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Abstract of the Dissertation 

Changes in functional neural network organization during working memory task 

performance: effects of age and task practice 

by  

Thang Manh Le 

Doctor of Philosophy 

in 

 Integrative Neuroscience 

Stony Brook University 

2017 

 

The notion that cognitive processing is not only reflected by regional changes in neural activity 

in the brain but also by global changes in functional connectivity pattern has greatly motivated 

the network approach in examining the neural substrates of cognition and their relationship with 

behavior. Recent human neuroimaging evidence suggests specific cognitive processes may 

involve distinct spatiotemporal patterns of functional connectivity across task conditions. For 

instance, increased cognitive demand has been shown to evoke greater network integration while 

changes in functional network architecture have been associated with shifting between cognitive 

states. However, little is known about individual differences in the functional organization of 

neural networks during complex tasks. Here, we examined functional connectivity during 

multiple cognitive tasks in late childhood/early adolescence and during multiple sessions of 

working memory performance in young adults. We specifically focused on studying the effects 

of task state and task practice as these two key factors may particularly impact the functional 
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architecture of large-scale neural networks. In the first experiment, the functional network 

architectures during resting and during three cognitive tasks were examined in children aged 9-

12. Children exhibited age-dependent similarity in intrinsic network organization to that in adults 

and changes in network organization in response to distinct cognitive requirements. Compared to 

resting state, there was an increase in whole-brain functional integration during tasks. 

Additionally, major functional modules showed different patterns of stability and flexibility 

across cognitive states. In the second experiment, we investigated network organizations within 

and between multiple sessions in individual healthy adults during performance of a working 

memory task. Our results indicate while there was a broad tendency for whole-brain network 

integration to increase with working memory performance relative to the resting state, network 

configuration varied greatly across time and individuals. Furthermore, we found individual-

dependent practice-related changes in connectivity patterns for different functional modules. 

Taken together, these findings suggest functional neural network organization varies in 

correspondence to changing cognitive demands. Such variability is further influenced by young 

age, task exposure, and individual differences. 
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CHAPTER I. GENERAL INTRODUCTION 

 

 

The relationship between functional network organization and cognitive processing 

A major goal of cognitive neuroscience is to understand the role each brain region plays in 

supporting mental processes and complex behaviors. Historically, the mapping of function and 

structure across the cortex is largely driven by the view that responses by localized populations 

of neurons and individual brain regions to a variety of task conditions underlie cognition (Op De 

Beeck et al., 2008; Poline and Brett, 2012). Task-evoked perturbation of specific brain regions, 

however, can be challenging to understand as even relatively isolated and specialized cortical 

structures have been shown to interact and coordinate their activity putatively to support 

cognitive demands (Shine and Poldrack, 2017). Indeed, work in animal physiology (de Reus and 

van den Heuvel, 2013; Felleman and Van Essen, 1991; Scannell et al., 1995) and human 

anatomical (Betzel et al., 2013; Hagmann et al., 2008) as well as functional neuroimaging 

(Meunier et al., 2009b; Power et al., 2011) has demonstrated the brain is organized into networks 

of highly interconnected regions. Thus, even a momentary challenge by a stimulus can bring 

about not only changes in discrete brain regions but also the changes in functional connectivity 

patterns (Mohr et al., 2016). These connectivity patterns, in turn, have been shown to potentially 

reflect task demands and modulate behavior (Braun et al., 2015; Yue et al., 2017). As a result, 

the investigation of cognition and its neural substrates may benefit from further understanding 

the relationship between functional network organization and the underlying cognitive processes. 

        One crucial question implicated in the examination of such relationship is whether neural 

networks flexibly adapt their connectivity configuration in response to different demands, and if 

so, what information changes in configuration convey about the neural basis of cognitive 
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processing and behavior. Attempts at this question from various studies demonstrate different 

cognitive states can be successfully classified using functional connectivity patterns both in the 

whole brain and within task-related modules (Heinzle et al., 2012; Shirer et al., 2012). More 

recent work examining functional brain organization in multiple tasks further supports that each 

task is associated with a different network architecture (Cole et al., 2014; Krienen et al., 2014). 

Intriguingly, such architectures are not only reflective of the specific task demands, they can also 

exhibit characteristics related to neuronal maturation during development including those 

associated with modular organization and distal connectivity strength (Baum et al., 2017; Gu et 

al., 2015). Other factors shown to influence neural network architecture also include aging 

(Gallen et al., 2016; Meunier et al., 2009a) and cognitive ability (Bassett et al., 2011; Braun et 

al., 2015). These findings suggest that far from being static, neural networks continually modify 

their organization according to both endogenous (e.g., neuronal maturation) and exogenous (e.g., 

environment, tasks) factors. 

 

Characteristics of neural network connectivity patterns during cognitive demands 

        To support cognitive processing (e.g., working memory), neural networks may change 

their functional connectivity patterns to reflect the current task’s requirements.  A functional 

network refers to a set of neural elements or “nodes”, which are brain regions typically co-

activated during specific cognitive tasks and exhibit temporal dependency. This temporal 

dependency is measured by functional correlation which is an indirect measure of network 

connectivity. A network is also called a module, and by definition it is formed by a group of 

densely interconnected regions that are sparsely connected to other networks. Here, we identified 

functionally distinct networks associated with the frontoparietal, default mode, visual etc. and 
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treated them as modules. A whole-brain network architecture is defined as the specific 

organization or division of the whole-brain network into modules based on the connectivity 

patterns among the brain regions. Network configuration refers to the connectivity pattern within 

the network. Changes in network connectivity pattern can be evaluated with two major network 

measures: 1. stability and variability, and 2. integration and segregation. Specific measures to 

assess network architecture and configuration are described below. 

 

Stability and variability 

    At the whole-brain level, the neural network architecture has been shown to stay 

relatively stable across multiple cognitive states (Cole et al., 2014; Deco et al., 2011). During 

resting, the brain can be described as a number of interconnected modules whose connections are 

dense within each module and sparse in between (Power et al., 2011). The identification of these 

modules is consistent with the functional organization of the brain as modules show distinct 

functional roles including executive control, attention, default mode, somatosensory, and visual 

(Power et al., 2011). Such resting-state (or intrinsic) network architecture remains largely 

unchanged during a variety of tasks such as motor, working memory, gambling, language, and 

emotion (Cole et al., 2014). This stability is in agreement with a previous proposal that 

functional network configurations are based on a stable anatomical skeleton (Deco et al., 2011). 

White matter pathways both enable and constrain the functional connectivity among elements of 

the neural network (Bullmore and Sporns, 2009; Hagmann et al., 2008). Specific evidence in 

functional imaging has demonstrated that functional connectivity reflects structural connectivity 

measured by DTI (Greicius et al., 2009) and structural connectivity in turns predicts functional 

connectivity (Honey et al., 2009). Thus, the functional network organizations are thought to be 
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built upon the physical scaffolding of the brain and are constrained as such (Bassett and 

Gazzaniga, 2011; Bullmore et al., 2009). 

    At the module level, the pattern of stability and variability is complex. During resting 

state, regions from task-specific modules such as those implicated in sensory processing exhibit a 

low degree of variability in connectivity (Zhang et al., 2016). This stability is likely related to 

their restricted connections to other regions belonging to the same unitary neural circuitry 

implicated in sensory functions (Zhang et al., 2016). Indeed, recordings in monkey visual cortex 

showed a low degree of fluctuation and thus supporting this proposal (Leopold and Murayama, 

2003). In contrast, regions belonging to task-general modules including the prefrontal and limbic 

regions show a high degree of connectivity variability, putatively due to their intricate 

connections with other modules (Zhang et al., 2016). Such divergent patterns of connectivity 

have been shown during task states including working memory. For instance, sensory and 

somatomotor modules demonstrate no significant differences in connectivity pattern between the 

0-back and 2-back conditions (Braun et al., 2015). In contrast, the frontal module undergoes 

changes in its architecture during the same task transition, potentially suggesting a fluid 

interaction and integration between the frontal regions and other brain areas (Braun et al., 2015). 

These findings are further corroborated by another study reporting highly variable frontoparietal 

network connectivity strength across multiple cognitive demands (Cole et al., 2013). Evidence of 

heightened variability is supported by work in human and non-human-primate (Cavada and 

Goldman-Rakic, 1989; Goldman-Rakic, 1988; Hagmann et al., 2008) which shows extensive 

anatomical connections between the frontoparietal system and other diverse brain structures. 

Further reports from human neuroimaging also support that neural variability in the prefrontal 

cortex has functional importance as it was associated with adaptively switching between 
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different task rules and that lack of variability in this region can hamper cognitive flexibility 

(Armbruster-Genc et al., 2016). 

