, transferring the
data and rendering it entirely on the device is not always possible [107, 108].
The portability and always-on connectivity of these devices allows our system
to stream images rendered on the server to the mobile device, and permits a
medical doctor or health care professional to conduct the diagnostic process
and follow up without being constrained to a workstation computer in the
hospital facility. Therefore, mobile devices are extremely promising as the
client side for a remote volume rendering framework.

We leverage this technology to provide high-quality volume rendering
targeted at the medical applications on low-power mobile devices. The main
contributions of this work are:

• Fast remote volume rendering pipeline for mHealth applications capa-
ble of handling large volumetric datasets up to 20483;

• High quality responsive streaming of large amount of volumetric data
to a mobile clients with a use of hardware accelerate encoding and
decoding techniques on both server and client sides;

• Evaluation on mobile health applications such as Computed Tomogra-
phy (CT) colonography, exploration of other large CT datasets.

4.2 Implementation Details

Our remote volume rendering system is an extension of our existing dis-
tributed visualization software and o↵ers a variety of configurations. In the
case of remote volume rendering, the two principal components of our system
are the image-generating server and a thin client that accepts and transmits
user input and also streams images from the server. In this section, we outline
the implementation details of each component.

4.2.1 Server Implementation Details

The server component implements a volume rendering pipeline that supports
a variety of modalities (raycasting, texture slicing, 1D and 2D transfer func-
tions, di↵erent compositing methods, etc). The server can operate in local
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Figure 4: Block diagram outlining the connectivity and flow of data between
components of our volume rendering pipeline. Blocks and arrows in orange
relate to the streaming of volume renderings over an H.264 video stream,
while the command infrastructure is represented in yellow. User-facing inputs
and components are annotated in red.
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mode, outputting the final image directly to the screen. For remote render-
ing, the server instead operates in o↵-screen mode. In this configuration,
the server instead outputs the rendering result to a texture, via an OpenGL
framebu↵er object (FBO). Additionally, in this mode of operation, the server
renders at a fixed internal resolution, rather than resizing the OpenGL view-
port based on the size of the on-screen window. Also, the aspect ratio of the
rendering is decoupled from the on-screen window and is instead transmitted
to the server by the client application on startup and when changes in the
client’s window size occur. The remainder of the volume rendering pipeline
is agnostic to the server’s mode of operation.

In the final stage of the image synthesis kernel, the server performs a color-
space conversion from the RGB output to YUV 4:2:0 on the GPU. YUV 4:2:0
is ubiquitously accepted as an input color space for a number of hardware-
accelerated H.264 encoders. In our system’s case, the NVENC (for modern
Kepler GPUs) also supports the YUV 4:4:4 format that preservers the color
at full resolution. Finally, the server reconverts the volume rendering result
to RGB in a rapid, screen-space, pass and displays it locally for debug and
visualization purposes.

The color-transformed framebu↵er is passed on to the encoder subsystem
for conversion into an H.264 video stream. This subsystem supports the
NVCUVENC and NVENC [4] video encoders, which allow for performant
coding of the images on the GPU. The video stream is exposed over the Real-
Time Streaming Protocol (RTSP), implemented using the LIVE555 library
[3]. A side-benefit of this approach is that the visualization session can be
observed not only by the client application (outlined below), but also by
almost any commodity device with media streaming support (such as an
ARM-based smartphone). A disadvantage of RTSP-based streaming is the
fact that it does not leverage the resiliency features of NVENC. We plan
on developing a custom streaming protocol that takes advantage of these
features, permitting clients to notify the server of transmission errors. In
this situation, future frames would be encoded without references to past
corrupted frames. In our current implementation, RTSP provides resiliency
to such network transmission errors at the expense of input latency.

Finally, the server application instantiates a TCP/IP server, listening
for incoming connections on a predetermined port. Successful connection
establishes a command link between the server and a single client instance,
over which command packets are exchanged. Incoming packets are processed
based on a header byte, with di↵erent headers denoting packets of di↵erent
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content. Our system decouples the transmission of di↵erent aspects of the
render state in order to reduce network overhead. For example, manipulating
the virtual camera results in only those parameters being transmitted to
the server (rather than communicating the entire render state, including
compositing settings, transfer functions, etc.). It is also worth noting that
even a single camera manipulation can generate tens of command packets.
Rather than repainting the scene once for every incoming command packet,
the server maintains a steady refresh rate (30 or 60 frames per second in our
implementation) and each frame is generated using the aggregate information
from all command packets received up to that point in time.

4.2.2 Client Implementation Details

The client component of our system presents a graphical user interface to
the user that is visually indistinguishable from a server instance running in
local mode. All relevant volume rendering functionality is exposed via mouse,
keyboard and multi-touch interaction modalities. The client maintains a local
copy of the render state variables and transmits the appropriate command
packets when parts of the state are a↵ected over TCP/IP.

The key subsystem of the client is an H.264 network streaming client,
implemented using LibVLC [2]. The utilization of this pervasive media play-
back framework allows for hardware acceleration of H.264 decoding on certain
hardware platforms via the following APIs:

• Intel Media SDK [1] - interfaces with the Intel GPUs available in x86
tablets, such as the Microsoft Surface. The SDK provides hardware-
accelerated H.264 decoding and integrates with OpenCL to provide
additional processing of the video stream on the client. One major dis-
advantage is that this SDK is a hybrid system with major computation
load on CPU.

• NVCUVID [4] - library for accessing the video decoding functionality
of NVIDIA GPUs. Depending on the GPU capabilities, the decoding
may be implemented in the CUDA language, or using power-e�cient
on-board hardware. The resulting images can be further processed in
CUDA or combined with client-based rendering in OpenGL.

The decoded framebu↵er is presented to the application in YUV format,
which is color-converted to RGB on the GPU via an OpenGL 2.0 pixel shader
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Figure 5: Representative frames of the movie: remote visualization of (left)
CT colonography and (right) CT lung volume data

and then presented to the user. This color-space conversion is the most ad-
vanced GPU feature required by the client application and it is supported
on all x86-compatible integrated GPUs that have been released in recent
years. Consequently, the client application can be executed on a vast range
of devices and poses minimal hardware requirements. A block diagram illus-
trating the architecture of our mobile volume rendering pipeline can be seen
in Figure 4.

4.3 Results

Our volume rendering system supports a variety of visualization techniques,
which are also available during video streaming. We focus our evaluation
specifically on features that cannot be implemented on low-powered devices
as follows:

• Smoother rendering during interaction - mobile devices often struggle
with rendering volumes at high screen resolutions. The visuals of some
immersive interactive applications, such as Virtual Colonoscopy, cover
the entire viewport the majority of time, making local rendering option
unattractive. Contrarily, our client-server approach is not constrained
in this way.
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Figure 6: Remote visualization of the Visible Human dataset with (left) a
full body view and (right) a sagittal view.

• Higher-order reconstruction filter - we use a cubic filter that is 3 times
more expensive than the standard trilinear filter, but provides a higher
image quality. The usage of such a filter would be prohibitive when
rendering locally on a mobile device.

• Large datasets - our system handles volumes up to 20483 at interactive
rendering speeds. Rendering such volumes locally on a mobile device
would be very di�cult, due to space and bandwidth constraints.

Our evaluation is performed on the following hardware: cluster of 6 Dell
Precision T7600 workstations with dual 6-core CPUs, 64GB of memory and
NVIDIA Quadro K5000 GPU as server; and IBM Thinkpad X41 tablet as
client. The tablet is significantly slower than modern devices and does not
o↵er any hardware video decoding support. However, it was chosen purposely
to show that our framework is not constrained to the latest mobile devices as
clients. We evaluate the results based on several potential applications. The
prototype of a CT Colonography (Virtual Colonoscopy) applications (such
as [74, 48]) is evaluated and shown in Figure 1(a). The volume rendering
is performed on the server side, encoded in the H.264 format and streamed
to the client side tablet device. The interactive exploration of the lung data
is shown on the Figure 1(b). The data resolution is 512x512x431 which
still allows us to provide a 60 fps video stream even with the high order
reconstruction filter. The transfer function is optimized for visualization
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Figure 7: Remote visualization of the cardiac dataset. (left) 1D transfer
function editing on the client. (right) Clipping plane positioning on the
client.

of the colon wall, yet it also segments the lung structures. Figure 5 shows
snapshots of the interactive exploration of the Visible Human [134], which is a
512x512x1877 volumetric dataset. The NVIDIA Quadro K5000 in the server
side can provide smooth interaction with the visualization and we show two
di↵erent rendering modes isosurface rendering of the skin and visualization
of internal tissues. Figure 7 illustrates interaction of the user with a client
device allowing her to change parameters of the visualization.

Additionally, we measured the network bandwidth required for transmit-
ting the H.264 stream, as a factor of the internal rendering resolution of the
server. For this benchmark, we utilized a higher-end tablet device (Microsoft
Surface) that would benefit from the additional detail of increased rendering
resolutions, due to its 1080p display. We ensured that the synthesized im-
age covered the majority of the view frustum and applied a colorful transfer
function to the volume (in order to introduce some entropy to the chroma
channels of the framebu↵er). We observed a mostly linear increase in band-
width utilization. For an optimal rendering resolution of 10242, we recorded
an average bandwidth utilization of approximately 12 megabits / second,
while rendering at 30fps. It is worth noting that for higher rendering resolu-
tions (such as 20482), network utilization actually drops, as the server is not
able to generate frames at a high-enough framerate for particular rendering
settings. Our measurements, along with an illustration of the benchmark
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Figure 8: Left: Chart summarizing our network bandwidth utilization bench-
mark. Right: View of our test system, showing a Microsoft Surface tablet
device and a high-end workstation, running the client and server components
of our system with synchronized views.

setup are visible in Figure 8.

4.4 Conclusions

In this paper, we demonstrate a remote volume rendering system that
leverages high-end workstations to generate the images based on user input
and to also encode and stream the results in the H.264 video format to a
mobile device. The volume rendering image synthesis happens on the server
side, on a dedicated workstation or GPU cluster. Our system can generate
multiple views of the volume data, and supports multiple video streams with
di↵erent bitrates and resolutions for di↵erent client devices. Visualization
clients can interface with a session either via a commodity media streamer
(without support for user interaction) or through a thin-client application
that exposes the full user interface and transmits inputs via TCP/IP. Our
prototype system can handle various large and complex volume data and
provide high quality volume rendering at real-time speeds.

Looking forward, this remote rendering framework can be expanded in
two ways. First of all, one can explore novel techniques for natural interac-
tion with the volumetric visualization (such as augmented reality and various
forms of gestural interaction). Additionally, one can investigating various
avenues for further increasing the rendering performance on the client side
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and reducing the network overhead associated with H.264 streaming. For
example, our current pipeline performs the volume rendering at a fixed in-
ternal resolution, which remains constant throughout the session. We are
investigating adaptive rendering schemes that dynamically adjust the vol-
ume rendering resolution based on available bandwidth and the complexity
of the image.
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5 Interaction with Volumetric Data on Touch-
screen Devices: Angle and Pressure-based
Volumetric Picking on Touchscreen Devices

5.1 Introduction

A number of scientific applications uses the volumetric rendering of a 3D
scalar data. Location picking inside this rendering on a 2D screen is an
ambiguous task when given an input device such as a mouse. There is a high
uncertainty of the target location due to its occlusion by less transparent
structures. A lack of depth information from the user’s input does not allow
to derive intended location to be picked. Additionally, the user is unable to
select objects outside the picking ray that is perpendicular to the screen. The
need of precise point selection limits visualization of such data to a simple
2D slice rendering or multi-planar reprojection.

Modern input devices, such as a digital stylus pen, allow us to capture
both angle and pressure of the user’s input. These parameters can be mapped
to the angle and depth of the picking ray. In this work, we study the benefits
of such mapping to improve volumetric picking. We perform a study of
usability of three methods of picking on the touchscreen devices. In the first
one, we allow picking based solely on the pressure of the input. In the second
method, in addition to pressure mapping, we alter the direction of the picking
ray based on azimuth and altitude of the stylus. Finally, we compare these
to a single finger picking method with a radius of touch mapped to depth.
To the best of our knowledge, this is the first attempt to evaluate picking
task for volumetric data formally including depth of the target. Hence, our
work provides insights to specifics of interaction with volumetric data. We
suggest classification of user strategies for pressure and angle-based picking.
We also study the impact of opacity accumulation along the ray profile that
contributes to ambiguities of volumetric picking. Our contributions can be
summarized as follows:

Our contributions can be summarized as follows:

• a technique that allows users to select 3D targets in the volumetric
rendering at any depth and angle on touchscreen devices using both
finger and a digital stylus pen input;

• an analysis of usability of three volumetric picking methods;
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Figure 9: Volumetric rendering on an iPad Pro with picking targets (“target”
- yellow, “purple” - selected) and three introduced techniques.

• analysis of user strategies based on 432 observations collected from 12
participants.

5.2 Volumetric Picking

Below we describe our method of volumetric picking on a touchscreen device.
The motivation for this work is an overall lack of precision and quality of vol-
umetric target selection, and most importantly, lack of formal evaluation of
selection, target pointing or acquisition. We describe a common application
setup required to facilitate selection. Here we also define a mapping of the
input device parameters to the picking ray.

5.2.1 Technique

Volumetric picking is based on the ray cast from a 2D point on a screen
to the point of intersection with a 3D target. Determining the location of
the intended 3D target in the volume is an ambiguous task due to the lack of
well-defined object boundaries. Volumetric data rendering presents primarily
as a bounded cube object [96]. There are no boundaries of objects within the
rendering itself. Preliminary data segmentation or iso-surface extraction may
provide such boundaries. However, the segmentation of the objects requires
data domain knowledge and a series of sophisticated algorithms. Thus, to
simply pick a volumetric target along the picking ray, one must be able to
specify the length of the ray at the time of the selection.

Ray picking starts from an invisible surface of origin and perturbs into
the volume to a certain depth. The manipulation of the ray direction should
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remain consistent regardless of the rotation of the volume cube. We ensure
such consistency though the selection of the ray starting point on the minimal
bounding sphere to the volume cube. Using an arbitrary surface in the
virtual world, such as camera frustum would complicate the task of picking
to the user because this invisible surface would alter the direction of the ray
arbitrarily, thus making the selection not intuitive.

Such setup is common to all three studied methods:

• stylus picking with an angle and with pressure parameters,

• stylus picking with pressure only (no angle),

• single finger picking.

These methods di↵er in the input parameters used and how they are mapped
to obtain the end point of the ray or the intended location of the target.

5.2.2 Mapping Angle and Pressure

A digital stylus pen provides us three parameters: azimuth and altitude
angles of the tilt, as well as the pressure used. Altitude of ⇡/2 corresponds
to a perpendicular angle to the screen surface. Azimuth reaches 0 when the
stylus is pointing to the right. The orientation of the stylus is agnostic from
the point of ray origin. Hence, it is not a↵ected by our choice of the bounding
sphere object. For the ease of implementation, we perform the calculation of
the required ray transformation in the screen space. Altitude and azimuth
magnitudes correspond to the amount of the right vector rotation around Y
and Z axis with a resulting vector in the screen space. This vector is projected
to the virtual space based on the screen to world projection matrix.

Pressure of the stylus input determines the magnitude of the picking
ray. Thus, the end point of the picking ray specifies the intended location of
the selection.

Perspective camera correction must be performed in order to present
the user with a picking ray visually extending the stylus. Unlike orthographic
cameras, perspective cameras use non-parallel rays for rendering the scene,
thus will visually distort the ray. To solve this issue, we perform correction
on the rays beside the center of the camera before applying rotation based
on tilt.
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Figure 10: Changes in the mean task completion times over three trials per
condition. The error bars indicate the 95% confidence intervals.

5.2.3 Mapping Finger Touch

Picking with a finger is naturally less precise than that with a stylus. The
most important implication for our application is a lack of pressure sensitivity
to the finger touch on the touchscreen device used in the experiment. To
emulate a similar experience to that of a pressure-sensitive digital stylus, we
use a range normalized radius of the finger touch point to approximate the
pressure applied by the user’s finger. In the näıve implementation, due to the
coarseness of the finger touch, this might result in an inability to reach targets
at arbitrary depth in the volume. However, with an application running at
60 frames per second, we can interpolate between the frame depth values,
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Figure 11: Mean task completion times for each factor. The error bars
indicate the 95% confidence intervals.

thus picking along the part of the ray path. With this implementation, we
are able to approach selection depth technique of a digital stylus.

5.3 Implementation

Volumetric rendering implementation is preferred with a support of 3D
textures. Modern mobile devices deliver OpenGL ES 3.0 and Metal APIs,
which enable an implementation of a volume renderer. Our system is made
using Unity rendering engine in C# and a Volumetric Raytracing sample [6]
based on Nvidia example [5].

To evaluate picking methods, we add a set of opaque mesh targets to
the volume data. These targets get rendered before the volume data. The
resulting rendering shows an overlay e↵ect of the volumetric data. Thus, it
provides correct depth information to the user. Selection of the mesh and not
volumetric targets enables the use of the default ray collision method of the
rendering engine. It also satisfies the requirement of dynamically changing
target color upon successful picking. Embedding volumetric targets would
not be feasible at run-time due to bandwidth and memory size limitations of
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a mobile device.

5.4 Experiment

5.4.1 Apparatus

The experiment was performed on an iPad Pro tablet with a 9.7-inch display.
Apple Pencil was used as a digital stylus input device. All subjects sat at a
table with a tablet located horizontally on the table.

5.4.2 Task

Participants were asked to perform a target selection task. They were pre-
sented with a volumetric rendering of a contrast-enhanced cardiac computed
tomography angiography (CTA). 5 yellow target spheres were placed within
the dataset at di↵erent depth resulting in di↵erent amount of occlusion. Upon
successful selection, targets changed color to purple to provide user sense of
accomplishment.

5.5 Subjects

Our user study had 12 participants, consisting of 9 males and 3 females
between the ages of 22 and 35. Participation in the study was voluntarily,
and the sample consisted primarily of the university students. Participants
filled out a pre-study questionnaire for the knowledge of visualization, use
of touchscreen devices, and use of the stylus. All of the users were daily
users of touchscreen devices. All but one subjects were right-handed. One
participant has admitted color blindness. However, she has indicated that
she could perform the test as there was su�cient di↵erentiation among colors
of “target” and “selected” states of spheres.

5.5.1 Procedure and Design

A consistent procedure was used for all trials and participants. A repeated
measures within-subject factorial design was used. The independent variables
were R - rotation of a dataset (full 3D rotation or no rotation), S - target
size (diameter of a sphere: 2.5 and 5 unit length targets), M - interaction
modality (stylus with or without angle, or finger). A fully crossed design
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resulted in 12 combinations of R, S, and M . Each combination was used to
create a separate iOS application.

The experiment was performed in one session of 25-50 minutes duration.
First, each user was given instructions using a sample application. This ap-
plication featured a rotation of a dataset and a target picking with a pressure
and angle of a stylus. The user was also provided with instructions on the use
of the finger for target selection. Following this, each user performed three
randomly generated sequences of 12 trials. Participants could take breaks
between trial sequences, but not within each sequence. After the first and
the last trial sequence, the user filled out general feedback form about the
preferred method of navigation and experienced di�culties. Additionally,
users had to answer a question about their depth perception of 3D targets
and volumetric data.

5.5.2 Measures

For each trial, an iOS application logged sequences of events performed by
the user:

• timestamped target picking event and target ID;

• timestamped finger touch event and coordinates; beginning and end of
a touch phase;

• timestamped stylus touch event, coordinates, azimuth and altitude of
the tilt, pressure; beginning and end of a touch phase;

• rotation quaternion of the volume data.

The dependent variable task completion time (TC) was defined as a di↵erence
in time between starting a trial and a last selected target.

5.6 Results

5.6.1 Task Completion Time Analysis

We performed a three-way analysis of variance with repeated measures (RA-
NOVA) for task completion time. We average observations obtained from
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Figure 12: Analysis of interaction between factor levels for independent vari-
ables: method of interaction, target size, and rotation mode.

three repeated trials per condition for each subject to reduce variation asso-
ciated with learning a new interaction technique. Figure 10 shows that there
were changes in mean task completion time per condition. The magnitude of
these changes was unequal among conditions, which shows di↵erent learning
rate of techniques. The assumption of normality of the data for task comple-
tion time was not met. Thus, the data was transformed using sqrt(x). The
transformed data has met the assumption of homogeneity of variances.

5.6.2 Main e↵ects

We found significant main e↵ects for independent variables S (F1,11 = 78.6, p <
0.0001) and M (F2,22 = 30.4, p < 0.0001). There was no significant main ef-
fect for R (F1,11 = 0.01, p = 0.94). Figure 11 shows mean task completion
times for all the variables.

We have performed multiple contrasts RANOVA test of three interaction
modes M . The test has revealed a significant di↵erence between finger-based
and both types of stylus interactions (F1,22 = 48.4, p < 0.0001). Additionally,
there was a significant di↵erence between two types of stylus interaction
(F1,22 = 12.5, p < 0.002).
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Figure 13: Clustering pressure and angle of the input device during interac-
tion.

5.6.3 Interactions

There was a significant interaction e↵ect between S and M (F2,22 = 5.69, p =
0.01). Based on further analysis, one can observe that users have experienced
challenges when picking smaller targets using stylus with an angle technique
12.

There was a three-way interaction between all three independent variables
S, M , and R (F2,22 = 5.68, p = 0.01). It was observed that when rotation
was introduced, users took longer time to pick smaller targets. It can be
explained by the fact that most of the users were daily users of touchscreen
devices. Hence, they were used to the task of a small 2D target selection,
which is essentially similar to our picking task without rotation.
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Figure 14: Varying interaction patterns for distinct picking tasks: (left) in-
teraction with rotation, large targets, stylus with an angle, (right) interaction
without rotation, with a finger, and small targets. The pattern on the right
illustrates di�culties of reaching reaching shallow and deep targets.

5.6.4 Analysis of User Strategies

During experiment sessions, we had observed various user strategies when
a digital stylus was used with an angle. While some users have actively
used an angle-based picking, some have experienced noticeable di�culties.
Determining preferred stylus interaction modes and, in particular, altitude
angle of the device is necessary for pursuing research on models of human
motor behavior for volumetric data.

For the four conditions of interaction with an angle of the stylus, we have
analyzed altitudes of the device. We clustered this data (using k-means)
into three groups based on altitude angle and pressure (Figure 13). One can
observe two dense clusters (red and blue), indicating di↵erent user interaction
strategies. The third cluster (green) is di↵erent for two interaction methods:
while it resembles noise for small targets, it lies in proximity to the blue
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cluster for the larger targets. The absence of the data rotation mode has
also caused di�culties for the user to reach targets that are very far away
or very close. Figure 14 illustrates such di↵erences through a heat map of
user’s finger touches for two distinct conditions.

5.6.5 Analysis of Opacity Accumulation Along the Picking Ray

In our work, we assume that user will aim to pick only visible points. Thus,
accumulation of volumetric opacities along the ray should always be less than
1. Intuitively, if the user picks shallow point that is not occluded, the opacity
accumulation will be low. If the point is deep, the opacity accumulation will
be higher, but still less than one. We have analyzed the data to compare
opacities accumulation across the techniques. For the finger picking tech-
nique, the accumulation of opacities along the picking ray was the lowest
and increased with the smaller target size (mean value of 0.11 for large tar-
gets, and 0.13 for small). The reverse trend was observed for stylus-based
techniques (for the stylus with no angle technique, for example, mean of 0.38
for the large target, 0.27 for small). The accumulation along the ray was the
highest for the stylus with an angle techniques with no data rotation (0.48
for small targets, and 0.41 for large).

5.7 Conclusion

In this work, we present a study on the usability of interaction methods for
volumetric picking on the touchscreen devices. We propose and evaluate
three techniques for target acquisition: single finger, pressure and angle sty-
lus picking, the pressure only stylus selection. Our study shows significant
di↵erences among all three proposed methods of interaction. Importantly,
we observe a significant e↵ect when comparing user task completion times
for selection techniques with a digital stylus pen with and without an angle.
This study provides directions for development of models of human motor
interaction for volumetric picking and target acquisition.
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6 Interaction with Volumetric Data in Im-
mersive Environment: Touching the Volu-
metric Void

6.1 Introduction

This part of the dissertation explores interaction with volumetric data via
direct touch in mid-air for mixed reality applications. It focuses on an in-
tuitive mapping of input hardware properties to mixed reality interaction
techniques. We use Microsoft HoloLens mixed reality head mounted display
(HMD) that superimposes “virtual” holograms onto the real world. Out of
the box, it provides several ways for users to interact with these holograms.
Head-tracking approximates the direction of the user’s gaze, while user’s
hand position is also being tracked. To enrich the set of possible interactions
and to create more natural ways to interact with the data, we would like
to be able to track orientation of the user’s palm. A variety of o↵-the-shelf
camera units and wristbands can provide such information, either based on
hand reconstruction from the depth image of the camera, or via a gyroscope
sensor. In our work, we take a wristband approach for precision of the values
and construct custom wearable piece with a gyroscope sensor for one or both
hands.

Mid-air interaction requires consistent visual and audio feedback. Both
of these feedback channels have been shown to play an important role [30]
in interaction techniques. At the same time, direct mid-air touch provides
a clean and hygienic way to interact with the data, which is essential for
certain application scenarios, such as surgery planning [101] and assistance
[42]. Interaction with CT and MRI data in the current clinical settings
is limited to desktop style interaction, thus essential 3 DOF interactions are
mapped to 2D input tasks. We aim to find a balance of intuitive and e�cient
ways to interact with volumetric data through direct mid-air touch. It is
important to note that an excess of visual feedback may clutter an already
visually complex volumetric rendering. Therefore, a moderate amount of
audio feedback may be used to complement it.

Visual analytics has been always of particular interest to data explo-
ration in domain specific applications, especially when it comes to creation
of tools and techniques. For example, scientific applications may source data
from medicine, material sciences, astronomy, physics and other related fields.
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Nearly in isolation, user interface researchers focus on development and eval-
uation of interaction techniques and their precise evaluation [11]. However,
immersive analytics applications require seamless collaborative work from
both research fields. In our opinion, to ensure such seamless work one must
evaluate modular components of interaction that comprise complex data ma-
nipulations. Such evaluation will ensure usability of provided interaction
designs. In this work we focus on modular components of the proposed com-
plex gestures. We evaluate types of visual feedback for a volumetric picking
task. Additionally, we evaluate the use of gyroscopes for simple rotation
tasks to ensure that such rotation can be extended to more complex data
manipulations.

Our contributions can be summarized as follows:

• First, we present a mapping of a traditional set of interactions with
scientific volumetric data to a mixed reality application using Microsoft
HoloLens3.

• Secondly, we focus on rotation techniques and incorporate that into
gestures of rotation using custom hardware.

• Then, we address the importance of visual feedback for mid-air inter-
actions and provide a set of visual and sound feedback metaphors.

• And finally we perform a detailed quantitative study of the selected
techniques which comprise complex interactions.

6.2 Interaction Tasks in Spatial 3D Data Visualization

Laha et al. [92] survey and classify common tasks for volumetric data explo-
ration across multiple domains. We summarize interaction types for a typical
scenario of volumetric data exploration:

• Navigating with 7 DOF : Ideally, navigation of volumetric data in mixed-
reality settings should be consistent with other 3D data spatial inter-
action. Hence, we need to provide 3 DOF for translation, 3 DOF
for rotation, and 1 DOF for uniform zooming/scaling. Unlike in the
projection-based visualization, we should be able to utilize more natu-
ral navigation and gestures. To comply with this principle, we propose
to use user’s hand orientation for data rotation.

3
https://www.microsoft.com/microsoft-hololens/
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• Data manipulation via cutting plane positioning with 3 DOF. Cutting
plane positioning is essentially similar to navigation, as discussed above.
It is constrained to 1 DOF for control of the depth of the plane, and
2 DOF for its orientation control (azimuth and elevation angles). The
plane positioning in mid-air can be performed unimanually (position of
a hand mapped to the depth of the plane, and orientation of the hand
respectively to the orientation of the plane) or bimanually (by dividing
the task between two hands).

• 3D point picking in 2D projection rendering is di�cult due to inability
of determining the depth of a “pick” operation. As such, to di↵erentiate
simple navigation with point selection and to convey the explicit intent
to select a given point with a deterministic depth, the user will need to
perform an additional gesture. We have chosen to represent this with a
“tapping” gesture to finalize the selection after orientation within the
hologram.

• Selection of a subvolume in volumetric or particle cloud data also suf-
fers from the limitations of 2D projection based visualization. Special
techniques are required to resolve ambiguities of depth specification.
For example, when a 3D widget is used to specify a subvolume, one
must adjust its boundaries in the helper views. Such interaction can
also be simplified to a more natural type of 3D selection widget place-
ment in mixed reality. For instance, the user can approach the volume
and specify the selection directly within the volumetric data rendering.

• Custom viewing modes (with varying DOF) may require interaction
during the visualization. For example, opacity [125] and feature [103]
peeling techniques require specification of maximum threshold for the
data and the layer. The mapping of such modes should be customized
to unimanual or bimanual input.

• Visualization mode switching also requires to provide a complete set
of gestures while preserving the context of the current interaction. In
many applications, the user can switch between visualization modes
with a system of widgets, buttons, menus, or sliders. Voice control
enables easy switching between the gesture recognition modes. Thus,
the user does not have to be taken out of current interaction context
to select a widget.
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• Interaction mode switching is another necessity of such systems, and
they need a similar level of seamlessness as visualization mode switch-
ing, as mentioned above. Switching between various gestures should
not take the user out of interaction context. Voice commands make it
easy to perform such switching.

It is important to note that we provide sound feedback on the successful
start of each gesture.
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Table 2: Mapping of the input properties of HoloLens HMD and custom
wearable unit to volumetric data interactions in mixed reality.

Interaction Mapping Gesture
Voice control - visualization and interaction mode switching
Gaze / head tracking - selection of an object to interact
Hand position - 3D volumetric picking
3D point picking.
Hand position in the
world space is directly
transformed into the
volume data space.

Start : Position a hand
inside the volume in
“ready” gesture. End :
Perform picking with
“air tap”.

Translation. User’s
hand position is di-
rectly mapped to the
new position of an ob-
ject.

Start : Perform “tap”
to select a volume. In:
Move hand in “hold”
gesture to a new lo-
cation. End : Release
“hold” gesture.

Rotation by drag-
ging. The di↵erence
in user’s hand position
is mapped to an ar-
cball rotation identical
to that of a 2D mouse
input.

Start : Perform “tap”
to select a volume. In:
Move hand in “hold”
gesture to a rotate.
End : Release “hold”
gesture.

Custom view modi-
fication.Opacity peel-
ing example. Maxi-
mum threshold of the
data is defined by the
location of the user’s
left hand (optional),
while the number of
the peeling layer is con-
trolled by the right
hand.