    The presence of both stability and variability in brain network connectivity pattern likely 

has functional implications. While the precise role of neural stability is still a matter of ongoing 

research, it is suggested that stable global topology helps maintain efficient, orderly and accurate 

cognitive operations over time (Mišić et al., 2011). Instability can lead to excessive noise, 

redundancy, and unstable processing (Ajemian et al., 2013). However, as the external 

environment constantly changes, providing new information and imposing new demands on the 

neural system, the ability to perform complex tasks and learn novel situations is essential. The 

brain, as a non-linear dynamical system, must have the capability to switch across cognitive 

states (Deco et al., 2011) to accommodate these different demands. State switching likelihood is 

thought to be determined by the amount of variability present in the system: low variability 

prevents the system from exploring new states whereas high variability facilitates switches 

(Garrett et al., 2011).  

 

Segregation and integration 

Functional segregation in a neural network refers to the amount of neuronal processing 

that occurs among functionally related regions within modules relative to the amount of 

processing that occurs between them (Sporns, 2013). A segregated neural network is 

characterized by the high density of connectivity among members of the same module and low 

density of connectivity between members of different modules. Functional segregation is a 

fundamental feature of the dynamic and adaptable neural networks as the decomposability of the 

system into modules provides the necessary structure for adaptive connectivity patterns via 
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architectural changes (Bassett et al., 2011). Furthermore, functional segregation allows modules 

to perform specific functions without perturbing the remainder of the system, reduces the 

interdependence among modules, and potentially promotes behavioral adaptation (Félix and 

Wagner, 2008; Kirschner and Gerhart, 1998). Evidence for functional segregation in the human 

brain is abundant. At the neuronal level, strongly interconnected cells have a high degree of 

overlap between inputs, outputs, and response properties. Each group of neurons exhibit specific 

connections to a subset of other groups and to specific sensory afferents (Tononi et al., 1994). At 

the level of areas such as visual cortices, functional segregation stimulus attributes including 

color, motion, and shape has been repeated shown (Hubel and Livingstone, 1987; Maunsell, 

1987; Zeki et al., 1991). Work using a large number of subjects confirms the presence of a stable 

modular organization of the functional brain networks across individuals during resting state 

(Cole et al., 2014; Power et al., 2011) (Fig. 1A), suggesting segregation is typical network 

property of the matured human brain. Abnormal loss of functional segregation has been 

associated with disorders including Alzheimer’s disease (Supekar et al., 2008) and schizophrenia 

(Micheloyannis et al., 2006; Rubinov et al., 2009). 

In contrast, functional integration refers to the ability of a network to integrate specialized 

information from distributed brain regions (Rubinov and Sporns, 2010). With integration two 

important aspects of network connections are achieved. First, it allows for the convergence of 

information from diverse sources in the brain. Such convergence is likely facilitated by the 

existence of highly central and interconnected regions (termed “network hubs”) such as the 

prefrontal cortex. Second, integration enables efficient communication across networks as it 

reduces the shortest path between any two regions (Sporns, 2013). The notion of functional 

integration in human brain is supported by the observation that cortical pathways in the brain are 



7 
 

arranged in such a way that two neurons in any given locations are separated from each other by 

a small number of synaptic steps. Additionally, the existence of reciprocal connections between 

brain regions suggests both parallel processing and ongoing recursive signaling between 

neuronal groups (Finkel and Edelman, 1989; Tononi et al., 1992). Increases in functional 

integration have been reported primarily through the manipulation of cognitive demand (Fig. 1B-

D). Braun and colleagues (2015) showed an increase in integration between frontoparietal and 

frontotemporal networks during the performance of working memory. Working memory-related 

enhancement of whole-brain integration relative to resting or cognitively less challenging tasks 

(e.g., motor tapping) has also been demonstrated by other groups (Alavash et al., 2016; Cohen 

and D’Esposito, 2016; Davison et al., 2015; Shine et al., 2016). The relationship between task 

complexity and the degree of functional integration may arise from the need to promote 

communication and interactions across regions in response to increased information processing 

(Shine and Poldrack, 2017). Complex tasks such as working memory which requires multiple 

processes including perceptual encoding, distraction inhibition, and updating likely recruit 

distributed regions of diverse functional roles, resulting in network-level integration. On the 

contrary, ‘simple’ tasks may reply on fewer specialist systems and thus unlikely necessitate 

widespread connectivity. 

It should be noted that while the two measures (i.e., stability/variability and 

integration/segregation) concern two different aspects of functional network organization, they 

are not orthogonal. It has been shown that an increase in functional integration between networks 

tends to promote variability due to the enhanced inter-modular connections. In contrast, stability 

is often observed in more segregated networks (Bassett et al., 2011). 
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Functional network organization during working memory performance and during 

development 

The presence of contrasting properties involving stability and variability as well as 

segregation and integration in functional network connectivity indicates the highly dynamic 

nature of neural network which may enable adaptive responses to diverse biological and 

environmental factors. One such biological factor is neuronal maturation in human development. 

Evidence from human neuroimaging studies shows functional segregation, measured by modular 

organization, in the human brain even during the first months of life (Fan et al., 2011) and 

continues to increase into early adulthood (Menon, 2013). By early adolescence, the functional 

organization of the child brain has largely stabilized and yet differences in functional 

connectivity patterns compared to young adults have been reported. For instance, children appear 

to have more spatially limited connections, less modular organization, and stronger subcortical-

cortical but weaker cortical-cortical connections (Fair et al., 2009; Supekar et al., 2009). Such 

differences may affect the neural network responses to diverse cognitive processes. Yet, this 

possibility has not been explored. 

Another factor which influences neural network configuration is task practice. Repeated 

exposure to motor and association tasks has been shown to alter the degree of functional 

integration and segregation both at the module (Bassett et al., 2015) and whole-brain levels 

(Mohr et al., 2016), respectively. Specifically, compared to the initial period of task 

performance, practice reduces the involvement of executive control modules (Mohr et al., 2016) 

while enhancing segregation between sensorimotor modules implicated in direct task completion 

(Bassett et al., 2015). It is proposed that once task performance becomes automatic, integration is 

less necessary as specialized modules are more capable of independent processing (Bassett et al., 
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2015). However, the majority of previous investigations in practice-related neural alterations 

focused on simple motor tasks. Despite some preliminary evidence for increased recruitment of 

the prefrontal cortex and enhanced whole-brain connectivity following working memory 

practice, network connectivity pattern changes associated with repeated exposure to complex 

cognitive tasks has not been well characterized.  

With these gaps in the literature, the goal of this thesis is to examine functional 

connectivity patterns of neural network during working memory performance as well as other 

cognitive tasks in young adults and early adolescent children. Findings from these investigations 

may help further the understanding of the relationship between cognitive processing and brain 

network organization.  
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CHAPTER II. CHANGES IN FUNCTIONAL NEURAL NETWORK PATTERNS 

BETWEEN COGNITIVE STATES IN LATE CHILDHOOD SHOWED AGE- AND 

STATE-DEPENDENT INTEGRATION AND FLEXIBILITY TY 

 

Introduction 

 

Late childhood or early adolescence marks a crucial period in which the emergence of complex 

cognitive functions is coupled with neuronal maturation processes. Cerebral development during 

this stage is broadly characterized by peaking in frontal and parietal grey matter volume (Giedd 

et al., 1999), increase in white matter density (Giedd et al., 1999), and myelination 

(Huttenlocher, 1979). Concurrent to the anatomical changes, neuroimaging studies have 

demonstrated similar development of adult-like functional network topology in preadolescent 

children (Menon, 2013). Relative to the young adult brain, the child brain exhibits similar global 

system properties including small-worldness, non-randomness, and functional organization 

(Supekar et al., 2009). Nevertheless, quantitatively distinct interregional connectivity patterns as 

well as network architecture in the child brain have also been observed. Compared to young 

adults, late childhood networks are characterized by more spatially limited connections (e.g., 

dense short-range and sparse long-range connections) (Fair et al., 2009; Kelly et al., 2009), 

stronger subcortical-cortical but weaker cortico-cortical connectivity (Supekar et al., 2009), and 

less modular organization (Baum et al., 2017). During this developmental stage, children also 

become increasingly capable of complex cognitive processing in domains involving working 

memory (Romer et al., 2009), decision making (Cauffman et al., 2010), reasoning (Solomon et 

al., 2011), and perception (Pivik and Dykman, 2004). However, little is known whether the 
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developing functional network alters its connectivity patterns to support various cognitive 

demands and whether such alterations age-dependent. 

        Previous fMRI studies of adult human brain networks revealed two intriguing aspects of 

matured network properties. On one hand, large-scale neural systems can be described by 

modularity and stability. Modularity is postulated to be a fundamental feature of the developed 

neural networks (Baum et al., 2017) as it allows for functional specialization while reducing 

potential interference across different circuits (Sporns and Betzel, 2016; van den Heuvel and 

Sporns, 2013). Stability has recently been demonstrated in an elegant study which shows the 

brain exhibits stable architecture across multiple cognitive states (Cole et al., 2014). On the other 

hand, functional integration and neural flexibility may be necessary for the completion of 

complex tasks. Whole-brain topology has been shown to become more efficient and integrated or 

less segregated with increased cognitive demand (Cohen and D’Esposito, 2016; Shine et al., 

2016). Furthermore, specific cognitive demands can influence network connectivity during 

working memory updating (Le et al., 2017), inhibitory control (Spielberg et al., 2015), learning 

(Sun et al., 2007), and training (Bassett et al., 2015). These latter findings lead to the intriguing 

possibility that different task states may be associated with distinct spatiotemporal patterns of 

network connectivity. Switching between states, therefore, necessitates neural flexibility and 

adaptability (Bassett et al., 2015, 2011). Thus, these two characteristics suggest the complex and 

adaptable brain network may support a changing balance between functional integration and 

segregation as well as flexibility and stability in response to cognitive demand (Bassett et al., 

2011; Sporns, 2013; Tononi et al., 1994). This is consistent with the proposal that while large-

scale neural systems maintain a stable anatomic skeleton, they can flexibly alter their 
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configurations to accommodate specific task requirements (Deco et al., 2011; McIntosh et al., 

2008). 

Despite the emerging evidence for subtle neural network topological changes across task 

states in adults, it remains unclear how functional connectivity patterns vary across cognitive 

states during late childhood and early adolescence. It is possible that the functional network 

architecture in developmental stage is shaped by age-related network features in addition to task-

modulated configuration. As such possibility has not been explored, we examined neural 

network topology in children aged between 9 and 12 in four cognitive states including resting, 

reward/decision, visual perception, and working memory. The intrinsic and task-evoked whole-

brain network architectures were identified in the child sample and compared to an adult sample 

in order to identify particular effects unique to the children. We then characterized the differing 

degrees of functional integration during the four states. We hypothesized that the child brain 

would become more integrated with increase in cognitive demand, though the degree of 

integration would be state- and age-dependent. Flexibility at the module level was further 

examined for the frontoparietal (FPN), salience, default mode (DMN), visual, and somatomotor 

(SMN) networks. Since the executive control modules have been implicated in the transition 

between cognitive states (Bassett et al., 2011; Cole et al., 2013; Dosenbach et al., 2006; Duncan, 

2010), we expected FPN and salience network to exhibit higher level of flexibility whereas 

modules associated with sensorimotor processing (e.g., visual and motor) would be relatively 

stable across tasks. 

 

Materials and Methods 

Data samples 
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Eighty children participated in 4 fMRI sessions including resting, reward task, visual perception 

task and spatial working memory task. Results from the working memory task were previously 

reported elsewhere (Huang et al., 2016). Here, we analyzed a subset of the sample due to 

excessive head motion in at least one of the fMRI sessions (20 participants) and failure to follow 

task instructions (8 participants). Thus, a total of 52 participants (age 9-12, mean 10.3 years, 27 

females) with complete fMRI data for the resting and three tasks were included in the final 

analysis. For community detection in resting state, usable data from the 52 plus 7 more 

participants were used to maximize group consensus accuracy (i.e., resulting group network 

architecture more reflective of any given individual). The Pubertal Development Scale was used 

to measure puberty score at the time of fMRI. The participants had a mean puberty score of 8.37 

± 2.36 (data was missing from one male subject). Informed consent was obtained from parents of 

participants prior to participation in accordance to the local Institutional Review Board. 

        To compare network properties in our group with those in adults, we used a subsample of 

60 young adults from the Cambridge Buckner 1000 Connectomes Project dataset (referred to as 

CB sample from here on) (Biswal et al., 2010). These subjects (age 20-23, mean 21.2 years) 

were selected to match the age variance in our child sample. 

 

Tasks 

Each child performed the following tasks during fMRI: 

Reward task (Fig. 2A):  On each trial, after a 2-s fixation, two doors were displayed on the 

screen for 2 s and participants were instructed to indicate their door selection by pressing the left 

or right button. After a brief fixation (800 ms), feedback of monetary gain (“You Win”) or loss 

(“You Lose”) was displayed for 1.2 s. There were a total of 60 trials (30 win, 30 loss), with 
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win/loss trials in a pseudorandom order.  The intertrial interval (ITI) was jittered (average: 2 s, 

range: 0-14 s), with an average trial duration of 8 s. The total scan time was 8.5 minutes. 

Perception task (Fig. 2B): There were four different block conditions: neutral faces, sad faces, 

happy faces, and houses. Each block was 16-s long and contained 4 trials. At the beginning of 

each block, a 1-s warning fixation which changed in color from black to blue to cue the starting 

of the block. On each trial, a 600-ms fixation cross was followed by the simultaneous 3000-ms 

presentation of two images, either two faces or two houses and participants made a button press 

to indicate whether the two images were identical or different (50/50 chance). There were 3 

blocks per condition, in a pseudorandom order. These task blocks were interleaved with 14 s of 

fixation. The run lasted 6 minutes. 

Working memory task (Fig. 2C): We used a 1-back spatial working memory paradigm with two 

load conditions (Load 1 and Load 3), during which 1 and 3 rabbits were presented in different 

locations, respectively. The two load conditions were presented in blocks of 5 trials. On each 

trial except the first trial of each block, participants pressed a button to indicate whether any 

rabbit was in a different location from the previous trial. In the Load 3 condition, only one of the 

rabbits ever changed location on a change trial. The rabbits were located randomly around an 

invisible circle with a radius of 5o visual angle. The rabbits were presented for 200 ms. There 

were 8 possible locations shifted between 5o to 10o from regular clock orientation. Locations were 

masked with 8 rabbit holes (average 1o visual angle) presented during a variable ITI of 2.3, 3.3 or 

4.8 s (average 3.2 s). Each task block lasted 17 s and 13-s fixation period was inserted between 

blocks. There were two runs of 4 min 12 s each (8 blocks/run).  
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Resting: Resting state fMRI data were acquired in two sessions (6 minutes each), during which 

participants were instructed to relax and look at the fixation point in the middle of the screen. 

Resting-state sessions were performed prior to all task-state sessions. 

To ensure compliance, subjects practiced all tasks prior to scanning. During fMRI 

sessions we monitored the participants’ eye position with an Eyelink 1000 eye-tracking system 

(SR Research Ltd., Mississauga, ON, Canada). Due to computer software malfunctions, 

behavioral data were only recorded during the working memory and perception task for 35 and 

39 participants, respectively. Thus, while fMRI data were available and analyzed for 52 

individuals, behavioral analyses were only performed on the subset of those participants. 

 

Data acquisition and Analysis 

Imaging Parameters 

Data were collected on a 3 T Siemens Tim Trio whole-body MRI system (Erlangen, 

Germany) with a 12-channel head coil. Whole-brain structural anatomical images were acquired 

in the sagittal plane with a T1 weighted MPRAGE scanning sequence (TR = 2400 ms; TE = 3.16 

ms; slices = 176; flip angle = 8o; FOV = 256 × 256; matrix = 256 × 256; resolution = 1 × 1 × 1 

mm3). T2-weighted structural images were collected in the axial oblique plane parallel to the AC-

PC (TR = 6450; TE = 88; slices = 37, 3.5 mm with 0 mm gap; flip angle = 120o; FOV = 256 × 

256; matrix = 256 × 256; resolution = 1 × 1 × 3.5 mm3). Two runs of the reward task (130 

volumes each), one run of the perception task (183 volumes), and two runs of the working 

memory task (126 volumes each) were acquired in the axial oblique plane parallel to the AC–PC 

with a T2*- weighted single-shot echo-planar pulse sequence (TR = 2000 ms; TE = 30 ms; slices 
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= 37; flip angle = 90o; FOV = 224 × 224; matrix = 64 × 64; resolution = 3.5 × 3.5 × 3.5 mm3). 

Each session began with 3 dummy scans which were discarded prior to data analysis. 

The adult data sample used the following parameters. Structural images were collected 

using the MPRAGE sequence: slices = 192, matrix size = 144 x 192, resolution = 1.20 x 1.00 x 

1.33 mm3. Resting state T2*-weighted axial images were acquired using the EPI sequence: 47 

interleaved axial slices, TR = 3000 ms, resolution = 3.0 x 3.0 x 3.0 mm3 (119 volumes). 