Start : Perform “tap”
with right hand to se-
lect a volume. In:
Move hand in “hold”
gesture to peel the lay-
ers. End : Release
“hold” gesture.
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+ Hand orientation - manipulate rotation of the data or a widget
Rotation by hand.
Orientation of the
user’s palm, as mea-
sured by the gyroscope
sensor, fully defines
rotation of an object.

Start : Perform “tap”
to select a volume. In:
Rotate hand in “hold”
gesture to a rotate.
End : Release “hold”
gesture.

Cutting plane posi-
tioning. Orientation
of the user’s palm, as
measured by the gy-
roscope sensor, is di-
rectly mapped to ori-
entation of the cutting
plane, while hand po-
sition is mapped to the
depth of the plane.

Start : Perform “tap”
and ”hold” gesture.
In: Rotate the hand
with a gyroscope to se-
lect orientation of the
plane. Move hand to
and from the camera to
select depth. End : Re-
lease “hold”.

VOI. 3D box widget
positioning with two
hands in the “ready”
gesture. Distance be-
tween two hands de-
termines size of the
bounding box.

Start : Position both
hands inside the vol-
ume data to see the
bounding box. In:
Adjust hands to se-
lect size of the box.
Perform “tap” to clip
the volume, “hold” to
rotate.End : Release
“hold”.

6.3 Design Space of Property Mapping

The hardware used in this prototype implementation provides us with several
inputs that can be mapped to the common volumetric data interactions. Here
we define these inputs and outline their usage in our application:
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Figure 15: Examples of user interactions with volumetric rendering in mid-
air: (a) view modification with opacity peeling, (b) volume of interest selec-
tion, (c) clipping plane positioning.

• Voice controls - recognition of simple commands triggered by the user.
Such commands are an intuitive way to switch between interaction
widgets and interaction types. In our work, voice control allows us
to switch between a variety of gesture recognizers to allow seamless
transition between interactions.

• Gaze, defined as user’s head orientation, selects the object in focus.
Once a certain object is in focus, the user can interact with it until the
focus changes.

• Hand position - an absolute position of user’s hand in the world space
as tracked by HMD. We use the hand position to enable visual feedback
for interaction at the point of contact with the volume.

• Hand (palm) orientation - an orientation of user’s palm that is tracked
by a custom wearable unit. Hand orientation is used to control the
orientation of the entire dataset or the orientation of the virtual widgets
used to interact with the volume. For example, in our work, we use the
orientation of the user’s hand to orient the clipping plane, rotate the
box when selecting VOI, and rotate the entire dataset.

Having discussed the requirements of a set of intuitive interactions, as
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well as the available input sensors, we can refer to Table 6.2 to see how
these input devices can be put to use to fulfill the gestures as discussed
above. For instance, positioning a cutting plane (as a gesture to perform
data manipulation in a spatial manner) requires a sort of “dragging” gesture,
which in and of itself is a multi-part gesture: (1) picking a starting point, (2)
rotating the plane and selecting the depth within field of view, and (3) ending
the specification. We have opted to keep the gestures consistent throughout
our methods, and for this particular example — as seen in the table — we
start the selection process by the tap gesture (which corresponds with data
point selection), and we use the intuitive gesture of holding onto the point to
signify the breadth of the operation. Some of the interactions are captured
in Fig 15 for better demonstration.

6.4 Visual Feedback for Mid-air Volumetric Interac-
tion

In this work, we address the importance of visual feedback on volumetric
data itself. Through the definition of the transfer function, some of the data
may become transparent.

In the mixed reality “virtual” holograms, users’ hand may get occluded
with a semi-transparent hologram. With an accumulation of opacity from
the volumetric data, a user’s hand may become fully invisible. Thus, it is
important to provide visual feedback on the location of the area of contact.
Immersive applications use 3D cursors or rays to indicate the area of interac-
tion. A direct-touch interaction may be accompanied with a touch shadow to
show the area of contact or its intensity. Such feedback might not be feasible
due to inherent presence of shadows in volumetric data. In volumetric data
representation, we aim to provide visual feedback in the location of contact
with the user’s hand without occluding the data. In the mixed reality sce-
nario, such feedback has to be visible and intuitive for multiple participating
users. For example, the feedback upon interaction with mesh surface data
may be indicated by the use of opacity or color correction.

We evaluate three types of 3D direct touch feedback for interaction with
volumetric data (Fig 16):

• 3D cursor. We visualize a 3D cursor in the form of a sphere located
approximately in the middle of the user’s finger. As the interaction is
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Figure 16: Visual feedback metaphors: (a, d) volumetric “candle”; (b) iso-
surface based visualization; (c, e) 3D cursor in front of the volume (e) and
inside the volume with data occlusion (c).

happening as a direct touch, there is no need to provide feedback in
the form of the ray.

• Volumetric color “candle”. We visualize the feedback of the user’s
finger touch with a highlight as a candle halo centered at the location
of contact.

• Iso-surface “candle”. We visualize the feedback by amplifying data
opacities based on the iso-surface of the underlying data.

Not all interactions require visual feedback. For example, basic naviga-
tion provides an immediate feedback by showing a new view of the data. An
additional visual feedback is required for the selection of the volume of inter-
est (VOI). The user can select a VOI by extending two hands into a “ready”
gesture. The distance between two hands will indicate the initial size of the
box in either vertical or horizontal dimensions (depending on the alignment
of the user’s hands). The orientation of the box can be changed based on the
orientation of the user’s right hand. The selected VOI box will be shown as a
semi-transparent object that does not occlude the volume itself. On “select”
gesture — indicated by tapping and holding with both hands — the volume
outside of the box will be clipped and only the VOI will be shown.
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Figure 17: Design of a custom wearable for capturing palm orientation.

6.5 Hand orientation capture

We have built our custom wearable unit using Adafruit’s Flora electronic
wearable platform4 (Figure 17). We are using wearable gyroscope sensors
(FLORA 9-DOF Accelerometer/Gyroscope/Magnetometer - LSM9DS0 - v1.05)
and low energy Bluetooth (Flora Wearable Bluefruit LE Module6) for com-
municating the data back to the HMD.

The communication of the data back to the HMD can be performed in two
ways: (1) directly via Bluetooth, or (2) via MQTT, which is a machine-to-
machine (M2M)/“Internet of Things” connectivity protocol7. Based on our
experimentation, we have followed the second setup with M2M connectivity
protocol. Such setup resulted in virtually no latency and came with the
benefit of preserving the full precision of the data.

We have assembled the custom wearable unit into a 3D printed enclosure
and attached it to a leather wristband, which conveniently packs the battery
required to power up the device. The 9DOF sensor is attached to the user’s

4
https://www.adafruit.com/product/659

5
https://www.adafruit.com/product/2020

6
https://www.adafruit.com/product/2487

7
http://mqtt.org
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Figure 18: User study tasks. (a) 3D volumetric picking task: user selection
highlighted with white volumetric sphere, successful selection of target - cyan,
failed attempt - magenta. (b) 1 DOF rotation task of 3D box alignment.

palm, thus providing a precise orientation of the palm and not just the wrist
(as one may capture with o↵-the-shelf wearable units).

6.6 User Study

In this study we evaluate the building blocks of the introduced natural ges-
tures. First, we evaluate 3D volumetric picking with three types of visual
feedback. Secondly, we assess feasibility of the two types of rotation. Our
study had 12 participants between ages 23 and 39. Participation in the study
was voluntary and consisted primarily of graduate and undergraduate stu-
dents at the university. Despite the fact that one of the participants was left
handed, they were able to perform tasks with their right hand. Each user
was asked regarding their scientific visualization experience, ranking it on a
scale from 1 to 5, five being the most satisfactory. Participants were also
asked about their experience with VR/AR headsets, and particularly their
use of Microsoft HoloLens. Half of the participants expressed visualization
experience greater than rank 4. Only 7.7% did not have any previous VR/AR
experience, and 69.2% have tried HoloLens HMD before at least once.
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6.6.1 Tasks

Picking a point/location in 3D volume. The first task is a simple picking
task, where the user is asked to pick a location on the “virtual” hologram
of a volume. During the training session, the user was shown the target
location: left eye of a smalleye hammerhead shark8. Unlike the usual picking
task, the location was purposely selected to be fairly large (Figure 18 (a)),
which might seem questionable to the reader. In our opinion, selection with
a full hand gesture in mid-air may encounter a problem similar to that of a
fat finger on a touchscreen device. To compensate for that, the target was
chosen to be a large subvolume.

At the start of the task, the user was seated in the chair. Once the task
started, the volumetric rendering appeared in front of the user about 4 feet
away. To perform picking the user had to stand up, walk up to the volumetric
rendering, and explore the dataset with one of the available techniques (ISO
highlight, candle, 3D cursor, or no highlight) with their hand in the “ready”
position. Once the location was found, the user could perform a selection
gesture to pick the target. After the selection gesture was performed, the
location of the pick would be highlighted in white, while the target location
would light up with cyan or magenta highlight based on the success or fail
of the task completion (Figure 18 (a)).

Rotation of the dataset. In this second task, the user was asked to
perform a rotation task around the vertical (Y) axis (1 DOF). The rotation
could be carried out with either free hand connected to the gyroscope wrist-
band or by “dragging” an arc ball. To indicate the start and end point of the
rotation, two rectangles were placed orthogonally: blue indicating the start
of the rotation and purple - final position after rotation (Figure 18 (b)).

6.6.2 Procedure and Measures

Each user underwent a brief training session on an example of one picking
task and was trained to perform a rotation task. A consistent experimental
procedure was used for all trials and all participants. In total, users com-
pleted six randomly ordered tasks, repeating each three times, resulting in a
total of 18 trials.

In both rotation and picking tasks, independent variables were the types
of interaction technique. Time and accuracy (success/failure and distance to

8
http://morph3d.eu
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target; di↵erence angle at the final alignment of rectangles) were recorded
for both tasks.

NASA-TLX questionnaire [70] was used to evaluate the subjective task
load. In addition to an average questionnaire score, we were interested in the
subjective evaluation of performance and users’ e↵orts. The experiment was
performed in one session of approximately 30 minutes.

6.6.3 Analysis

We performed a repeated measures analysis of variance (ANOVA) to deter-
mine the e↵ect of each test condition on task completion time and perfor-
mance accuracy. In such a setting, we have two within-subject factors: trial
number/time (first, second, or third) and test condition (task). We choose
a mixed design and do not average results from three trials per task as we
want to observe the e↵ect of trial number on user performance.

The transformation log(x) or 1/x was applied to the data and normal-
ity has been verified with Shapiro-Wilk and Anderson-Darling tests at 0.05
significance. We performed a repeated measures ANOVA to determine the
e↵ect of each test condition on users’ subjective task load score, as well as
performance and e↵ort subscores.

6.7 Results

6.7.1 Task Completion Time

Picking task. Mean time completion for each picking task was found to be
approximately similar (Figure 19). ANOVA revealed no significant main
e↵ect of the test condition on time to complete picking task (F(3,128) =
1.081, p = 0.360). However, there was a significant e↵ect of trial number
(F(1,128) = 6.067, p = 0.015) and a trend for both test and trial number
(F(3,128) = 2.267, p = 0.083) on time to complete picking task. The mean
time for task completion per trial for all test conditions is shown in Figure
21.

Rotation task. The mean time completion for each rotation task is
shown in Figure 19. ANOVA has revealed no significant main e↵ect of
test condition on the time required to complete the rotation task (F(1,64) =
0.920, p = 0.341) or on either time, or trial number (F(1,64) = 0.038, p =
0.846). There was no significant main e↵ect of trial number on the time of
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Figure 19: Means task completion time (seconds) for (left) picking task with
four highlighting techniques and (right) rotation. Error bars indicate 95%
confidence intervals.

completion of the rotation task (F(1,64) = 1.535, p = 0.220).

6.7.2 Accuracy

Picking task. For the picking task, we evaluate both the success and failure
of the picking, as well as the distance to the target location. Test condition
did not have any statistically significant e↵ect on participants’ ability to
successfully select the target (test: F(3,128) = 0.630, p = 0.596; trial number:
F(1,128) = 0.071, p = 0.790; test and trial: F(3,128) = 0.412, p = 0.745). Also
there was no statistically significant e↵ect on distance to the target location
(test: F(3,128) = 0.126, p = 0.944; trial number: F(1,128) = 0.018, p = 0.892;
test and trial: F(3,128) = 0.288, p = 0.834).

Rotation task. Our analysis has revealed no significant main e↵ect of
test conditions on the accuracy of the rotation task (test: F(1,64) = 0.826, p =
0.367; trial number: F(1,64) = 0.275, p = 0.602; test and trial number:
F(1,64) = 0.002, p = 0.968).

6.7.3 Subjective Task Load

We have found no statistically significant e↵ect of either rotation or picking
task test conditions on subjective task load. Additionally, we have evalu-
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Figure 20: Subjective task load scores (NASA-TLX) for (left) picking and
(right) rotation tasks. Error bars indicate 95% confidence intervals.

ated the e↵ort and performance subscale scores, which have not revealed
significant main e↵ect (p > 0.05). The scores are shown in Figure 20.

6.8 Discussion

In our user study, we were attempting to verify two basic skills that build
up to more complex gestures to mid-air volume interaction. For example,
cutting plane positioning within the volumetric data requires adjusting the
depth of the plane and its orientation. Thus, both hands of the users are
involved in the task: one hand (i.e. left) picking the depth, while the other
— equipped with a gyroscope sensor — is adjusting the orientation.

Based on the analysis of task completion time, we have observed that
given time, subjects were adjusting to picking technique. As a relatively
significant period of the trial, time was given to the subject standing up and
walking to the spatial representation of the data, it might be unclear whether
there is a significant di↵erence in task completion time when using di↵erent
visual feedback for the volumetric picking.

Our analyses have shown that there has been no significant di↵erence in
completion time for the rotation task. We find this result interesting, as a
user had to perform significantly more “drag” operations to complete the
first type of rotation task, while required only a single hand movement to
complete the free hand rotation. During the study, we have observed that
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Figure 21: Mean task completion time for three repeated trials for (left)
picking (right) rotation tasks.

the user took longer to adjust to the free hand rotation.
While we have found no statistically significant e↵ect of the test con-

ditions on the accuracy of the picking task, we have observed that among
participants who have been more successful in the picking attempts, there
was a trend for di↵erences among the techniques. The participants who have
shown to be more successful in the picking also had greater experience in
visualization and had discussed their experience in gaming. In our opinion,
a larger study is needed to confirm if such a correlation can be deduced.
We believe that di↵erences in techniques might have remained obscured to
inexperienced participants.

6.9 Conclusions

In this work, we present a set of mid-air interactions with volumetric “vir-
tual” holograms in mixed reality. We capture user input using Microsoft
HoloLens and a custom built wearable wristband. We also design a detailed
visual feedback that helps the user to locate their hand within the volumet-
ric rendering even when it gets occluded by the data. Our study considers
basic blocks of user interactions comprised of hand position and orientation.
The experiments with volumetric picking have shown that careful use of vi-
sual feedback metaphors may result in overall better user experience without
increasing subjective task load and without a negative e↵ect on performance.
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Visual Analytics for Medical Imaging: Focus-
ing on the Spleen

The spleen, the largest organ in the lymphatic system, is often forgotten
by laypeople but is of significant importance to clinicians. An increase in
splenic size, splenomegaly, accompanies immune response in a wide range
of abnormal conditions, including immunologic, hematopoietic, infectious,
and storage diseases [13, 126, 109]. The evaluation, staging and response
assessment of Hodgkin and Non-Hodgkin Lymphoma incorporate the spleen
in the diagnostic process and it underlines a lack of consensus on standard
splenic metrics [32, 132]. Additionally, spleens vary in shape and size across
the patients, further complicating the task of finding a suitable evaluation
criteria.