Image preprocessing 

Images were preprocessed with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Images were first screened by visual 

inspection for obvious artifacts and motion. Standard preprocessing steps were applied to each 

dataset including slice timing correction, volume alignment for motion correction, and co-

registration of anatomical to the mean EPI image. A unified segmentation algorithm was applied 

to the high-resolution structural images to separate the gray matter, white matter, and CSF. The 

functional and anatomical images were then spatially normalized and transformed into the MNI 

space, using affine nonlinear transformation, and then spatially smoothed with a 4-mm full-width 

at half-maximum Gaussian kernel. 

To assess the functional connectivity between different areas of the brain, additional 

preprocessing steps were performed. A nuisance regression was constructed to control for the 

following confounding variables: 6 motion parameters up to their second derivatives, scans with 

excessive motion, modeled physiological signal generated through aCompCor (Behzadi et al., 

2007) of the white matter and CSF voxels, and the linear drift. For resting state data, the 

residuals of this regression were then filtered utilizing a bandpass between the frequencies of 

0.008 and 0.09 Hz and despiked using CONN toolbox (https://www.nitrc.org/projects/conn). For 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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the task state data, similar to a previous study (Cole et al., 2014), no low pass filter was applied 

(i.e., bandpass = .008 Hz - Inf) to preserve the possible presence of task signals at higher 

frequencies than the relatively slow resting-state fluctuations. We chose not to regress out the 

global signal in order to retain the interpretability of negative correlations (Murphy et al., 2009). 

In addition, to reduce potential influence of transient task-related effects, all task events were 

treated as events of no interest in a standard general linear model regression. The residuals from 

these regression models were used to estimate functional connectivity during the tasks. 

Functional connectivity 

We first conducted Pearson correlations between time series in all pairs of brain regions 

from the commonly used 264 cortical and subcortical regions-of-interest (ROIs) atlas from 

Power et al. (2011). ROIs were spheres of 5-mm radius centered at the coordinates. Correlation 

coefficients were Fisher’s Z transformed and used for all subsequent computations. As there is 

no clear consensus on the treatment of task events, we conducted another set of analyses without 

the removal of task events and produced similar results. Here, we chose to report the findings 

with task events removed. Only relevant task blocks were included in the time series (i.e., no 

fixation blocks), with 6 s of hemodynamic delay accounted for, and concatenated prior to 

correlation calculation. 

Community Detection 

To partition the 264 ROIs into functional modules in the resting-state data, we used the 

Louvain community detection algorithm with two free parameters. The density parameter 

determines the threshold of connection strength. Connections with strength below this threshold 

were removed prior to community detection. The structural resolution parameter was used to 

restrict the number of communities identified in the functional connectivity matrix. To be 
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consistent with previous work by Cole et al., (2014), we applied the same range for density 

threshold (40% to 2% in steps of 2.5) and resolution (0 to 3 in steps of 0.2). Parameter 

optimization was based on two criteria 1) a peak of partition similarity with Power et al. (2011), 

and 2) distinct functional communities as previously found in the adult population. (While we 

are not aware of an existing partition for this youth population, previous research indicated 

similar neural network topology in children aged 7-9 to young adults (Supekar et al., 2009)). The 

combination of these criteria yielded optimal density threshold of 0.045 and resolution of 2.2 

which produced a twelve-community partition similar to Power et al. (2011). 

The optimal parameters obtained from resting-state community detection were 

subsequently applied to the task data to identify communities in the three task states. As the 

Louvain algorithm is stochastic, we ran this algorithm 150 times to obtain 150 partitions. These 

partitions were then used to create an agreement matrix which was subjected to consensus 

clustering (Lancichinetti et al., 2009) to yield a final partition for each subject at each task state. 

To examine changes in community structure within each module across the four cognitive states, 

community detection was applied to key neurocognitive modules including frontoparietal, 

salience, default mode, visual, and somatomotor using data from each of the four states. Changes 

in community structure across states, both at global and module levels, were quantified by 

adjusted Rand index (Hubert and Arabie, 1985), which measures the similarity between two 

partitions while accounting for chance of similarity due to randomness. Partition similarity 

between the child and the CB samples was calculated to examine potential age effects. 

Brain network graphs were visualized with BrainNet Viewer (Xia et al., 2013, 

https://www.nitrc.org/projects/bnv/). 

Graph theoretical metrics 

https://www.nitrc.org/projects/bnv/)
https://www.nitrc.org/projects/bnv/)
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At the global level, we examined changes in functional segregation and integration in 

brain connectivity across the cognitive states. Functional integration refers to the transferring of 

specialized information among distributed brain regions. The higher the degree of functional 

integration, the more efficiently different brain regions communicate with each other (Rubinov 

and Sporns, 2010). Functional segregation refers to the tendency for stronger coupling within 

densely interconnected groups of brain regions relative to coupling with other regions. The 

higher the degree of functional segregation, the more modular the neural processing in a network 

(Rubinov and Sporns, 2010). Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/, 

Rubinov & Sporns, 2010) and custom Matlab scripts were used to calculate these measures. 

Connectivity matrices were thresholded with the density of 0.045 (as determined by community 

detection optimization) prior to obtaining the graph metrics. 

For the measures of integration/segregation, we used global efficiency, participation 

coefficient, connector hub, modularity, and transitivity (Fig. 3). Global efficiency refers to the 

measure of average inverse shortest path length between nodes within a network (Latora and 

Marchiori, 2001). Higher global efficiency is indicative of stronger connections between 

modules and thus higher degree of integration. Global efficiency is defined as follows: 

Eglobal = 
1

𝑁(𝑁−1)
 ∑

1

𝐿𝑖,𝑗
𝑖 ≠𝑗∈𝐺  

where L is the minimum path length, N is the number of nodes in graph. 

Participation coefficient refers to the measure of diversity of inter-modular connections 

of individual nodes. A network with high participation coefficient contains nodes that have dense 

connections with other networks. Participation coefficient is defined as follows:  

𝑃𝐶𝑖 = 1 −  ∑(
𝑘𝑖𝑠

𝑘𝑖
)2

𝑁𝑀

𝑠=1
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where kis is the degree (number of connections) of node i to other nodes in its own 

network (s), and ki is the degree of node i regardless of network membership. By subtracting that 

ratio from 1, participation coefficient is normalized and thus the measure does not involve 

connections that are within a node’s own network, or that are across networks. 

A connector hub is a high-degree node that displays a diverse inter-modular connectivity 

profile (van den Heuvel and Sporns, 2013). Here, connector hubs are defined as nodes with high 

participation coefficient (>0.8) and low within-module degree (<1.5) (Guimera and Amaral, 

2005; Guimerà and Amaral, 2005).  

Modularity is the degree to which the network may be subdivided into non-overlapping 

groups of nodes such that the number of within-group edges is maximized while the number of 

between-group edges is minimized. Modularity is defined as follows:  

𝑄 =  ∑(𝑒𝑖𝑖 −  𝑥𝑖
2)

𝑚

𝑛=1

 

where eii is the fraction of all edges connecting two nodes within module n, xi is the 

fraction of edges connecting a node in module i to any other node, and m represents the total 

number of modules. 

Transitivity is the amount of clustering in the network, quantified by the ratio of triangles 

to triplet which nodes form locally. High transitivity reflects tightly clustered groupings of 

regions and thus high degree of segregation. Transitivity is defined as follows: 

Transitivity index = 
# 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑟𝑖𝑎𝑑𝑠

#𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑟𝑖𝑎𝑑𝑠
 

At the module level, we assessed the stability and variability of connectivity pattern for 

the key functional modules across the four cognitive states. Specifically, we used connectivity 
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variability, node flexibility, and module partition similarity. Connectivity variability refers to the 

variability in connectivity strength measured by standard deviation across the four cognitive 

states (see global variability coefficient in Cole et al., (2013)). Nodal flexibility is the probability 

of a node switching module membership when transition from one state to another, calculated by 

the number of time a node changes membership normalized by the total possible number of 

changes (Bassett et al., 2011) (Fig. 1B). In the current study, nodal flexibility was averaged 

across the three resting-to-task switches (i.e., rest to reward, rest to perception, and rest to 

working memory). Module partition similarity is the similarity between resting partition and a 

task partition for a given module. The same community detection procedure used for whole-brain 

architecture was performed for each state at the module level. 

To determined potential age effects in the children sample, we correlated the participants’ 

age (in months) with the graph measures to explore any potential relationship. 

 

Results 

We first identified the whole-brain network architectures in each of the four cognitive states (i.e., 

resting, reward, perception, and working memory) then examined their properties and 

relationship in the children sample. Measures of cross-state network flexibility and stability at 

both global and module level were utilized to determine the degree of network adaptability 

associated with each task and each functional module. 