Diseases that a↵ect the spleen pose particular challenges since they lack
the clear-cut characterization between healthy and unhealthy subjects, which
is often found in other organs (e.g. kidney). Specifically:

• Splenic maladies can manifest as variations in both shape and size.
Thus, domain experts who are characterizing such abnormalities often
find it di�cult to do so based on a single metric.

• Traditionally, splenic disease is determined based on simple linear mea-
surements (width/length) or volumetric estimates. These metrics often
fail to characterize disease, since unhealthy spleens can fall within nor-
mal ranges. Consequently, it is important to consider other parameters,
such as shape.

• Groups of patients can exhibit patterns of disease progression (e.g.
changes in organ volume, shape, or other features) over time, which
are of value in identifying the e�cacy of treatment regimens and the
accuracy of certain measurements for characterization.

With widespread adoption of multiple scanning modalities, such as com-
puted tomography (CT), magnetic resonance imaging (MRI), and ultrasound
(US), splenic size can be estimated qualitative and quantitatively [39, 55, 118,
124, 152]. While the adoption of computer-aided techniques is progressing in
various areas of radiology, majority of existing studies on splenic volumetry
still resort to primitive single [15, 94] and multi-dimensional measurements

60



[86]. Among these measurements the most commonly referenced are cran-
iocaudal splenic length, width, and thickness measured in the plane with
maximal organs width [39, 86, 118, 152] or in axial organ’s cross-section with
maximal product of orthogonal length and width [124].

Multiple reports show correlation of single- and multi-dimensional indices
to volume at a single point in time across a population [39, 55, 118, 124, 152].
However, to the best of our knowledge, none of these works have established
how accurately these one- and multi-dimensional indices reflect change in
splenic volume over time. Complex variations in splenic morphology [31, 76,
105] might not be portrayed accurately with ellipsoid-based formulation, and
cause the error in estimate to propagate across the time domain.

Variation in organ shapes in measurements used is common among many
medical sub-domains. Most medical research studies which focus on the
analysis of time-varying imaging data are faced with this obstacle. The
goal of these studies is to determine universally applicable metrics for use
in clinical practice. However, the process of finding even an initial set of
candidate metrics requires a comparison of volumetric imaging data across
patients and studies over the time of disease progression.

Contributions of our work in this chapter can be summarized as follows:

• As a first step towards precise measurements for observation of changes
in splenic volume and morphology, we evaluate a number of tradi-
tionally used splenic measurements. Unlike other methods that only
use a single snapshot of data per patient, we evaluate uni- and multi-
dimensional measurements based on several timepoints of data per sub-
ject.

• As a second step, we evaluate a novel heuristic used to determine the
best possible measurement that can be performed given only standard
formulations of “splenic index” can be used. Conformal welding heuris-
tic allows us to select best possible plane of measurement and corre-
late all other estimations to this selection. Importantly, the conformal
welding shape signature can be utilized as a biomarker of organ shape
change.

• Finally, we explore additional imaging features that could provide a
better characterization of the spleens. In the last section of this work
we build a visual analytics tool for exploration of time-varying imaging-
derived features. Our tool provides an overview of the study popula-
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tion, allows to view registered organs, and preform similarity search
based on several groups of imaging features. We propose several use
cases for our tool and showcase an additional application for time-
varying prostate data.

The following three sections of this dissertation, will address the above
topics that resulted in the contributions to the fields of radiology, computer-
aided detection in medical imaging, and visual analytics.
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7 Comparison of Unidimensional and Mul-
tidimensional Splenic Measurements as a
Predictor of Change in Volume Over Time

7.1 Introduction

Multiple studies on splenic volume evaluation use craniocaudal length, width,
and thickness in correlation to splenic volume. While there is lack of con-
sensus where the measurement should be taken, some studies have shown
better correlation of length [15, 118] or width [39, 124] within their samples.
In our study among one-dimensional measurements both splenic width and
thickness show higher correlation to volume compared to organ’s length. In
our study we compare four di↵erent axial planes of measurement determined
automatically, thus establishing a standard for uniform comparison and in
attempt to eliminate errors arising from subjective evaluation. Estimation
of splenic volume has been limited to regression-based methods combining
products of one-dimensional diameters [15, 39, 118, 124, 152].

In this work, we analyze how change in single and combined splenic mea-
surements predicts change in splenic volume: previously established single
measurements, as well as product of two and three measurements. We evalu-
ate di↵erences in the magnitude of change of these indices and splenic volume
and compare which plane of axial measurement is best for each of the index
measurements, as well as what type of index measurement should be used.

7.2 Materials

7.2.1 Study Sample

The retrospective study was approved by Institutional Review Board (IRB),
with a waiver of informed consent. The PACS system in the hospital was used
to identify subjects with at least two supine abdominal CT scans performed
at least 4 weeks apart. 34 adults (81 scans) without known splenic pathology
and 38 adults (120 scans) with known pathology were examined and included
in the study. Known pathology included: chronic lymphoid leukemia, low-
grade B-cell lymphoma, marginal zone lymphoma, mantle cell lymphoma, or
hairy cell leukemia. The study sample included 25 (35%) female subjects and
47 (65 %) male. Median age of the subject was 58. Total mean volume of the
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organ at the first subjects visit was 436.68pm396.89 mL (female - 309.65 mL,
[73.46, 1100.87]; male - 504.25 mL, [87.23, 2254.81]). Mean time di↵erence
between the scans - 418.73pm451.49 days, [2, 2430].

Slice thickness on the images varied (1.25 (1 scan), 2 mm (94 scans),
2.5 mm (17 scans), 5 mm (89 scans)) and was acquired with or without
IV contrast. Data regarding phase of contrast and scanner type was not
collected.

7.2.2 Spleen Segmentation

All images were loaded and manually segmented by drawing outlines along
the organ boundary in a 3D software package (Alice software, Parexel Infor-
matics; Waltham, MA). The region of interest (ROI) outlines were drawn by
a trained assistant under supervision of radiologist with 20 years of experi-
ence. The assistant was trained by drawing ROIs on a set of test subjects
from a prior separate dataset which was then subsequently verified by an
expert. Training continued until error in volumes remained under 10% with
maximum error of pm 30 ml. Once trained, verification of accuracy was as-
sessed by comparing the volumes obtained by the assistant to the volumes
obtained by MAB in the first 10 patients. If volumes error exceeded 10% or
pm 30 ml, the assistant would be retrained on that case. This occurred in
none of the 10 cases. Ground truth volume of the organ was determined by
the software by multiplying the area of the ROI by the slice interval.

7.3 Methods

7.3.1 Measurements

The following splenic measurements were obtained: craniocaudal splenic
length (L), width (W ) and thickness (T ). Width and thickness are orthog-
onal diameters measured on the same axial plane of the spleen. Width is
defined as the longest diameter completely within the organ boundary, and
thickness is defined as the longest orthogonal diameter completely contained
within the organ boundary. Three axial planes of measurement were selected:
axial plane of maximal width (MW ), axial plane of maximal cross-sectional
area (MA), and the axial plane through the midpoint in craniocaudal di-
mension (MP ). For the purpose of this study in order to ensure consistent
comparison of measurements and eliminate human error, all diameters and
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Figure 22: Correlation of the statistically significant change in 1D, 2D, and
3D metrics to change in splenic volume. Green color indicates healthy sub-
jects, red - with a known pathology.

planes of measurement were obtained automatically by Alice software and a
computer program written in Python (Python, version 2.7, Python Software
Foundation). Slice numbers of organ’s cross-sections were stored along with
respective measurements.

7.3.2 Statistical Analysis

Statistical analysis of the data was performed in R language and environment
for statistical computing and graphics [119] using standard statistical meth-
ods and the cocor package [43]. Basic statistic summary was obtained for
all single splenic diameters (1D index), product of two (W · T , 2D index),
as well as product of all three diameters (W · T · L, 3D index). Correlation
of all diameters and indices to the ground truth volume and its change was
established by Pearson correlation. Our main goal is to show which of the
metrics (change in 1D index, change in 2D index, or change in 3D index)
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shows the highest correlation to change in volume. We formulate this as a
follows:

H0: There is no di↵erence between correlation of change in metric A to
change in volume and change in metric B to change in volume.

H1: Correlations of change in metrics A and B to the change in volume
are not equal.

Thus, we compare two overlapping correlations based on dependent groups
(the same group of subjects) by employing two statistical tests. First, we
show significant di↵erence in magnitude of correlations using Pearson’s cor-
relation [114]. Secondly, we employ Zou’s confidence intervals [158], known
as superior to significance testing [43]. Unlike other methods that evaluate
correlation of the volume of the organ to the metric, we evaluate correlations
of the change in splenic volume and change in respective metrics. All results
below are shown for the change (di↵erence) between last and first visits for
each subject.

7.4 Results

Figures 22 shows largest correlations of 1D, 2D, and 3D index metrics to the
true volume of the organ. Mean, SD, and 95% CI are reported in Tables 7.4.1
and 7.4.1. Significant di↵erences between two correlations and respective
confidence intervals are indicated in bold in the Tables 7.4.2, 7.4.3, 7.4.4,
7.4.5.

66



7.4.1 Correlation of Splenic Volume and 1D, 2D and 3D Measures

In our study among one-dimensional measurements both splenic width (W
MW

:
r = 0.842; R2 = 0.709) and thickness (T

MA

: r = 0.807; R2 = 0.651) show
higher correlation to static volume compared to organ’s craniocaudal length
(L: r = 0.771; R2 = 0.594). Among 2D measures, products of bi-orthogonal
measurements that include mid-point cross-section WT

MP

(r = 0.912; R2 =
0.832) and (W · L)

MP

(r = 0.937; R2 = 0.877) show higher correlation to
static volume, with maximal area cross section being second largest (Table
7.4.1). However, change in measures on MA and MW show higher correla-
tion to change in volume ((W ·T )

MA

: r = 0.833; R2 = 0.694; (W ·L)
MW

: r
= 0.814; R2 = 0.662) (Table 7.4.1). All of the 3D measures showed excellent
correlation to the static volume of the organ, with mid-point cross-sectional
plane ones being the highest ((W · T · L)

MP

: r = 0.971; R2 = 0.942) (Table
7.4.1).
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Table 3: Summary statistics of splenic measurements for the first subject’s
visit. Range, mean, standard deviation, and 95% CI, correlation coe�cient
and coe�cient of determination for the measurement/index to the volume of
the organ.

Metric Range Mean SD 95% CI r2 R2

Volume [73.46,
2254.809]

436.676 396.889 [345.001,
528.351]

Length
(L)

[4.5, 24.2] 11.024 3.958 [10.11,
11.939]

0.771 0.594

Width
(W )
WMA [6.17,

20.373]
11.226 2.789 [10.582,

11.87]
0.825 0.68

WMW [7.23,
20.782]

11.624 2.768 [10.985,
12.263]

0.842 0.709

WMP [4.808,
20.14]

11.099 2.774 [10.458,
11.74]

0.833 0.694

Thickness
(T )
TMA [2.966,

14.141]
7.121 2.217 [6.609,

7.633]
0.807 0.651

TMW [2.791,
14.254]

6.419 2.165 [5.919,
6.919]

0.778 0.606

TMP [2.825,
13.718]

6.698 2.151 [6.201,
7.195]

0.792 0.627

W · T
(W · T)MA [21.245,

288.095]
84.636 46.068 [73.995,

95.277]
0.911 0.829

(W · T)MW [20.179,
296.227]

78.956 45.109 [68.536,
89.375]

0.894 0.799

(W · T)MP [21.117,
276.281]

78.719 44.456 [68.45,
88.988]

0.912 0.832

L ·W
(L ·W)MA [41.648,

391.162]
130.783 74.005 [67.542,

101.73]
0.932 0.87
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Table 3: Summary statistics of splenic measurements for the first subject’s
visit. Range, mean, standard deviation, and 95% CI, correlation coe�cient
and coe�cient of determination for the measurement/index to the volume of
the organ.

Metric Range Mean SD 95% CI r2 R2

(L ·W)MW [42.932,
399.014]

135.059 75.189 [117.691,
152.426]

0.94 0.884

(L ·W)MP [32.454,
386.688]

129.393 73.494 [112.417,
146.369]

0.937 0.877

W ·T ·L

(WTL)MA [148.718,
5531.416]

1060.73 941.078 [843.356,
1278.104]

0.967 0.935

(WTL)MW [141.253,
5687.551]

989.206 919.085 [776.912,
1201.5]

0.953 0.909

(WTL)MP [137.26,
5304.586]

987.182 907.444 [777.577,
1196.787]

0.971 0.942

Estimates

Rezai(0.36·
WTL+
28)

[88.407,
2075.518]

421.302 345.712 [341.448,
501.156]

0.974 0.95

Ell(0.524·
WTL)

[74.016,
2980.277]

518.344 481.6 [407.102,
629.586]

0.953 0.909
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Table 4: Summary statistic of splenic measurements for the di↵erence of last
and first subject’s visit. Range, mean, standard deviation, and 95% CI, corre-
lation coe�cient and coe�cient of determination for the measurement/index
to volume of the organ.

Metric Range Mean SD 95% CI r2 R2

Volume [-1194.362,
502.279]

-27.291 239.727 [-82.664,
28.082]

Length
(L)

[-15, 6.5] -0.086 3.002 [-0.779,
0.607]

0.53 0.281

Width
(W )
WMA [-3.771,

3.738]
0.155 1.341 [-0.154,

0.465]
0.602 0.362

WMW [-4.046,
2.882]

0.101 1.257 [-0.189,
0.391]

0.753 0.567

WMP [-4.14,
2.867]

-0.007 1.335 [-0.315,
0.301]

0.597 0.357

Thickness
(T )
TMA [-4.491,

2.118]
-0.195 1.078 [-0.444,

0.054]
0.718 0.516

TMW [-4.748,
3.52]

-0.256 1.388 [-0.576,
0.065]

0.442 0.196

TMP [-3.949,
4.117]

-0.175 1.271 [-0.469,
0.118]

0.456 0.208

W · L
(W · L)MA [-125.499,

91.41]
-0.402 44.09 [-10.586,

9.783]
0.764 0.583

(W · L)MW [-129.924,
96.663]

-0.471 44.619 [-10.777,
9.835]

0.814 0.662

(W · L)MP [-129.579,
94.319]

-2.434 43.429 [-12.466,
7.597]

0.775 0.6

W · T
(W · T)MA [-88.445,

39.214]
-2.544 22.062 [-7.64,

2.552]
0.833 0.694
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Table 4: Summary statistic of splenic measurements for the di↵erence of last
and first subject’s visit. Range, mean, standard deviation, and 95% CI, corre-
lation coe�cient and coe�cient of determination for the measurement/index
to volume of the organ.

Metric Range Mean SD 95% CI r2 R2

(W · T)MW [-93.455,
42.917]

-3.59 23.544 [-9.028,
1.849]

0.7 0.49

(W · T)MP [-84.106,
36.185]

-2.853 19.438 [-7.343,
1.637]

0.789 0.622

W ·T ·L

(WTL)MA [-2185.922,
1111.098]

-77.897 544.692 [-203.712,
47.919]

0.911 0.831

(WTL)MW [-2369.325,
1131.317]

-80.464 519.617 [-200.487,
39.559]

0.874 0.764

(WTL)MP [-1972.807,
1052.037]

-72.02 487.353 [-184.591,
40.551]

0.901 0.812

Estimates

Rezai ·
(0.36WTL+
28)

[-852.957,
407.274]

-28.967 187.062 [-72.175,
14.241]

0.874 0.764

Ell(0.524·
WTL)

[-1033.751,
551.267]

-37.738 255.373 [-96.725,
21.249]

0.901 0.812
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7.4.2 Change in Splenic Volume and 1D Predictors

We have found a significant di↵erence between correlations of change in width
of the organ measured on MW versus MA planes (p = 0.007, 95% CI (W

MA

,
W

MW

) [-0.282, -0.049]; p = 0.014, 95% CI (W
MP

, W
MW

) [-0.299, -0.037])
and width on MW plane versus thickness on MP plane (p = 0.003, 95% CI
(W

MW

, T
MP

) [-0.506, -0.108]). This indicates that change in width of the
spleen measured on the axial plane with maximal width (WMW) of the organ
is a better predictor of change in volume.