 

Global network architectures across cognitive states 

Using Louvain community detection algorithm, we identified 12 communities in the 

resting-state data. These communities were consistent with the 12 functional modules previously 

defined in adults (Power et al., 2011), including hand-related somatomotor, mouth-related 
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somatomotor, cingulo-opercular, auditory, default-mode, visual, frontoparietal, salience, 

subcortical, ventral attention, dorsal attention, and cerebellum. The optimal resting-state 

community detection parameters were then applied to the three task states, yielding the same 12 

communities for each of the reward, perception, and working memory tasks. Group consensus 

algorithm showed similar community structures across the four states (Fig. 4A). Adjusted Rand 

index (ARI) was used to quantify partition similarity between resting and tasks. ARI was higher 

among the three task states than between resting and task states (p’s < 0.01) (Fig. 4B). Reward-

resting partition similarity (M[SD] = .25[.06]) was significantly greater than perception-resting 

partition similarity (M[SD] = .23[.07]) (t(51) = 2.43, p < .05) but only marginally greater than 

working memory-resting partition similarity (M[SD] = .24[.07]) (p = .17). 

To determine whether the child sample had comparable network partition to the adults, 

we measured partition similarity between our sample and a subset of the CB resting-state dataset 

relative to a published adult network structure Power et al., (2011). As expected, while the child 

partition showed high similarity to the Power partition (M [SD] = .25 [.06]), the similarity was 

significantly higher between the CB and Power partitions (M [SD] = .29 [.05]) (t(117) = 3.8, p < 

.001). Indeed, an age effect within our child sample was found, represented by a positive 

correlation between age (in months) and the degree of similarity between the CB and child 

intrinsic network architecture (r = .33, p = .01) (Fig. 4C). To determine whether head motion in 

the children sample may have impacted the architectural similarity between the two groups, we 

accounted for the rate of change of BOLD signal across the entire brain at each frame of data 

(DVRS) (Power et al., 2012) in the correlation which subsequently remained significant (r = .34, 

p = .016). 
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We further examined whether the degree of similarity in child-CB network structure 

during resting varied with different functional modules including the frontoparietal, salience, 

default mode, visual, and somatomotor modules. The salience (M [SD] = .14 [.11]) and 

frontoparietal (M [SD] = .15 [.1]) modules in our child sample were significantly less similar to 

the CB group than the other modules (all p’s < .001), whereas the default mode (M [SD] = .19 

[.06]) visual (M [SD] = .2 [.08]) and somatomotor (M [SD] = .23 [.1]) modules were more 

similar. 

Thus, consistent with previous reports in young adults, the children showed stable whole-

brain network structures across different cognitive states, with small but detectable differences 

between resting and task states. The degree of similarity to the adult network organization was 

age-dependent. 

 

Functional integration and segregation in different cognitive states 

Next, we examined network measures associated with functional integration and 

segregation in the child and the CB samples for comparison. Across all measures of network 

integration, task states had significantly higher integration than resting state. Specifically, 

compared to resting, there was a significant task-related increase in global efficiency (all 

corrected p’s < .001) (Fig. 5A), number of connector hubs (all corrected p’s < .001) (Fig. 5B), 

and participation coefficient (all corrected p’s < .002) (Fig. 5C). Furthermore, there were small 

but significant differences among the tasks such that the visual perception task had higher global 

efficiency than the other two tasks (p’s < 0.05) and had higher participation coefficient and 

connector hubs than reward (p’s < .004). 

For functional segregation, there was a significant decrease in transitivity from rest to 

tasks (all corrected p’s < .001) (Fig. 5D). However, modularity did not significantly differ across 
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the four states (all p’s > .28) (Fig. 5E). As reduced modularity was associated with cognitive 

processing in adults (Cohen and D’Esposito, 2016), we examined the effect of age on modularity 

and found that the older the participants, the lower the task modularity index (averaged across 

the three task states) (r = -.35, p < .01). Compared with the CB group, the child sample did not 

significantly differ on most measures (p’s > .14) with the exception of participation coefficient 

which was lower in the young adult group (t(110) = 4.13, p < .001). 

To rule out the possibility that the children’s sample head motion may have impacted the 

measures of integration and segregation, we correlated DVARS with each graph measure. No 

significant correlations were obtained (p’s > .21).  

 

Differentiable patterns of stability and variability in functional modules 

While global architecture reveals useful information about the broad changes in network 

properties due to cognitive demands, it may overlook nuanced patterns of network adaptability at 

the module level. We defined DMN, FPN, Salience, Visual, and SMN using resting data (Fig. 

6A) then evaluated their connectivity variability, nodal flexibility, partition similarity, and 

partition coefficient across the cognitive states. 

Among all, FPN showed the highest connectivity variability (i.e., standard deviation of 

connectivity strength across task states) (all corrected p’s < .05) (Fig. 6B) whereas visual module 

had the lowest (all corrected p’s < .05). A similar pattern was observed for nodal flexibility (i.e., 

the probability of nodes switching membership during resting state from one module to another 

module during the three task states). Sensory modules showed the lowest nodal flexibility (all 

corrected p’s < .05) with nodes in Visual and SMN having .08 and .14 switching probability, 

respectively. In contrast, FPN demonstrated the highest nodal flexibility (all corrected p’s < .005) 

at .24 switching probability. DMN and Salience modules exhibited moderate degrees of nodal 
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flexibility (Fig. 6C-D). As high nodal flexibility is associated with an integrative system which 

allows regions to switch community membership (Braun et al., 2015), we next assessed the 

degree of inter-modular integration for each functional network. FP and Salience modules 

showed a significant increase in participation coefficient from resting to task states (all corrected 

p’s < .001) while changes in DMN, Visual, and SMN were minimal (all p’s > 0.14 with the 

exception of Visual module between resting and perception, t(51) = 3.9, corrected p < .01). 

In terms of the architecture of these modules, the average ARI (rest vs. reward, rest vs. 

perception, and rest vs. working memory) revealed that FPN had significantly lower partition 

similarity than all other modules (p's < .05, corrected) except Salience (p = .45). This result 

further demonstrates the highly variable nature of the executive control modules. In sum, FPN 

(and to a lesser degree, Salience) showed greatest flexibility in connectivity pattern, modules 

associated with visual and motor processing indicated a relatively more stable architecture 

whereas DMN was somewhere in between. 

 

        Relationship between connectivity profiles and task performance 

        We conducted exploratory analysis to examine whether integration and flexibility in 

network properties are associated with individual differences in behavioral performance on the 

visual perception and working memory tasks. (We did not examine the reward task due to the 

lack of interpretable behavioral measures.) 

For working memory, load effect on performance accuracy (i.e., Load 3 accuracy minus 

Load 1 accuracy, abbreviated L3-L1Acc) was negatively associated with the number of 

connector hubs (r = -.49, p < .005) (Fig. 7A), indicating a higher degree of inter-modular 

connectivity predicted poorer working memory. In conjunction, there was a positive relationship 

between rest-WM partition similarity and L3-L1Acc (r = .41, p < .05) (Fig. 7B), suggesting a 
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lower degree of changes in community architecture may have benefited performance. Further 

analyses at the module level confirmed this advantage of network stability during working 

memory, with L3-L1Acc negatively correlated with nodal flexibility in DMN (r = -.4, p < .05) 

(Fig. 7C) and SMN (r = -.38, p < .05) (Fig. 7D) while response time positively correlated with 

that of the Salience module (r = .5, p < .005) (Fig. 7E). 

For the perception task, global efficiency during visual perception positively correlated 

with performance accuracy (r = .39, p < .005) (Fig. 8A). Additionally, there was a positive 

relationship between transitivity and response time variability (r = .47, p < .005) (Fig. 8B), 

indicating low transitivity was coupled with more stable behavior. At the module level, average 

FPN, Salience, DMN, Visual, and SMN partition similarity between resting and perception state 

negatively correlated with performance accuracy (r = -.41, p < .01) (Fig. 8C), suggesting a 

flexible connectivity pattern was preferred to stability for better performance on visual 

perception. 

Taken together, these results suggest that greater functional integration and flexibility 

enhanced perceptual processing while some degree of stability may have benefited working 

memory performance in this age group. 

 

Discussion 

By examining the functional neural network across cognitive states in children during late 

childhood/early adolescence, we showed state-related functional network connectivity pattern 

changes which were both adult-like and age-dependent. As in adults (e.g., Cohen and 

D’Esposito, 2016; Cole et al., 2014; Shine et al., 2016), while the basic community architecture 

remained relatively stable from resting to task state, there was a global increase in functional 



27 
 

integration putatively to support complex cognitive demand. Furthermore, across cognitive 

states, the FPN and Salience modules demonstrated greater variability and flexibility in 

connectivity patterns while the sensorimotor modules were less variable and flexible. Network 

configurations were also age-dependent as the older children showed higher similarity in their 

network topology relative to adults during resting and lower degree of modularity organization 

during tasks. 

 

Intrinsic and task-evoked network structure in late childhood 

 We first examined whether the developing brain possesses adult-like intrinsic network 

architecture and remains stable throughout various cognitive states. Previous literature 

examining global neural architecture in children has shown that even at the first month of life, 

the infant brain already exhibits non-random modular organization (Fan et al., 2011). From these 

early stages, the brain quickly develops core functional modules associated with cognitive 

functioning including frontoparietal, dorsal attention, and default mode (Doria et al., 2010; 

Fransson et al., 2011, 2007) and shows broadly defined network topology around 2 years of age 

(Gao et al., 2013). By age 7, major measures of network topology reach stability (Supekar et al., 

2009; Uddin et al., 2011). In the current study, examining the brain during late adulthood and 

early adolescence (i.e., age 9-12), we confirmed the presence all of intrinsic functional networks 

previously defined in young adults (Power et al., 2011). 

Our partition similarity findings further demonstrated that the intrinsic network 

architecture remained preserved during various cognitive states. Connectivity patterns displayed 

similar community structure when subjects performed reward, perception, and working memory 

tasks. In adults, it has been reported that whole-brain network architecture varies minimally 
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across a large number of cognitive tasks and highly resembles that during resting state (Cole et 

al., 2014). Our findings confirm stable intrinsic network topology is also present during cognitive 

states during late childhood, thus representing the primary functional network architecture 

underlying complex cognitive processing. Despite the child network structure’s resemblance to 

that of young adults, we observed an important relationship between the children’s age and the 

degree of similarity to the adult network topology. This similarity was also module-dependent 

such that frontoparietal was the least similar to that in adults and visual and motor modules were 

the most similar. This evidence is in agreement with the developmental literature which suggests 

protracted maturation of the frontal lobe (Lenroot and Giedd, 2006; Shaw et al., 2008). Thus, 

despite the identification of distinct neural systems associated with executive functions, default 

mode, attention, and sensory processing at rest, brain organization likely continues to be refined 

during late childhood. 

 

Shift toward global functional integration during cognitive processing 

In previous literature, while the broad network architecture across multiple cognitive 

states has been shown to be stable, small but functionally relevant changes in neural network 

properties are also observed during tasks to support complex cognitive, emotional, and motor 

functions (Cohen and D’Esposito, 2016; Cole et al., 2013; Shine et al., 2016). One such 

important change is the balance of functional segregation and integration. On one hand, 

segregation is fundamental to brain organization (Friston, 2009; Sporns, 2013) as it allows for 

functional specialization and lowers interference between neural systems (Baum et al., 2017). 

Furthermore, the segregation of the neural system into modules provides the necessary structure 

for adaptive reorganization (Bassett et al., 2011). On the other hand, there may be a need for the 
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coordination of specialized information from diverse neural elements to support complex 

behaviors, necessitating integration across the community structure (Sporns, 2013). Thus, there 

is likely a constantly shifting balance between segregation and integration, modulated by the 

underlying cognitive processing. 

A number of studies have reported such effects of cognitive processing on network 

topology, particularly network integration, in young healthy adults. Cohen and D’Esposito 

(2016) showed higher global efficiency, lower modularity, and a greater number of connector 

hubs during n-back task performance in comparison to resting. This pattern was corroborated by 

other findings that enhanced coupling across distributed networks involving frontal and parietal 

association regions was observed during task performance (Krienen et al., 2014). In 

preadolescent children, there is preliminary evidence for widespread activations in a number of 

tasks including working memory (Güler and Thomas, 2013; O’Hare et al., 2008), tracking stop 

(Rubia et al., 2007), go/no-go (Suskauer et al., 2007), and flanker (Vaidya et al., 2005). The 

current study further showed that similar to young adults, task state in preadolescence was 

characterized by a significant gain in global efficiency, participation coefficient, and the number 

of connector hubs during reward, perception, and working memory processing. Such changes 

indicated a shift of balance toward more extensive and efficient interactions across topologically 

distant brain regions, potentially facilitating information transfer to accommodate complex 

cognitive processes. 

Our findings of functional segregation in the children cohort showed mixed patterns 

compared with previous reports in young adults. Consistent with previous investigations which 

demonstrated less transitive networks during n-back (Cao et al., 2014; Cohen and D’Esposito, 

2016) and face matching (Cao et al., 2014) tasks relative to resting in adults, the degree of 
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transitivity significantly diminished in response to cognitive processing in our child sample. 

Reduced transitivity likely reflects the weakening of connections at the local level, which, 

coupled with our evidence of heightened integration, suggests a shift from local to network 

connectivity configuration. Nevertheless, our child sample did not show lowered modularity 

during tasks as previously reported in adults (Cao et al., 2014; Cohen and D’Esposito, 2016). 

Modularity is a crucial feature of complex neural systems (Sporns and Betzel, 2016), observed 

early in development (Fan et al., 2011; Gao et al., 2013) but subject to changes over the age 

between 8 and 25 years (Fair et al., 2009). Our participants demonstrated a negative relationship 

between participants’ age and task-related modularity, indicating an age-related bias for within-

module connectivity during tasks. This finding is in line with past research suggesting that at the 

preadolescence stage, long-range connections are sparser while short-range connections are 

denser than young adults (Fair et al., 2009; Kelly et al., 2009).  

It should be noted that while transitivity and modularity both assess local specialization, 

different results from the two measures likely reflect distinct aspects of segregation. In graph 

theory, transitivity refers to the tendency for neighboring nodes to form triangles, hence 

measuring the density of triangles relative to density of clusters containing two paths. 

Modularity, on the other hand, measures the edge density within cluster in relation to edge 

density between clusters. Thus, the combination of low transitivity and high modularity suggests 

a locally sparse configuration but potentially without strong long-range connections to reduce 

modularity. Taken together, there was a shift toward functional integration to accommodate 

cognitive processing in late childhood. Yet, the relatively high age-related modularity during 

tasks in comparison to adults indicates the ongoing fine-tuning process during neural circuitry 

maturation in children. 
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Executive control, visual, and motor networks show differentiated patterns of flexibility 

One characteristic of the complex neural system is its flexibility in reorganizing the 

functional connectivity patterns in response to changing cognitive demands (Bassett et al., 2015, 

2011). The current study revealed the developing brain during late childhood exhibited a high 

degree of variability and flexibility in modules associated with executive control including 

frontoparietal and salience modules. In contrast, modules implicated in visual and motor 

processing showed stable community structure, minimal module switches, and low participation 

coefficient. Our evidence of different flexibility patterns across distinct functional modules has a 

number of implications. First, we confirm previous findings in both adult humans (Laskaris et 

al., 2003; Neumann et al., 2003) and animals (Arieli et al., 1996) that the brain’s natural state is 

variable and such variability may be functional. It has been suggested that variability can help 

the brain switch between different network configurations in support of specific cognitive 

operations (Deco et al., 2009; McIntosh et al., 2008). Indeed, recent research (Braun et al., 2015) 

as well as the current study have shown differentiable network topological structures for 

different tasks. Second, as most studies investigated trial-to-trial signal variability during task 

performance (Armbruster-Genc et al., 2016; Dinstein et al., 2012; Fox et al., 2007), their findings 

primarily focused on the contribution of stochastic brain dynamics to cognitive processing at the 

individual trial level. A few studies assessed flexibility as a function of network connectivity 

pattern changes at a longer temporal scale but limited their investigation to the learning of single 

tasks including motor (Bassett et al., 2015, 2011) and working memory (Braun et al., 2015). 

Finally, the current study’s findings of adaptive network integration at the whole-brain level and 



32 
 

flexibility at the module level further established the dynamic nature of the cognitive control 

modules during the late childhood stage in flexibly switching from one state to another. 

While the exact nature of neural flexibility is still a matter of ongoing research, our 

finding of frontoparietal flexibility across cognitive states is consistent with both recent human 

functional (Cole et al., 2013; Power et al., 2011; van den Heuvel and Hulshoff , 2010) and 

animal electrophysiological (Cavada and Goldman-Rakic, 1989; Goldman-Rakic, 1988; 

Hagmann et al., 2008) reports. These studies show dense frontal and parietal connections to 

various regions, putatively to integrate information across different neural circuitries. Other work 

also suggests frontal regions can adapt functional connectivity according to task state (Bassett et 

al., 2006; Sakai, 2008). Furthermore, increased activation in the frontal areas has been observed 

during implementation of novel tasks (Cole et al., 2013b; Dosenbach et al., 2006; Duncan, 2010) 

which likely require the adaptation of brain-wide functional connectivity patterns to 

accommodate new cognitive control processes. Thus, an important property of the FPN may be 

the ability to flexibly modify connectivity patterns in response to task demand. 