Similarly, there are significant di↵erences in correlation of change in vol-
ume and change in thickness of the organ on di↵erent planes of measurement
(p = 0.003, 95% CI (T

MA

, T
MP

) [0.094, 0.452]; p = 0.002, 95% CI (T
MA

,
T
MW

) [0.108, 0.466]). Thus, there is an indication that change in thickness
of the organ on the axial plane with maximal cross-sectional area (T

MA

)
is more predictive of change in volume than thicknesses on other planes of
measurement.

Finally, there is a significant di↵erence between correlation of change in
volume and splenic craniocaudal length versus width on MW plane (p =
0.013, 95% CI (L, W

MW

) [-0.415, -0.052]), as well as thickness on MA plane
(p = 0.040, 95% CI (L, T

MA

) [-0.382, -0.01]). Thus, there is an indication
that change in width (W

MW

) or thickness (T
MA

) are better predictors of
change in volume than length (Table 7.4.2).
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Table 5: Significance of the di↵erence between correlations of 1D measure-
ments (change in length (L), thickness (T ), and width (W ) measured on
three axial planes (MA, MW , MP ) to volume of the organ.

W T

L MA MP MW MA MP MW
0.463 0.507 0.013 0.040 0.526 0.463
[-0.125,
0.274]

[-0.137,
0.276]

[0.052,
0.415]

[0.01,
0.382]

[-0.308,
0.159]

[0.052,
0.415]

W MA - 0.941 0.007 - 0.149 0.113

- [-0.125,
0.135 ]

[-0.282,
-0.049]

- [-0.054,
0.354]

[-0.04,
0.367]

MP - 0.014 - 0.124

- [-0.299,
-0.037]

- [-0.045,
0.363]

T MA - 0.116 0.586 - 0.003 0.002

- [-0.03,
0.286]

[-0.171,
0.096]

- [0.094,
0.452]

[0.108,
0.466]

MP - - 0.003 - - 0.891

- - [-0.506,
-0.108]

- - [-0.189,
0.216]
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7.4.3 Change in Splenic Volume and 2D Predictors

There was a significant di↵erence in correlations between change in product of
width and thickness on MA versus MW planes of measurement (p = 0.010,
95% CI ((W · T )

MA

, (W · T )
MP

) [0.04, 0.254]), that indicated change in
(W · T )

MA

to be a better predictor of change in volume.
There was a significant di↵erence in correlations between change in vol-

ume and change in product of width and length on all three planes p =
0.003, 95% CI ((W · L)

MA

, (W · L)
MP

) [-0.109, -0.019]; p = 0.030, 95% CI
((W ·L)

MP

, (W ·L)
MW

) [-0.096, -0.002]). Confidence intervals indicate that
change in (W · L)

MW

to be a better predictor than respective measurement
products on MA and MP planes of measurement (Table 7.4.3).

Table 6: Significance of the di↵erence between correlations of 2D index met-
rics (product of change in length and width (W · L), product of change in
thickness and length (W · T ) measured on three axial planes (MA, MW ,
MP ) to the change in the true volume of the organ.

S WL

MP MW MP MW
MA 0.157 0.010 0.534 0.003

[-0.018,
0.12]

[0.04,
0.254]

[-0.064,
0.036]

[-0.109,
-0.019]

MP - 0.068 - 0.030

- [-0.004,
0.202]

- [-0.096,
-0.002]
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7.4.4 Change in Splenic Volume and 3D Predictors

There was no significant di↵erence in correlation between change in volume
and change in the product of any of the three sets of 3 orthogonal measure-
ments. However, there was a trend between change in volume and change in
the product measured from the MA and MW planes (Table 7.4.4).

Table 7: Significance of the di↵erence between correlations of 3D index met-
rics (product of change in width, thickness, and length (W · T ·L) measured
on three axial planes (MA, MW , MP ) to the change in the true volume of
the organ

- Volume

- MP MW
MA 0.358 0.074

[-0.016, 0.042] [-0.002, 0.091]
MP - 0.162

- [-0.012, 0.077]
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7.4.5 2D and 3D Predictors of Change in Segmented Splenic Vol-
ume

There was a significant di↵erence in correlation between change in volume
and all of the 3D indices versus any of the evaluated 2D indices (Table 7.4.5)
which indicates that all of the 3D indices are a significantly better predictor
of change in volume.

Table 8: Significance of the di↵erence between correlations of 3D index met-
rics (product of width, thickness, and length (W · T · L)) and 2D indices
(W · T , W · L) measured on three axial planes (MA, MW , MP ) to volume
of the organ.

S WL

V MA 0.003 0.000
[0.035, 0.148] [0.097, 0.241]

MP 0.001 0.000
[0.058, 0.199] [0.077, 0.214]

MW 0.000 0.057
[0.105, 0.286] [0.001 0.137]

7.5 Conclusions

In this study we evaluate only basic indices based on simple measurements of
width, length, and thickness of the organ. Additionally, other measurements
(for example, using di↵erent landmarks) can be used to evaluate volumetric
measurement. For the purpose of this study, we focus only on index-based
measurements.

We perform our evaluation on a limited sample. Thus, the results can
benefit from further evaluation on larger samples. Our study evaluates two
methods based on 3D splenic index, it can be further extended to other
methods that rely on single dimensional measurement to predict change in
volume.
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8 Maximal Area and Conformal Welding
Heuristics for Optimal Slice Selection in Splenic
Volume Estimation

In this work, we propose two heuristics for the determination of the plane
of axial measurement, which drives volumetric estimation calculations. The
first is termed the “maximal area” heuristic, which corresponds to the plane,
which defines the maximal area among all slices enclosed in the splenic vol-
ume. The second is termed the “conformal welding” heuristic, which is a
novel heuristic that utilizes the axial plane that bifurcates the splenic mesh
in a way that maximizes the symmetry between the two halves.

We perform evaluation of these heuristics on a set of meshes extracted
from manually segmented volumes of the organ, and provide guidance with
respect to selection of the axial plane of measurement that can be used in
Rezai and prolate ellipsoid methods without the need of full segmentation.

Maximal Area Heuristic. Previous splenic volume estimation meth-
ods find the maximal axial width of the organ, and further find the longest
perpendicular thickness within the same axial plane. As shown in Figure 23,
some errors of the observers result in actually choosing slices with greater
areas. In the work on visual perception, Wagner [144] reports that on av-
erage length of the object is overestimated, whereas area is underestimated.
However, we were not able to find sources stating that this is the case for ob-
jects that are “wedge-shaped” or “ellipsoid-like”, and how task of comparing
such shapes a↵ects observer’s performance. We evaluate maximal area-based
heuristic volumetric estimation and report that it actually results in better
volumetric estimation.

Conformal Welding Heuristic. In our method, we propose to com-
pute the global correlations between two surface mesh contours of the top
and bottom part, of the spleen separated by the axial plane of measurement.
The shape signature demonstrates the global geometric features encoded into
these two parts, and can be utilized as a biomarker for the organ shape
change. Such method has been previously proposed for analysis of CHD pro-
gression and pathology in the brain [116]. The shape signature is computed
based on the conformal structure of the organ surface [62, 146] and can be
accurately computed using the surface Ricci flow method [82, 145]. Sharon
and Mumford [131] have used conformal mappings for modeling the 2D shape
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Figure 23: Comparison of observer (red) and automatic (yellow) measure-
ment using maximal axial length as heuristic for plane selection. (a) Render-
ing of the manually segmented mesh. (b) Measurement determined by the
observer, and (c) measured automatically. Volume calculated is 632.6 and
462.6 mL for the observer measurement, 368.6 and 281.2 mL for automatic,
prolate ellipsoid and Rezai methods, respectively. True volume of the organ
381.3 mL.

space. We apply the 3D generalization of Sharon and Mumford’s 2D shape
space to 3D surface of the spleen. This method builds a Teichmüller space for
3D shapes by using conformal mappings. In this Teichmüller space, every 3D
contour (a simple closed curve) is represented by a point in the space; each
point denotes a unique equivalence class of di↵eomorphisms up to Möbius
transformation. For a 3D surface, the di↵eomorphisms of all the contours
form a global shape representation of the surface. By using this signature,
the similarities of 3D shapes can be quantitatively analyzed, therefore, the
classification and recognition of 3D objects can be performed from their ob-
served contours. While conformal welding heuristic requires an input of a
mesh of a segmented organ, it allows us to select best possible plane of mea-
surement and correlate all other estimations to this selection.

We evaluate these heuristics and compare them against the well-established
maximal length approach with two estimation methods, Rezai and prolate
ellipsoid. Our evaluation is based on two sample groups: subjects with no
disease that a↵ects splenic size, as well as the group with leukemia and lym-
phoma that were undergoing treatment expected to result in decrease of the
splenic volume. We expose and discuss the results of our statistical analysis,
which demonstrates that our heuristics are superior to prior methods in cer-
tain situations. Finally, we conclude with guidance on how these heuristic
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determinations can be reached without requiring ground-truth organ seg-
mentation.

8.1 Theoretic Background

In this section, we briefly introduce the theoretical foundations necessary for
the computation of the conformal welding heuristic. For more details, we
refer readers to the classical books [54, 71].

8.1.1 Riemann Mapping

Conformal mapping between two surfaces preserves angles. Suppose (S1,g1)
and (S2,g2) are two surfaces embedded in R3, g1 and g2 are the induced
Euclidean metrics. A mapping � : S1 ! S2 is called conformal, if the pull
back metric of g2 induced by � on S1 di↵ers from g1 by a positive scalar
function: �⇤g2 = e2�g1, where � : S1 ! R is a scalar function, called the
conformal factor. For example, all the conformal automorphisms of the unit
disk form the Möbius transformation group of the disk, each mapping is
given by z ! ei✓ z�z0

1�z̄0z
. A genus zero surface with a single boundary is called

a topological disk, which can be conformally mapped onto the planar unit disk
by a Riemann mapping, all such mappings di↵er by a Möbius transformation.

The Riemann mapping can be computed by Ricci flow, which is the pro-
cess of deforming Riemannian metric g proportional to the curvature, such
that the curvature K evolves according to a heat di↵usion process, eventually
the curvature becomes constant everywhere. Suppose the metric g = (g

ij

) in

local coordinate. Hamilton [69] introduced the Ricci flow as dgij

dt

= �Kg
ij

.
Surface Ricci flow conformally deforms the Riemannian metric, and converges
to constant curvature metric [33].

8.1.2 Conformal Welding Shape Descriptor

Suppose � is a closed curve on a genus zero closed surface S, segments S into
two components {⌦0,⌦1}. The Riemann mapping �

k

: ⌦
k

! D maps each
segment ⌦

k

to the disk. Let f := �1 ���1
0 |S1 : S1 ! S1 be the di↵eomorphism

from the circle to itself. We called the term di↵eomorphism f the signature
of �. The closed curve � on a genus zero closed Riemannian surface S is
determined by its signature, unique up to a conformal automorphism of the
surface.
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8.2 Algorithm

In this section, we describe the process of calculating the conformal welding
shape signature used in our heuristic. This process is illustrated in Figure
24 in detail.

8.2.1 Riemann Mapping

The surface is represented as a triangular mesh ⌃(V,E, F ), on which we
apply discrete Ricci flow method [82].

Definition 1 (Discrete Conformal Factor). The discrete conformal factor
function is defined on the vertex set u : V ! R, such that for each edge
[v

i

, v
j

], the edge length l
ij

= eui�
ij

euj , where �
ij

is the initial edge length.

The discrete Gaussian curvature on each vertex v
i

is defined as angle

deficit: K
i

=

(
2⇡ �

P
ij

✓jk
i

v
i

62 @⌃

⇡ �
P

ij

✓jk
i

v
i

2 @⌃
, where ✓ij

i

is the corner angle at

v
i

in the face [v
i

, v
j

, v
k

]. Then, the discrete Gauss-Bonnet theorem holds:P
vi2⌃ K

i

= 2⇡�(⌃).

Definition 2 (Discrete Ricci Energy). The discrete Ricci energy is given by
E(u) =

R u P
i

K
i

du
i

, where u is the vector of conformal factors (u1, u2, · · · , un

).

The discrete Ricci energy is convex on the space
P

i

u
i

= 0. The Hessian
matrix of the Ricci energy is given by @

2
E

@ui@uj
= @Ki

@uj
which has explicit geomet-

ric interpretation. Suppose [v
i

, v
j

] is an interior edge on ⌃, which is adjacent
to two faces [v

i

, v
j

, v
k

] and [v
j

, v
i

, v
l

], @Ki
@uj

= �(cot ✓ij
k

+ cot ✓ji
l

), if [v
i

, v
j

] is

a boundary edge adjacent to [v
i

, v
j

, v
k

], then @Ki
@uj

= � cot ✓ij
k

. Furthermore,
@Ki
@ui

= �
P

[vi,vj ]2⌃
@Ki
@uj

.

Definition 3 (Delaunay Triangulation). A closed triangle mesh is Delaunay,
if for each edge [v

i

, v
j

] adjacent to faces [v
i

, v
j

, v
k

] and [v
j

, v
i

, v
l

], ✓ij
k

+✓ji
l

 ⇡.

Given target curvature K̄ : V ! R, satisfying the Gauss-Bonnet theorem,
the discrete Ricci flow is given by dui

dt

= K̄
i

�K
i

, which is the gradient flow
of the following energy F (u) =

R u P
i

�
K̄

i

�K
i

�
du

i

. This energy is strictly
concave in the space

P
i

u
i

= 0, and can be optimized directly using Newton’s
method, rF = (K̄1�K1, K̄2�K2, · · · , K̄n

�K
n

)T . The Hessian matrix is the
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negative of that of E(u). Furthermore, during the flow, we preserve the mesh
to be Delaunay all the time. This guarantees the existence of the solution.

Discrete Riemann Mapping. Given a topological disk, by puncturing
a small hole in the center, we convert it to a topological annulus. Then, we
set the target curvatures to be zeros everywhere, and run Yamabe flow to
get a flat metric. By applying the complex exponential map, we can map
the annulus with the flat metric to a planar annulus, and then fill the center
hole. This gives the Riemann mapping from the original topological disk to
the unit disk.

8.2.2 Computing Shape Descriptor

After the computation of the conformal mapping, each connected components
is mapped to the disk. We use a Möbius transformation to map the mass
center of each disk to the origin. Then we compute the signature directly.
Suppose � ⇢ S1 \ S2, where S1 and S2 are two segments. '1 : S1 ! D and
'2 : S2 ! D are two conformal mappings, then, the signature of � is given
by f

�

:= '2|� � '�1
1 |

�

.

8.3 Methods

The data for this study was collected retrospectively from patient charts and
PACS. The study includes the data of the adult patients (over 18 years of
age), with 2 to 4 additional abdominal CT scans over a three year period.
For this work we have selected the datasets with the highest number of pa-
tient follow-ups available, which resulted in 12 datasets of normal subjects
(31 scans total), and 11 of abnormal (31 scans). Manual volumetric segmen-
tation of the splenic contour on each axial slice was performed using Alice
(Paraxel Informatics, Waltham, MA) in a blinded fashion under supervision
of a fellowship-trained attending radiologist. Ground truth computation of
the segmented volume of interest was performed by the software. Overall the
splenic volume of subjects in healthy group ranged from 73 to 705 mL (mean
306, ± 173 mL). Subjects in sick group demonstrated ground truth splenic
volume ranging from 108 to 2255 mL (mean 578, ± 462 mL). CT slice thick-
ness varied from 2.5 to 5 mm in the healthy group, and from 1.25 to 5 mm
in a sick group with majority being 2 mm. From the ground truth segmen-
tation, we also generated 3D meshes which were used to drive the conformal
welding heuristic. These mesh had an average granularity of approximately
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Figure 24: Conformal welding shape signature pipeline: (a) Surface cut by
the plane with selected conformal welding-based heuristic, (c-d) top and bot-
tom parts of the mesh conformally mapped to circle, (b) resulting signature
of the shape.

10000 - 16000 vertices. Overall, our evaluation was structured as follows.
For each splenic dataset, we first determined the maximal axial length of
the organ. Following that, we determined the axial plane that resulted in a
maximization of organ cross-section. Finally, we determined the axial plane
through the conformal welding heuristic. For the purpose of determining the
latter, we proceed with the following steps:

• We cut the surface mesh at every slice starting from the maximum area
slice up to ±5 slices.

• For each cut, we find the signature of global correspondence between
upper and lower surfaces of the mesh.
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Figure 25: Shape signatures resulting from di↵erent cut plane selections:
maximal length of the organ’s cross section (yellow), maximal area (red), and
optimal plane based on conformal welding heuristic (orange). Two conditions
are illustrated: (a) Surface mesh of a spleen with known disease; (b) surface
mesh of a healthy spleen and respective shape descriptors for mesh cut with
di↵erent heuristics.

• Further, we find l2-norm of each signature to the perfect ellipsoid sig-
nature (Figure 25).

• For our conformal welding shape signature heuristic, we select the axial
slice that with the minimum l2-norm that is only up to 3 cross-sections
(6 - 15 mm) away from the maximal area cross-section. We do not
examine the signatures of the cuts that are close to top or bottom slices
since at those points the cross-section of the organ becomes naturally
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Table 9: Lin’s concordance correlation for compared heuristics.

Method Normal Abnormal
Maximal diameter product heuristic

Rezai ccc = 0.953 [0.872,0.983] ccc = 0.982 [0.951,0.993]
mean = -17.96 ± 39.6 mean = -19.44 ± 52.03

Pr. Ellipsoid ccc = 0.896 [0.742,0.96] ccc = 0.884 [0.705,0.957]
mean = 72.38 ± 64.14 mean = 194.36 ±191.88

Maximal width-based heuristic
Rezai ccc = 0.931 [0.821, 0.974] ccc = 0.977 [0.940, 0.991]

mean = -35.48 ± 42.2 mean = -54.75 ± 40.6
Pr. Ellipsoid ccc = 0.913 [0.778, 0.967] ccc = 0.907 [0.748, 0.968]

mean = 46.88 ± 64.0 mean = 142.96 ± 193.4
Maximal area-based heuristic

Rezai ccc = 0.953 [0.877,0.982] ccc = 0.980 [0.949,0.993]
mean = -25.1 ± 31.36 mean = -29.12 ± 34.99

Pr. Ellipsoid ccc = 0.910 [0.778,0.965] ccc = 0.894 [0.725,0.961]
mean = 61.99 ± 52.6 mean = 180.26 ± 183.67

Conformal welding-based heuristic
Rezai ccc = 0.854 [0.665,0.939] ccc = 0.974 [0.933,0.99]

mean = -65.79 ± 45.54 mean = -48.92 ± 58.31
Pr. Ellipsoid ccc = 0.933 [0.833,0.973] ccc = 0.917 [0.778,0.97]

mean = 2.76 ± 37.84 mean = 151.45 ± 160.24

close to the ellipse resulting in the signatures with the smallest l2-
norms, yet not representing global shape of the organ.

We compare four heuristics for selecting the plane of measurement: maximal
width of the organ, maximal product of orthogonal diameters, maximal area,
and our novel conformal welding based heuristic. For each one of these
heuristics, we estimated the splenic volume utilizing the Rezai and prolate
ellipsoid formulations. Overall, we end up with 4⇥ 2 (heuristic ⇥ estimation
method) volumetric measurements per subject group.

8.4 Results
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As is standard in volumetric estimation against the ground truth volume
in biomedical studies, we should compare concordance correlation coe�cient
(CCC) of the established metric with a ground truth volume, which is tra-
ditionally done with Lin’s CCC [98]. However, since our data consists of
repeated measurements for every subject over time, we utilize a modified
version of concordance estimation by Carrasco et al. [29]. In our evaluation
we utilize their R package implementation, in particular the estimation of
CCC from a variance components and fixed e↵ects that are estimated using
the restricted maximum likelihood (REML) approach.

The results of this analysis, broken down between the normal and ab-
normal (or sick) dataset samples, can be seen in Table 9 for the maximal
orthogonal product of diameters, maximal width, maximal area and confor-
mal welding heuristics respectively. Our analysis has shown that in all of the
cases, prolate ellipsoid method tends to overestimate organ volume, while
Rezai underestimate. Substantial correlation is observed for Rezai method
for both heuristic based on the maximal product of orthogonal diameters, and
for maximal area-based heuristic. With respect to prolate ellipsoid method,
our novel conformal welding-based heuristic shows substantial correlation
and establishes the best possible estimation.

Our evaluations show that existing formulations for the volume estima-
tion do not necessarily show previously reported quality of fit to the new
population. Our observations suggest that it is the high shape variability
of the organ and deviation from assumed ellipsoid-like shape that results in
high deviation from the ground truth volume, in particular for prolate ellip-
soid method. Overall, estimations were more concordant with true volumes
using the Rezai method. While correlation between both methods and true
volume was not weak, occasionally changes in morphology over time signifi-
cantly altered the true orthogonal width, resulting in falsely large calculated
change in volume.

First, it is important to note that while maximal diameter product-based
heuristic shows substantial correlation, it is highly unlikely for the observer
to select the cross section of the organ with greatest product of two orthog-
onal diameters. Our suggested maximal area and conformal welding-based
heuristics, report moderate results for Rezai and prolate ellipsoid volume es-
timations. The maximal area-based heuristic outperforms traditional width-
based heuristic, also known as “calipers” length, for Rezai method for both
sick and healthy organs. This can be explained with more frequently oc-
curring wedge shapes of organ cross-sections, such that maximal axial width
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heuristic does not capture the thickest part of the organ, and might erro-
neously select concave wedge shape.

In addition, our conformal welding-based heuristic achieves moderate con-
cordance for the ellipsoid method. It outperforms the established maximal
width heuristic for the prolate ellipsoid method. In particular, this is due to
selection of the organ cross-section whose signature is closest to the perfect
ellipsoid assumed by the formula, and which represents the global correspon-
dence between the upper and lower parts. Both traditional maximal width
and maximal area heuristics can be used for abnormal cases due to “swollen”
and ellipsoid-like shapes. While conformal-welding based heuristic, similar to
maximal diameter product heuristic, is not detectable by the observer with-
out a fully segmented organ, it does provide us the best possible plane for
closest estimation by prolate ellipsoid method due to the assumed ellipsoid
shape.

8.5 Conclusions

We have performed analysis of splenic volume estimation techniques based on
two groups of subjects: subjects with no known disease to a↵ect the splenic
size and subjects with leukemia and lymphoma, diseases that frequently re-
sult in splenomegaly. Our results suggest that traditional methods tend to
over- or underestimate the volume, which results in inaccurate analysis of
volumetric changes over time. We have analyzed the shape of the spleen
and proposed two heuristics that outperform traditional width-based mea-
surements. In case one-dimensional measurements remain a standard, our
suggestion is to further re-evaluated existing methods and categorize metrics
and heuristics based on the shape of the organ.
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9 AnaFe: Visual Analytics of Image-derived
Temporal Features

9.1 Introduction

Diseases that a↵ect spleen pose particular challenges based on the interplay
of multi-dimensional, time-varying data, and data across populations. Vi-
sual analytics approach has the potential to support medical analysis of the
problem domain of splenic disease. Hence, In this work, we propose a vi-
sual analytics tool, AnaFe, for the analysis of changes in the organ based on
imaging-derived features. The current quality of image acquisition and anal-
ysis allows for the extraction of reproducible quantitative imaging features.
We take advantage of such features derived from the field of radiomics [113]
to enable an open-ended similarity search and trend exploration in splenic
imaging data. Such features have several benefits: simplicity in derivation,
mapping to visualization, and most importantly reproducibility and versatil-
ity across imaging types and domains.

AnaFe supports a similarity search and comparison workflow based on a
set of robust radiomics features. Our proposed workflow enables a user to
construct custom similarity-based queries through interaction with these fea-
tures. Through a number of visual queries and a rapid visual feedback, the
user is able to compare several time-variant imaging sets and their correlating
features in a single overview. Driven by demands of medical research anal-
ysis, AnaFe combines a set of linked visualization views. Thus, researchers
can concentrate on exploring and characterizing changes in data and corre-
sponding features.

The utility of our tool is demonstrated through two case studies conducted
by our collaborating radiologist on a set of 189 datasets. Based on the tar-
get application domain we outline a set of visualization requirements for our
visual analytics system and describe the resulting design decisions. Then,
we illustrate the implementation of our tool and focus on the integration of
various feature types and their mapping to visualization views. Next, we de-
scribe two application use-case scenarios. We conclude by o↵ering directions
for future work.
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Figure 26: An overview of the steps required for temporal feature analysis
by AnaFe. The data is sourced from follow-up CT scans (a) that have been
segmented (b). In this work, we first derive robust image features from the
field of radiomics (c): texture, shape, intensity, and measurements. These
features, along with other study information (non-image features), are used
by our web-based application AnaFe. After selection of the current subject
(d), the application performs a search for subjects with similar progression.
Search results filtering is performed by brushing a selection over the dis-
tribution charts (f) of average features and average change in progression
(interchangeable views shown with a double yellow arrow.)

9.2 System Design and Implementation

AnaFe is a framework for analytical exploration of 3D organ data and asso-
ciated medical-imaging derived features. We focus on parts (c)-(f) in Figure
26: deriving the imaging features and their visual analysis in combination
with non-image features from the study data.

9.2.1 Input Data

Our application consumes several types of data that stems from the medi-
cal research study of spleen variation. Each study is comprised of multiple
subjects observed over several visits.

Subject Information. Each study contains information with respect to
gender, age, and disease status of the subject (sick or healthy).

Imaging-derived Features. Feature vectors for each study are derived
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from the original DICOM data after applying segmentation masks. We de-
scribe these features in detail in Section 9.2.2. The e↵ect of segmentation on
quantifiable radiomics features has been previously evaluated [113]. For the
purpose of unbiased evaluation we used features derived only from manually
segmented data.

3D Surface Mesh Pre-processing. AnaFe requires a 3D mesh for
each organ for rendering, which is obtained in two steps.

Mesh generation. From the manually segmented data we derive a 3D
surface mesh of the organ via marching cubes [100]. The surface geometry is
then post-processed with Taubin smoothing [136].

Mesh registration. For comparison of several organs’ surfaces, we align the
meshes using the Iterative Closest Point (ICP) algorithm[97]. Next, meshes
are registered using non-rigid ICP to obtain correspondences between the
vertices of consecutive timepoint meshes. This type of registration has not
been previously used for the spleen. We have selected these methods based
on the preliminary evaluation of their performance and ready availability.

Thus, any study of a group of subjects with a series of repeated measure-
ments (dependent variables) over time (independent variable), that contains
similar information can be analyzed by AnaFe.

9.2.2 Feature Types

In clinical practice determining the spleen size and response to treatment
is often a qualitative rather than quantitative process. For the purpose of
quantitative comparison of inter-subject similarity of organ change along with
basic measurements, we integrate a set of imaging-derived features. With our
application and other potential domains in mind, we group these features into
the following four categories:

• Measurements. In practice, volume, craniocaudal length, width, and
thickness serve as primary comparisons for spleens. Therefore, we de-
fine them as a separate category. For many other applications, mea-
surements can be defined as descriptors of shape.

• Shape. Shape descriptors characterize spleen shapes, which include
elliptical, triangular, wedge, and tetrahedron [126].

• Intensity. In CT scans, the spleen is often described as an organ of
homogeneous density [126]. Thus, intensity is not extremely important
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for this application. We include this feature group for the purpose of
extensibility to other domains.

• Texture. Texture features are based primarily on a gray-level co-occurrence
matrix (GLCM). Such features describe cluster prominence and can be
used for tumor characterization. Similar to intensity, this feature is
included for extensibility.

The detailed definitions of these features can be found in the related
literature [113]. In addition, we provide information on the features used in
our case studies in Table 9.2.2. These imaging-derived features, along with
study information (gender, age, and disease status), comprise the full feature
vector for each dataset.

Table 10: Summary of image-derived features and measurements used by
AnaFe.

Feature Definition

Measurements

Volume

Total volume (V
total

) of the organ determined by
voxel count (I

voxel

) and voxel volume (V
voxel

):

V
total

= I
voxel

· V
voxel

(3)

Craniocau-
dal
length

Length of the organ from top first axial slice to
the last multiplied by slice thickness.

Width
Maximal diameter of the organ on the axial slice
(with maximal area)

Thickness Diameter of the organ perpendicular to width

Shape

Compact-
ness

Reflects how close the shape of a 2D object to a
circle:

Compactness =
2
p
Area · ⇡

Perimeter
(4)
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Convexity

Characterizes the convexity of a 2D object:

Convexity =
Perimeter

convex hull

Perimeter
(5)

Rectangu-
larity

Reflects how close the shape of a 2D object to a
rectangle :

Rectangularity =
Area

Area
mimnum bouding box

(6)

Ellipticity

Shows how much the shape of a 2D object di↵ers
from an ellipse:

Ellipticity =
Area

Area
fitted ellipse

(7)

Triangu-
larity

Reflects how close the shape of a 2D object to a
triangle:

Triangularity =
Area

Area
minimum bounding triangle

(8)

Surface-
area-to-
volume
ratio

Characterize the complexity of a 3D object:

A� V Ratio =

P
i

Area
voxeli

V
total

(9)

Texture

Gray Level Co-occurrence Matrix (GLCM)P
indicates frequencies of combinations of gray level
co-occurrences
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Contrast

Measures the local variations in the GLCM:

Contrast =
X

i,j=0

P
i,j

(i� j)2 (10)

Homo-
geneity

Measures the closeness of the distribution of
elements in the GLCM:

Homogeneity =
X

i,j=0

P
i,j

1 + (i� j)2
(11)

Dissimilar-
ity

Measures the variation of gray level pairs in the
image:

Dissimilarity =
X

i,j=0

P
i,j

|i� j| (12)

Energy

Measures local homogeneity:

Energy =
X

i,j=0

P 2
i,j

(13)

Correla-
tion

Measures the gray level linear dependencies in
the image:

Correlation =
X

i,j=0

P
i,j

(i� µ
i

)(j � µ
j

)q
�2
i

· �2
j

, (14)

where µ
i,j

and �
i,j

are the mean and std of P
x

and P
y

Intensity

Maximum Maximum intensity value

Minimum Minimum intensity value
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Mean &
Standard
Deviation

Mean and standard deviation of intensity values

Range The range of intensity values

Kurtosis Measures the sharpness of the histogram

9.2.3 Similarity Comparison

Comparing changes across subjects (RQ2) requires analyzing data from mul-
tiple timepoints. The number of visits varies from subject to subject based
on the condition and progression of the disease. It was noted by our medical
collaborators that the time di↵erence between the two consecutive patient
visits is not of essence for this comparison. Varying duration of treatment
and the subject’s initial conditions can a↵ect the quantitative di↵erence in
the measurement/features. These compounding variables about the subject’s
original state were not available during the current study. Regardless of the
velocity of change in the organ’s condition, it must be detected. The focus
of our study is visual identification and correlation of predictors of change
among the large number of features (measurements and imaging-based) for
future analysis and statistical testing.