 

Relationship between behavioral performance and functional network connectivity 

patterns 

We found evidence for a relationship between behavioral performance and changes in the 

balance involving functional integration and neural flexibility in two tasks. For the perception 

task, better performance was related to increased integration and decreased segregation at the 

global level. Such results indicate a connectivity profile characterized by enhancement in 

interaction across multiple modules and in flexible network connectivity patterns. This is 

consistent with the idea that face (Haxby et al., 2002; Ishai et al., 2005) and scene perception 
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(Epstein, 2005) recruits distributed cortical regions including both visual and higher-order 

cortices. Previous work in young adults from our laboratory indeed showed widespread 

activation (Oh and Leung, 2009) and connectivity (Le et al., 2017) involving temporo-occipital 

and frontoparietal systems during the processing of face and scene information. In children, 

while fine-tuning changes in neural selectivity continue to occur into adolescence (Cohen 

Kadosh and Johnson, 2007), similar activation patterns during face and scene perception (Scherf 

et al., 2007) have been observed. Thus, it stands to reason that integration across multiple 

cortical structures may facilitate visual perception and ultimately result in behavioral benefits. 

For the working memory task, the connectivity profile suggests some degree of 

functional segregation and stability may have helped behavioral performance. This intriguing 

finding appears to differ previous reports showing a relationship between enhanced working 

memory performance and increased functional integration in healthy adults (Cohen and 

D’Esposito, 2016). However, as we discovered, there was a lack of modularity organization 

during cognitive processing, coupled with high participation coefficient at rest in our children 

sample relative to adults. This age-specific characteristic may have resulted in a different 

network topological response to working memory processing compared to adults. Furthermore, 

past research suggests stable activation during working memory may be beneficial (Hampson et 

al., 2006; Otten and Rugg, 2001) while abnormal amount of variability during working memory 

can be detrimental to performance as shown in the case of individuals with schizophrenia 

(Manoach, 2003; Meyer-Lindenberg et al., 2001). Neural stability can promote stronger 

information representation while helping to suppress distractor (Armbruster-Genc et al., 2016). 

During working memory, relevant information may benefit from protection against interference 

(Jonides and Nee, 2006; Kane and Engle, 2000; Le et al., 2017; Lustig et al., 2001). Thus, it is 
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plausible that too much flexibility and variability can induce spurious communication from 

different neural structures, resulting in degradation of working memory representation. 

 

Conclusions 

The current study shows that late childhood and early adolescence is characterized by the 

intrinsic neural network architecture which is highly similar to that in young adults. We also 

show the potential fine-tuning of the network architecture by age even in this narrow age range. 

During various cognitive states, although the network architecture retains the basic configuration 

as previously shown in adults, whole-brain network connectivity pattern alterations were 

observed. In particular, increased in functional integration was associated with the task states 

relative to the resting state. At the module level, the FPN and SN were more flexible and variable 

whereas sensory modules remained relatively stable across the cognitive states. These findings 

add to the understanding of the spatiotemporal patterns of cortical network organization in the 

youth brain during various cognitive states and how they may contribute to explaining brain, 

cognitive, and behavioral development. 
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CHAPTER III. RELATIONSHIP BETWEEN FUNCTIONAL NEURAL NETWORK 

CONNECTIVITY PATTERNS AND WORKING MEMORY UPDATING AND 

MAINTENANCE 

 

Introduction 

Recent human neuroimaging evidence suggests while the whole-brain functional network 

architecture remains stable across different cognitive states (Cole et al., 2014), the connectivity 

pattern within this architecture is capable of changes in response to changing cognitive demand 

(Deco et al., 2011). One consistent finding for such changes has been the enhanced integration of 

connectivity within and between neural ensembles following an increase in cognitive processing 

such as working memory (Cohen and D’Esposito, 2016; Davison et al., 2015; Shine et al., 2016). 

Emerging findings, however, indicate the relationship between cognitive processing and 

functional network connectivity patterns is more complex. Repeated task exposure including 

training on a motor task is associated with reduced integration and greater segregation among 

functional modules (Bassett et al., 2015). Furthermore, individual differences have also been 

linked to changes in network configuration. Specifically, the degree of segregation predicts an 

individual’s learning speed of motor sequences in a motor task (Bassett et al., 2015) while the 

density of inter-modular connections in whole-brain topology has been related to higher working 

memory performance (Langer et al., 2013). Thus, further understanding of functional network 

connectivity in correspondence to cognitive processing requires consideration of multiple factors 

including task difficulty, task practice, learning, and individual differences in performance. As 

these effects factors can greatly vary across individuals, the common method of reporting results 
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based on group averaging may potentially obscure distinct network patterns at the individual 

subject level. 

Past research demonstrates that the functional properties of neurons, as well as the neural 

circuitry within various brain areas, retain a significant degree of plasticity during adulthood 

(Buonomano and Merzenich, 1998). One factor associated with this plasticity is neuronal 

changes due to task practice. Findings of practice effects, particularly in motor tasks, in human 

neuroimaging studies show decreased activity in brain regions implicated in control and attention 

(e.g., prefrontal cortex) (Dahlin et al., 2008; Petersen et al., 1998; Poldrack and Gabrieli, 2001) 

and increased activity in those directly involved in task performance (e.g., sensorimotor areas) 

(Lacourse et al., 2005; Olsson et al., 2008; Petersen et al., 1998). This evidence suggests 

potential redistribution and/or reorganization of functional activations, reflecting changes in the 

neural efficiency and/or functional roles (e.g., degree of involvement) of the distributed task 

networks (Kelly and Garavan, 2005). Such changes in neural network organization likely involve 

adjustments in the interactions within and between different neural circuitries (Bassett et al., 

2015). Another factor which can play a contributory role in network connectivity pattern changes 

is task complexity. Practice on simple tasks increases within-network connectivity in task-

specific modules whereas practice on complex tasks enhances connectivity in a more distributed 

manner (Buchel et al., 1999; Kelly and Garavan, 2005; McIntosh, 1999). These few studies 

indicated that the effects of task practice are unlikely to be limited to single brain regions or a 

single pattern of functional connectivity. Yet, despite this rich body of literature, little is known 

about network connectivity patterns following practice of complex cognitive tasks such as 

working memory. As working memory processing recruits and putatively maintains the 

involvement of higher-order structures (e.g., prefrontal cortex) even during working memory 
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delay without the presence of stimuli (Courtney et al., 1997; Curtis and D’Esposito, 2006; 

Goldman-Rakic, 1995), functional reorganization involving such structures may be 

fundamentally different to those implicated in motor learning. 

A recent study of a single subject involving the longitudinal assessment of various 

biological measures including neural functional connectivity patterns, gene expression, and 

metabolomic dynamics (Poldrack et al., 2015) provides important implications for the 

investigation of network connectivity pattern changes over time. First, it was shown that the 

brain is highly dynamic in its connectivity which shows alterations in the course of days to 

months. Second, such alterations are related to a number of factors that represent an interaction 

between biological constraints and environmental influence (e.g., gene expression, diet, task 

requirements). Third, there is a distinct degree of within-subject neural variability in various 

neural measures including network functional connectivity organization. Crucially, the pattern of 

this variability is not observed at the between-subject level. Thus, these findings call for the 

individual-subject approach in examining functional network changes over time. Specifically, 

this approach involves the consideration of individual differences that may be obscured in group 

analyses.  

To characterize large-scale functional connectivity patterns in response to different 

cognitive demands and task practice, we examined network architecture and properties during a 

working memory updating task. Our task design has two important features. First, unlike 

previous studies using block designs involving the n-back task (Cohen and D’Esposito, 2016; 

Shine et al., 2016), we used an event-related design which included a substantially long working 

memory delay. This delay served two purposes. It allowed for the construction and evaluation of 

network connectivity patterns at the individual trial basis. Additionally, it enabled the specific 
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examination of the working memory maintenance and updating without the potential influence of 

factors including stimulus presentation or motor responses. Second, the majority of the 

participants completed two scan sessions which were separated by a week, thus providing the 

opportunity to investigate the practice effect. Finally, to reveal nuanced network connectivity 

patterns associated with individual differences, we adopted the individual subject analysis 

approach. Graph theory measures of network properties were used to calculate the degree of 

functional integration and segregation of each network in each subject. We hypothesized that 

neural network configuration would show a broad trend of increased integration during working 

memory processing relative to resting, reflecting the heightened cognitive efforts. We further 

hypothesized that while the whole-brain neural network architecture may remain largely stable 

across cognitive demands and practice sessions, there would be architectural changes that are 

subject-specific. Finally, we examined practice-related architectural changes in major modules 

including the frontoparietal, default-mode, visual, and somatomotor during the working memory 

updating and maintenance. 