We obtain a vector of imaging-derived features for each subject’s visit.
For similarity computation purposes, these features are normalized to the [0,
1] range based on maximum and minimum values. The original value of each
feature is stored for display purposes (in labels and tooltips). Thus, each
subject is described by several feature vectors over multiple visits. Similarity
comparison between two studies is performed by computation of two mea-
sures: cosine similarity of feature vectors and dynamic time warping (DTW)
of time-series.

Cosine similarity is defined as the similarity between two feature vec-
tors for a given timepoint. Specifically, it is an angle between two feature
vectors. In our application, we use a special case of weighted cosine simi-
larity. Initial feature weights are assigned to be equal and can be changed
by the user in the process of similarity-query construction as described in
Section 9.3.7. Based on the weight, some features can be fully excluded from
the comparison. For example, texture and intensity of the spleen can be
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described as homogeneous, and thus the user can fully exclude such features
if not found to be meaningful.

Time-series similarity is defined by the DTW distance measure [129,
130] algorithm with the above described cosine similarity as a distance cost
at each point. DTW distance can be determined for sequences of unequal
lengths and does not account for the di↵erence in time between two points,
which satisfies our requirements. As we have mentioned earlier, in the series
of subject’s scans the di↵erence between two timepoints can be ignored. For
the datasets where this assumption does not hold, two possible variations can
be considered. In a simple case of evenly spaced events, Euclidean distance
between time series with modification for missing data can be used. For
irregular time series, variations of DTW or model-based search methods can
be used. Additionally, DTW has been previously applied to the analysis of
medical data with incomplete series [139].

AnaFe performs a similarity comparison of the selected multi-timepoint
study to all other studies loaded in the system. The results of the similarity
search update two synchronized views.

9.3 Visualization Design

AnaFe implements our collaborators’ requirements through a number of
highly interactive linked views described in this section:

• Demographics Overview (DO) - an overview of basic demographic in-
formation (age, gender, and disease types).

• 3D Small Multiples Objects over Time (SMO) - an overview visual-
ization of the organ progression via 3D small multiples that simplifies
direct comparison of the organs as per RQ2 and RQ3.

• Feature Distribution Overview (FDO) - a visualization of several groups
of quantitative imaging features via familiar information visualization
plots with interactive capabilities as per RQ4.

• 3D Object Detail (OD) - a detailed progression view of 3D organ mesh
shapes highlighting the changes between timepoints as an expansion to
RQ1.
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• Measurement Progression over Time (MPT) - an overall progression
trend for the patient based on measurement metrics (volume, length,
width, and thickness) (RQ1).

• Feature Progression over Time (FPT) - a heatmap-style visualization
of feature progression over time (RQ4).

The layout of the application (Figure 27) is broken down into four main
views and two control panels (main and feature selection). From the main
control panel, the user can select a multi-subject study to be loaded from
the back-end. The DO, SMO, FDO, and MPT views will be populated
based on the number of subjects and the computed feature distributions
as described in Section 9.3.5. The OD and FPT views alternate based on
the user’s selection in the control panel. MPT, SMO, and FPT (if selected)
comprise a single table/list style scrollable view. The implemented capability
of “virtual” scrolling allows for rendering of only currently visible items. This
implementation alleviates the bottleneck of simultaneously handling multiple
WebGL canvases and contexts for 3D small multiples rendering.

The selected study is displayed at the top of the table list and highlighted
accordingly. The similarity comparison is performed based on the user de-
fined query through filtering options in the FDO. We describe each of the
views below.

9.3.1 Demographics Overview (DO)

The demographics overview consists of a bar chart visualization showing
the distribution of gender, age, and disease status (sick or healthy) in the
population. Spleen volumetry studies analyze the distribution of the organ’s
volume and other measurements (length, width, thickness) in the population
for di↵erent demographic groups. Through interactions with this view, the
user can filter which sets are shown and analyzed. By clicking on the column
in the bar chart (or by brushing a selection over a range of columns), the user
can select a category or a range of values. For example, only sick patients in
the age group of 40-80 can be selected for analysis.

9.3.2 Measurement Progression over Time (MPT)

In clinical practice, the response to treatment or disease progression for
the spleen is evaluated quantitatively based on length or volume of the organ
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Figure 27: An application layout showing locations of all views, as described
in Section 9.3. The arrow indicates interchangeable views.

[32, 124]. Similarly, in many applications, tumor growth is measured by a
single diameter or volume. The progression trend (MPT view) should show
an overall increase or decrease in this metric over a series of the subject’s
follow-up visits.

This view is implemented as a scatterplot (Figure 28) that shows the tra-
jectory of the measurement for a given subject at each period of time (color
filled markers). The dashed line connects two consecutive measurements into
the progression trend per subject. In order to enable fast comparison of the
trend of one subject with respect to others, this chart shows distribution
of measurements across the population (grey empty markers). All measure-
ments of one subject are highlighted on mouse interaction, thus providing
trajectories for comparison.

As previously discussed [66], there is a lack of consensus on which mea-
surements are used to compare disease progression. This panel allows the
user to define a trend metric, e.g. splenic volume, and visually compare the
change to the SMO and the OD views with the 3D rendering of the organ.
Evaluating and understanding the manner in which spleens change in size,
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Figure 28: An example scatterplot of Measurement Progression over Time
(MPT). Red markers show measurements for a given subject (#11) at each
follow-up visit. The dashed line connects the measurements showing the
progression trend for this given subject. Grey markers show measurements
within the population at each visit.

for example shrink faster in length or in width, can characterize a disease pro-
gression or treatment. In this way, an abnormal spleen can be characterized
even when it falls within the normal range for splenic size.

9.3.3 3D Small Multiples Objects over Time (SMO)

In a traditional clinical setting, only a few imaging results can be rendered
simultaneously side-by-side. In such a scenario, the user can compare the
change only for a single patient. To compare organ change among several
subjects, we employ Tufte’s principle of small multiples [140]. Keefe et al.
[83] have used a similar approach for the visualization of 3D pig mandibles.

In our 3D small multiple views, the organ model is shown sequentially for
each timepoint. It allows the user to quickly compare multiple organ models
between several subjects (Figure 32 (1)). The time-series 3D object overview
visualization allows individual rotation of each model for comparison from
multiple angles. Furthermore, each of the organs can be selected with a
double click for detailed investigation in the OD.

The SMO and MPT views are positioned side-by-side in the form of the
table/list view. In this way the measurement scatterplot provides the re-

97



Figure 29: An example of the OD view showing two spleens rigidly aligned.
Small black arrows indicate the direction of change and are obtained from
the result of non-rigid registration.

quired trend visualization when change is not immediately visible on the 3D
object. The 3D SMO view serves as a 3D thumbnail preview of the organ
shapes. Correlating a trend metric from the MPT view (e.g. volume, length,
or width) to the actual shapes can be done without context switching to mul-
tiple images. Thus, we combine both scientific and information visualization
for analytics purposes.

9.3.4 3D Object Detail (OD)

Traditionally, organ progression observation and analysis is limited to sta-
tistical 1D measurements. Further investigation of 1D measurements and
correlated spatial changes requires manual browsing through 2D slices of
DICOM data for each dataset. Our collaborators have noted that this com-
parison demands substantial context-switching between several applications
(statistical packages, DICOM viewers, etc.), incurring a significant time and
e↵ort overhead.

AnaFe renders the 3D surface mesh of the organ, thus enabling close
investigation of local changes in the organ. Based on rigid alignment (ICP),
organs from consecutive timepoints are aligned. Non-rigid registration (non-
rigid ICP) provides point-by-point correspondences to render arrow glyphs.
This type of representation can show the direction of the greatest change in
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Figure 30: An example of linking via brushing support between “volume,”
“length,” and “convexity” in the FDO view. By brushing in the “volume”
chart visualization, the user can compare how selected subjects are dis-
tributed in other charts. Subjects and timepoints outside the selected range
are removed from the similarity comparison (row). If the feature is fully
deselected via the checkbox, the respective column in the FPT heatmap is
dimmed out.

the spleen (Figure 29). From the semi-transparent rendering view the user
can see whether the decrease was uniform in all dimensions or whether one
dimension increased/decreased more rapidly. In many organs, a disease is
defined in terms of distortion of their shape. Diseases that uniformly enlarge
the organ without shape changes tend to fall into one group, while diseases
that fundamentally change the shape tend to belong to another category.
For the spleen, this view helps the user to understand whether the change is
uniform or irregular.
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Figure 31: An example of feature histogram charts for an average craniocau-
dal length of the spleen per subject, and average relative change over time.
The exact value of the feature is available in the tooltip when hovering over a
subject’s rectangle. The color scheme of the chart is selected by the user and
is applied to each feature histogram. The figure presents 4 available color
schemes: unique by subject, by gender, by disease status, and by age.
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Figure 32: The result of similarity comparison for subject #19 (a): (b) based
on all features; (c) measurement features only; (d) shape features only.
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Figure 33: An example of OD, SMO, and MPT views for 4 subjects. Case
(b) was found to be the most similar to case (a) in the sick subject data.
Both show the same decrease in organ volume. Cases (c) and (d) were found
to be most similar among healthy subjects. While the spleen (c) decreased
in volume, (d) remained almost unchanged.

9.3.5 Feature Distribution Overview (FDO)

Histograms are common to visualize density distribution in the data. Feature
visualization of multi-timepoint data should provide an understanding of dis-
tribution of average feature values and relative changes for each subject. The
number of histogram bins and their size have to be chosen carefully to depict
the overall density. While a basic histogram can provide an answer with
respect to the overall distribution of values, it does not identify individual
entities that contribute to each bin.

With the above ideas in mind, we construct a custom feature histogram
view (Figure 31) that shows individual entity contributions. In our histogram
the bin width is computed based on the Freedman-Diaconis rule [52]. For
a dataset of 68 subjects, this resulted in up to 20-40 values per each bin
for a given feature. The relatively small bin size allows us to display each
entity individually as a rectangle of the respective width, and with a height
computed based on the chart dimensions. The chart’s width and height are
equal for all feature types and are computed by the application based on the
screen size. In our feature histogram, rectangles can be colored using one
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of the color schemes: individually for each subject, disease status (healthy -
, sick - ), gender (male - , female - ), or based on age ( to
). AnaFe allows for color selection based on one of these specified color

schemes and switching between two summarized types of feature distribution
visualization as required. The features can be summarized by average value
per subject and average relative change between consecutive timepoints.

The FDO view is one of the key visualization components of the system.
It provides a global overview without eliminating individual per subject val-
ues. Globally, this view provides insight into the distribution of features.
Based on interaction (hovering over a rectangle), the user can investigate
into which range a given subject belongs for each feature (the correspond-
ing subject is highlighted in all views). In clinical research, the expert can
specify population groups to be included in the similarity comparison. For
instance, she might want to compare all the “long” spleens of sick subjects
that were undergoing treatment. By brushing over the “length” FDO chart
and over the “disease status” DO chart, the population is filtered and will
be used for comparison.

9.3.6 Feature Progression over Time (FPT)

FPT is a heatmap visualization of feature vectors for each subject’s visit
(Figures 30 and 32 (3)). The FPT view is not immediately visible and can
be shown on demand through selection on the control panel. The row number
of within the chart indicates the visit, and the cell is a value of the feature
at a given point in time. Cell color is determined based on the normalized
value of the feature (the data value is mapped to interval from 0 to 1). The
darkest red identifies the highest value of the feature (normalized to
1) and yellow indicates lowest value (normalized to 0). The original
value can be viewed by hovering over the cell. Through this color coding, the
FPT view shows the change of each individual feature for the subject over
time in a single view. For instance, measurements such as volume, length,
width, and thickness of the organ (shown in the first group in Figure 32)
and quantitative radiomics shape features can be surveyed in parallel across
a treatment regimen.
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9.3.7 Visual Queries and Interaction

Our visual query interface is comprised of multiple feature distribution his-
togram charts. We have identified 4 groups of imaging-derived features. In
this application we currently use up to 8 features in each group with the
possibility of adding more features in the future.

Query construction. The feature query interface allows the user to
specify three types of information required for the comparison of time-series
similarity: inclusion/exclusion of each feature, weight of feature contribution,
and range of feature interval. The user can select a feature (include/exclude)
via a checkbox in the legend in order for the feature to be included. The
feature weight can be specified via a slider located next to each feature
histogram. Feature range selection, brushing selection over a block of the
histogram, allows the user to select a range of values for each feature. If
a histogram bin is selected, all sets within that range will be included in
the similarity comparison. Mouse hover links all feature values for a given
subject on all histograms.

Query results. A similarity query compares the currently selected study
(displayed first) with every other multi-timepoint study available in the
dataset. If a value of a feature falls outside the range selected by brushing,
and leaves only a single timepoint per subject, the subject will be compared
based on that one point. After the user completes the feature selection, she
can request the similarity results. Results are displayed in all table/list views:
subject information, MPT, and SMO.

9.3.8 Implementation

The AnaFe front-end is implemented using standards-compliant Javascript,
CSS, HTML5, and WebGL and utilizing Bootstrap9 layouts. The core ap-
plication sca↵olding is driven by Angular.js10. The visualizations are gen-
erated using three.js11 and Highcharts.js12. The core web application
functionality is implemented on top of Node.js13, with Sails.js14. Data

9
http://getbootstrap.com

10
https://angularjs.org

11
http://threejs.org

12
http://www.highcharts.com

13
https://nodejs.org/

14
http://sailsjs.org
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pre-processing and derivation of all imaging features is handled in Python

utilizing scikit-image15.

9.4 Application

In this section, first, we describe the data collection used. Then we present
two usage scenarios, showcasing our application in the process of analyzing
a collection of splenic imaging datasets, and obtain related domain expert
feedback. For both of the scenarios we show our system by providing an
overview of the data, allowing the user to zoom, filter, and examine example
results and details on demand. Finally, we present an example of AnaFe’s
extensibility to other organs and medical imaging types.

9.4.1 Spleen Data

The data used in our study was collected retrospectively over a period of
three years. This data includes two groups of subjects: those with no known
causes of splenomegaly or diseases a↵ecting the spleen (healthy), and those
with lymphoma or leukemia, diseases known to a↵ect the organ size, that were
undergoing treatment (sick). Only subjects with two or more abdominal CT
scans over a three year period were included. This study was approved by
our IRB. The DICOM image data was de-identified and stored in a secure
o↵-line database.

A total of 33 healthy subjects with up to 3 follow-ups over the given time
period were included, resulting in 79 healthy datasets. For “sick” subjects,
we included data with up to 4 follow-up scans over the course of treatment
/ disease observation, resulting in 35 subjects with a total of 110 datasets.
The data included 24 female subjects and 44 male.

For each study, manual tracing of the splenic contour was performed on
each axial slice in a blinded fashion under the supervision of a fellow-trained
attending radiologist, providing a ground truth segmentation. This work was
performed using the Alice software16.

While the time between the follow up scans varied from one week to over
a year, it was noted by our collaborators that only the di↵erence between
measurements was important, and the time between visits was not of high
significance, as explained earlier.

15
http://scikit-image.org

16
Paraxel Informatics; Waltham, MA
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9.4.2 Case 1: Similarity Comparison

In this section we demonstrate the similarity comparison feature for multiple
datasets and features. We focus on the usability and interactivity of the
system by providing step-by-step scenarios of usage.

Data selection. First, the user should select a multi-subject study and
select a set for comparison. By default, all of the study parameters and
imaging-derived features will be included in the search. AnaFe provides full
customization of the query parameters to the user.

Visual queries. The search for similar shapes can be narrowed down
through AnaFe’s visual query interface in the FDO view. Based on the
selection of search parameters (types of measurements and features), some
timepoints will be excluded from comparison. Once the query selection is
complete, the entire time series for a particular subject is compared to that
of all other subjects. The similarity is computed in real-time (for 189 spleens),
and the result is displayed immediately in the list/table views. Initially, the
preview of temporal sets in the 3D SMO view provides immediate feedback
to the user.

Example of findings. Figure 32(a) shows an example of the four most
similar sets as compared to subject #19. First, similarity comparison was
performed using all available features (Figure 32(b)), next based on diameters
and volume of the organ (c), and finally based only on shape features (c).
The color of the marker in the MPT scatterplot indicates disease status of
the subject (with green being healthy). In cases (c) and (d) the system
has identified healthy subjects #66, #70, #81, and #55 as similar. In the
first case, with all features selected, the system has identified only diseased
subjects. Similarity comparison in this case did not include demographics
information and was based solely on imaging features.

Zooming-in on the result. Next, the user can select the organs by
double clicking on them for zoomed-in investigation in the 3D OD view.
Figure 33 shows rendering of temporal scans for four subjects. All measure-
ments (volume, width, length, thickness) were used for comparison query. 3D
meshes of the organ are all registered sequentially. The reviewer can inspect
the direction of change. For example, for sick subjects (a) and (b) in Figure
33, change happens in all dimensions. In case (c), some change has occurred
in the healthy subject as well. For such a small organ volume, this change
may indicate the variation in hydration status. However, for most of the
healthy subjects found in our data, there is no change between consecutive
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visits.

9.4.3 Case 2: Interactive Feature Exploration

Radiomics uses medical imaging features for the prediction of diagnostic out-
comes [34, 113]. In the examined applications these features provide a non-
invasive way of quantifying and monitoring tumors. We use this comprehen-
sive quantification of imaging to find similarities in progression of disease and
response to treatment in the spleen data. However, there haven’t been any
previous attempts at visualizing these features for detailed user examination.

Feature overview. AnaFe provides an overview of all features in the
FDO view, thus creating a second scenario for the view usability. From
this view, we can see that, as expected, the mean and standard deviation of
intensity communicate homogeneous density properties of the organ on the
CT scan. Thus, these features might not be discriminative enough to show
di↵erences between subjects.

Feature selection. The user can unselect these features from the sim-
ilarity comparison, and the corresponding columns will be dimmed out on
the FPT heatmap (Figure 30). The user can inspect relationships between
features of di↵erent subjects by brushing the selection over the FDO his-
tograms.

Example of findings. As shown in Figure 30, organs with larger vol-
umes also have larger craniocaudal length, which is a well known relationship
for the spleen. However, relationships between other features for this organ
are largely unknown. AnaFe creates a unique opportunity for the user to
inspect the derived features simultaneously and select particular ones for
further statistical testing.

9.4.4 Extensibility to Other Domains

AnaFe was developed with the goal of exploring changes in temporal imaging-
derived features, which does not limit its application to CT spleen data. To
show extensibility of our application, we use observations of prostate cancer
on Magnetic Resonance Imaging (MRI). Prostate cancer is the most common
malignancy and second most common cause of cancer-related mortality in
men. Similar to splenic increase in size, enlargement in the prostate can
be palpable and is used in primary staging. Thus, the size of the organ is
one of the useful indicators that can be obtained from the segmented organ
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imaging.
We use temporal prostate data from the Prostate MR Image Database17.

Manual segmentation was available only for two data timepoints per subject,
and demographics information was not available. Additionally, no disease
status was available for these subjects. The study by domain experts is
required to evaluate results of the analysis. Figure 34 shows an example of
AnaFe with prostate data.

9.4.5 Expert feedback

Two of our collaborating radiologists inspected the application and its fea-
tures. We have recorded their feedback and the most important points they
made about the usability of the tool.

Linking measurements and 3D data over time: MPT, SMO, and
OD views. The MPT view for craniocaudal length and volume (well known
measurements) allows the researcher to compare their trends rapidly and gain
immediate visual feedback. It becomes particularly powerful in combination
with 3D rendering of the organ sequence (SMO). The overlay rendering of
aligned mesh surfaces (3D OD view) provides a useful picture of how the
organ has changed between patient visits. In the software that is currently
used to perform medical research on the spleen, neither registration of the
organ, nor 3D rendering of overlays are implemented. Thus, the MPT, SMO,
and OD views, when used jointly, provide the missing links for the current
analytical workflow, and allow for substantial time savings when comparing
multiple organs. As a potential improvement, our collaborators indicated
that some sort of on-mesh annotation of the areas of major change in shape
or size within the 3D view would be very useful.

Feature distribution and characterization of the data: FDO
view. The FDO view was selected as the most interesting feature due to
its ability to analyze multiple shape features simultaneously. As was noted
by our collaborators, di↵erentiation between sick and healthy organs based
on a set of features was unclear. The FDO chart provided visualization of
distribution and ranges of each feature, as well as immediate visual feedback
(based on the color of the category) if the separation between the values
based on the category exists. For instance, individual color coding by sub-
ject has shown an already well known correlation of the organ’s craniocaudal

17
http://prostatemrimagedatabase.com
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length and volume. That is for spleens with a large volume, the length is
also large. For some of the shape features, di↵erentiation between sick and
healthy subjects was very visible. Using this knowledge, and the subject’s
diagnostic information (currently not available in the anonymized data), the
clinician could investigate sources of such di↵erences, for example, the e↵ect
of portal vein hypertension on the organ shape. This is an interesting direc-
tion for future research: analysis of statistical significance of shape features in
predicting organ disease status, and predicting normality of diseased organs
and abnormalacy of healthy ones.

In summary, the ability to visualize a large number of datasets simultane-
ously has significantly improved over routine comparison that has previously
required context switching between di↵erent applications and was limited to
comparison of only a few parameters in static charts (IS1). Most importantly,
AnaFe has provided a unique look at multiple snapshots of spleen data and
its imaging-derived features changing over time (IS2).

9.5 Conclusions

In this work, we described a visual analytics framework for the exploration
of large collections of medical imaging datasets, with a focus on disease pro-
gression accompanied by progressive spleen enlargement. Through multiple
linked views we allow the user (researcher or the radiologist) to interactively
explore multiple imaging-derived features. Meanwhile, a 3D mesh view allows
the user to examine changes in the organ more closely and see the relation
of the traditionally used 1D parameters to the full organ view. Currently,
our application supports the set of most common robust and reproducible
imaging features. These features describe organ intensity, shape, texture,
and measurements. Our application allows for observation of trends over
time to determine similarity in disease progression and outcomes. We have
currently explored only a limited set of radiomics features, and were already
able to find their usability for the spleen. It is also in our interest to pursue
a time-dependent comparison in the future with additional parameters from
other tests considered (beyond CT imaging), which requires acquisition of
more data and additional IRB approval.
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Figure 34: An example of AnaFe use with prostate data. User interaction
with the system is displayed in the average (top) and change FDO views
(bottom). Hovering the mouse over the marker (subject #73) in the MPT
view (a) links to all features for this subject in the FDO view. Selected
subjects in the view (c) are highlighted across all FDO charts. Not selected
subjects (b) are dimmed out in the FPT view.
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10 Conclusions

10.1 Summary of Contributions

This dissertation has presented contributions in several areas of interactive
visual analytics, both on mobile devices and in the form of the web-based
tools. Through the number of the following contributions, we address the
challenges of making data visualization, interaction, and analytics ubiquitous
and informative.

In the first part of this dissertation, we introduce improvements and so-
lutions to the problem of mobile visualization of 3D medical data. The size
of the data coming from modern CT scanners presents a challenge for both
transmission to and rendering on the mobile device. Consequently, we follow
two distinct approaches to mobile visualization:

• Following an image-based approach to mobile visualization, we design
a saliency-aware scalable compression scheme. The method assumes
unique properties of medical data visualization based on the transfer
function design. It allows for the progressive transmission of the data
from initially lossy to fully lossless reconstruction.

• Following a streaming-based approach to mobile visualization, we im-
plement a pipeline for remote rendering. In this framework, the ren-
dering of the data happens entirely on the server. The rendering result
is encoded into H.264 video stream and streamed to the client. The
client application supports user interaction and render state command
encoding which is transmitted back to the server and used to update
the rendering.

• Additionally, we evaluate new approaches to existing problems of inter-
action with volumetric data on touchscreen devices. In particular, we
focus on the target selection in 3D volumetric data. In this work, we
evaluate three types of selection techniques that are currently unique
to touchscreen devices: selection with a finger, selection with a stylus
with a ray cast at a straight angle, and at an arbitrary angle based on
stylus’ tilt. We show that users benefit from using the stylus for 3D
selection both with and without an angle.

• Finally, we explore the space of immersive analytics and study interac-
tions with scientific data. Particularly, we focus on mid-air interactions
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with scientific volumetric data in mixed reality. We propose a set of nat-
ural gestures based on positional hand tracking through head mounted
display and rotational tracking through a custom built hardware.

In the second part of this work, we introduce a number of contributions
to the analysis of splenic data. As spleens shrink and grow in response to
disease progression and treatment, one must carefully measure the volume of
the organ. Thus, we analyze existing approaches to estimation of the splenic
volume and improve upon them. Most importantly, high variation in organ’s
shape and size lead us to employ visual analytics solution to further study
variation of the organ and its changes.

• We analyze the correlation of several existing volumetric measurements
to the time-varying splenic data. Unlike previous works, we consider
several repeated measurements over time for each subject. We evaluate
the correlation of changes in volume to changes in “splenic indices”
based on one, two, or three orthogonal measurements of the organ.

• Using conformal welding heuristic, we determine the optimal plane
where two orthogonal measurements of the organ can be taken to ap-
proximate the volume of the spleen. t

• AnaFe is a versatile tool for exploration of splenic size and morphology.
It o↵ers insights into the overall distribution of robustly extracted and
reproducible quantitative imaging features and their changes within the
population, and also enables detailed analysis of individual cases. It
performs similarity comparison of temporal series of one subject to all
other series in both sick and healthy groups.
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10.2 Future Work

Based on the advancements made in this thesis, we propose a long and short
term work plan. Here we outline the next steps to continue on the latest
projects, as well as an overall overview of the field.

10.2.1 Short-term Guidance

We propose two possible directions to continue work on interaction with
mobile visualization targeted at touchscreen devices. First, our preliminary
study of three types of interaction provided some initial information on angle
and depth parameters for 3D target acquisition. As a next step, one can com-
plete the formal study of model interaction for volumetric target selection.
Secondly, in this work we only focused one type of interaction with volumetric
data on touchscreen devices. Hence, there is an opportunity to research novel
approaches for high quality, informative, and user-friendly interaction that
takes advantage of novel input types. Such work can address both a design
of a traditional transfer function and introduce novel methods of volumetric
navigation and exploration. For example, the design of a good transfer func-
tion is a complicated process and might require user’s knowledge about the
mapping properties of the function. However, a good design is essential for
e↵ective visualization. A stroke-based transfer function has been previously
proposed for a traditional desktop setup with a mouse input device. On the
touchscreen devices one accommodate for varying width and depth of stroke
based on the user’s touch. Optimal visualization result is highly dependent
on the ability of the user to adjust the viewing options of the data. Ad-
ditional methods of interaction with volumetric data, for example, clipping
plane positioning, volume of interest selection can be reintroduced to take
advantage of innovations in the hardware of the touchscreen devices.

Rapidly emerging space of mixed reality provides a broad spectrum of
opportunities for immediate research work as well, and is much less explored
compared to the touchscreen devices. Interaction with volumetric data in the
mixed reality setting is drastically di↵erent from the “traditional” projection
rendering onto the 2D display. While added dimensionality removes the
need of mapping of 3D interactions to the 2D input, it faces the challenge
of user perception of such interaction. In out work, we have focused only
on the quantitative evaluation of the building blocks of mid-air interactions:
simplest gestures comprised of hand position and rotation. However, user
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understanding and perception of mid-air direct touch for all of the above-
mentioned types of interaction with volumetric data needs to be carefully
studied.

Augmented reality applications allow easy participation in collaborative
data exploration. Augmented and mixed reality HMDs create personalized
and private views of the data for each user. Custom views for medical data
can mean a number things: personal rendering modes for each user, di↵er-
ent multi-modal visualization settings, varying data privacy settings. But
what does this mean for interaction with volumetric data in collaborative
setting? While the data may be visualized per user in a certain rendering
mode, user interaction should be visualized for all collaborators independent
of the viewing setting. The study of consistent and simple visual feedback
metaphors for volumetric data exploration in collaborative setting is one of
the short-term projects that can be built upon our presented work.

10.2.2 Long-term Guidance

In this dissertation, we have addressed one of the key challenges when work-
ing with multidimensional medical data: size of the data that needs to be
rendered on the mobile device. Similarly, in the immersive environment,
self-contained HMDs are limited to on-device computation. Hence, the bot-
tleneck of rendering on the HMD itself is a challenge that is exacerbated by
the computation overhead for communication with other HMDs in the col-
laborative setting. Such limitation can be addressed in couple of ways. First
of all, it is important to highlight that remote volumetric rendering remains
needed until significant improvements in mobile hardware provide su�cient
resources for highly demanding volumetric data rendering. Currently, in col-
laborative setting, a fully remote rendering framework would require a server
to produce multiple custom per user views. Alternatively, distributed ren-
dering frameworks can o✏oad the expensive parts of rendering computation,
such as lighting and shading, to a server or rendering cluster, thus making
a single computation instance available for all users. At the same time, per-
sonal HMDs can do a camera pass individually for each user based on head
orientation.

Secondly, one can take advantage of advanced compression schemes for
immersive visualization. Similar to our work, one can immediately take ad-
vantage of saliency-aware compression schemes and ensure that lossless re-
quirement is satisfied in the immersive setting. Compression schemes for
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medical imaging data can undergo a significant upgrade by utilizing deep
learning from large imaging databases. Currently, such research is con-
strained by data privacy regulations. While providing patient protection,
such regulations significantly stifle advancements in medical imaging analyt-
ics. Similarly to the open source software, one can imagine finer guidelines
towards open clinical research data, including imaging, that accelerate the
research.

Interaction research work in this dissertation has been limited by read-
ily available or custom assembled hardware from existing sensors. Similar
works in the field of immersive visualization and analytics focus on tactile
and tangible interfaces for data exploration. Similar to these interfaces, mid-
air interaction needs to adapt to a variety of user behaviors. One can easily
make enhancements to the proposed volumetric interaction framework, for
example, using muscle sensors or gaze tracking devices. However, muscle
sensors have proven to be hard to calibrate for a large group of users. This
brings us to a key challenge of natural user interfaces for immersive environ-
ments: creating simple and intuitive methods of interacting with the data
that are robust and uniform across a large number of users. Standardiza-
tion of interaction methods based on the natural user input is one of the
requirements for a user-friendly mixed reality world.
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