 

Materials and Methods 

Participants 

8 young adults (4 females, age M[SD] = 23.4[5.6] years) participated in the study in 

exchange for course credit or money or a combination of both. All participants were without 

history of psychiatric or neurological illnesses and gave written consent prior to participation. 

The study was approved by the local Institutional Review Board. 

General experiment procedure 
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Prior to the first fMRI session, participants completed the prescreen questionnaire for 

fMRI safety, practiced two runs of the behavior tasks, and were acclimated to the imaging 

procedures in a mock scanner. For each fMRI session, resting-state scan was performed first, 

followed by 4 runs of working memory task, a structural scan which also served as a break for 

participants, and another 4 runs of working memory task. Of the 8 participants, 1 completed 4 

sessions, 3 completed 3 sessions, 6 completed 2 sessions, and 2 completed 1 session. See Table 1 

for demographic characteristics and number of sessions for all subjects included in the final 

analysis. Subsequent sessions were scheduled 7-8 days after the preceding session. During the 

fMRI session, we monitored the participants’ pupil diameter and saccade locations with an 

Eyelink 1000 eye-tracking system (SR Research Ltd., Mississauga, ON, Canada). 

 

Visual stimuli 

Eight pictures of faces (half were females) with neutral expressions were used as stimuli 

(Minear and Park, 2004) and 8 pictures of scenes (urban houses and buildings) collected from the 

internet were used as stimuli in the working memory task. All images were scaled to the same 

size (154x186 pixels), converted to black and white, and equalized for overall brightness. A 

different set of images with the same graphic constraints was used for each subsequent scan 

session. 

 

Behavioral task 

We used a delayed recognition task with a cue inserted during the delay period similar to 

our previous studies in young adults (Le et al., 2017; Oh and Leung, 2009). The task included an 

updating condition (Remember Face Update, Remember Scene Update) and a non-updating 
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condition (Remember Face Non-update, Remember Scene Non-update) (Fig. 9). At the 

beginning of each trial, a fixation cross was presented for 1980 ms, which turned green for 200 

ms as a warning, 270 ms before stimulus presentation. For the updating trials, two images (a face 

and a scene) were then presented sequentially, each for 990 ms with a 247-ms inter-stimulus 

interval, followed by a checkerboard mask displayed for 496 ms. For the non-updating trial, a 

scrambled image and a face or scene image were presented. After a delay of either 2970 ms or 

4950 ms, a cue word (“Face” or “Scene”) appeared at the center of the screen for 990 ms 

indicating the stimulus category to be remembered for the recognition test. For the updating 

trials, Face and Scene cue appeared at the same frequency. For the non-updating trials, the cue 

always indicated the category of the non-scrambled image. After a 31680-ms postcue delay, 

either the target or a new image of the cued category was presented as a probe for recognition. 

To discourage participants from selective encoding of isolated stimulus features (e.g., eyes, nose, 

door, window etc.), half of the probe image was randomly greyed out, leaving the other half 

visible. Four random possibilities were used for the probe visibility: top, bottom, left, or right. A 

face probe would be presented on trials with the “Face” cue and a scene probe for the “Scene” 

cue. Thus, all cues were fully informative. Chance of a matching and nonmatching probe was 

equal (50/50) for each condition. The order of stimulus presentation and the stimulus types were 

counterbalanced. Participants responded with a button press to indicate whether the probe was 

the remembered item. Intertrial interval (ITI) varied between 12870 ms and 14850 ms with an 

average of 13860 ms. There were 3 trials per condition per run for 8 runs, giving a total of 24 

trials per condition per session, and a total of 96 trials per session. There were two task design 

versions, differing in the trial order within each run and the run order. These two versions were 

alternated from session to session for each subject. 
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Imaging protocol and preprocessing of brain images 

Conventional T1-weighted spin-echo sagittal anatomical images were acquired for slice 

localization using a 3T system (Siemens Prisma; 64-channel head and neck coil). A single high- 

resolution T1-weighted gradient-echo scan was obtained. One hundred and seventy-six sagittal 

slices covering the whole brain were acquired with TR=2400ms, TE=2.24ms, flip angle = 8°, 

field of view = 256x256 mm, matrix = 320x320, 0.8mm3 isotropic voxels. Functional blood 

oxygenation level dependent (BOLD) signals were then acquired with a gradient-echo echo- 

planar imaging (EPI) sequence. Fifty-six axial slices parallel to the AC-PC line covering the 

whole brain were acquired with multi-slice acceleration factor (“multiband”) = 4, TR=990 ms, 

TE=30 ms, flip angle=52°, field of view=207×207 mm, matrix=90x90, 2.3mm3 isotropic voxels 

with no gap between slices. There were seven hundred image volumes in each task session for a 

total of 8 sessions. A single resting-state scan was placed before the task scan and contained 

seven hundred and forty six image volumes. During all BOLD sessions, physiological signals 

were recorded via the built-in Siemens Prisma hardware and the “Online” software setting. 

Respiration was recorded with a breathing band, and heart rate was recorded with a pulse 

oximeter. 

 

Image preprocessing 

Images were preprocessed with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in an identical procedure to the first study in 

Chapter 2 with one exception. As physiological data were collected during scanning, extra steps 

were taken to minimize the influence of these sources of noise, including regressing out 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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respiration and heart rate using a model-based Bayesian method with the DRIFTER toolbox in 

SPM12 (Särkkä et al., 2012; http://becs.aalto.fi/en/research/bayes/drifter/). Briefly, the 

interacting multiple models filter algorithm estimated the frequency trajectories of the 

physiological signals. A Kalman filter and Rauch-Tung-Striebel smoother separated the BOLD 

time courses into a cleaned activation- related signal, physiological noise, and white noise, and 

we used the cleaned activation-related signal for all analyses. 

To assess the functional connectivity between different areas of the brain, additional 

preprocessing steps were performed. A nuisance regression was constructed to control for the 

following confounding variables: 6 motion parameters up to their second derivatives, scans with 

excessive motion, modeled physiological signal generated through aCompCor of the white 

matter and CSF voxels, and the linear drift. For resting state data, the residuals of this regression 

were then filtered utilizing a bandpass between the frequencies of 0.008 and 0.09 Hz and 

despiked. For the task state data, similar to a previous study (Cole et al., 2010), no low pass filter 

was applied (i.e., bandpass = .008 Hz - Inf) to preserve the possible presence of task signals at 

higher frequencies than the relatively slow resting-state fluctuations. We chose not to regress out 

the global signal in order to retain the interpretability of negative correlations (Murphy et al., 

2009). 

 

Regions-of-interest 

Similar to our previous study, we used the 264 cortical and subcortical ROIs from Power 

et al. (2011). As our previous studies (Le et al., 2017; Oh and Leung, 2009), which used a similar 

task design, showed preferential activation and connectivity in visual association cortices (VAC) 

to faces and scenes, we also included these regions in our analyses. Specifically, face- and scene-
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processing regions were defined from the group-level analysis of the working memory task data. 

Briefly, we built the first-level analysis using General Linear Model to estimate activation in the 

stimulus presentation, cue, postcue delay, and probe events. The events were convolved with a 

canonical hemodynamic response function. For the localization of the VAC, we used the contrast 

between the two non-updating conditions (i.e., Remember Face non-updating vs. Remember 

Scene non-updating) during the stimulus presentation period. This resulted in the identification 

of the typical face- (bilateral fusiform face area, occipital face area, and superior temporal 

sulcus) and scene- (bilateral parahippocampal place area, retrosplenial cortex, and transverse 

occipital cortex) networks (coordinates in Table 2). All ROIs were spheres of 5-mm radius 

centered at the coordinates. 

 

BOLD signal amplitude 

Work from our own laboratory (Le et al., 2017; Oh and Leung, 2009) and others 

(Gazzaley et al., 2005; Peters et al., 2012) has shown enhanced activity in visual association 

areas during the processing of relevant visual information and attenuated activity when the 

information is irrelevant. To replicate these previous findings, we compared activity level in the 

face and scene modules during the postcue delay in the two trial types involving Face and Scene 

cue. We chose the first 8 seconds of the postcue delay for this analysis as visual association 

cortical activity diminishes during a long postcue delay (Oh and Leung, 2009; Riggall and 

Postle, 2012). Furthermore, to take advantage of the large number of trials across sessions, we 

grouped the first and second sessions together. Separating the two sessions yielded a similar 

pattern, albeit slightly less robust, results. 

 

Functional connectivity 
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We first conducted Pearson correlations between time series in all pairs of brain regions 

from the 264 cortical and subcortical ROIs from Power et al. (2011) as well as the 12 visual 

association areas. Correlation coefficients were Fisher’s Z transformed and used for all 

subsequent computations. Only data from the postcue delay period were included in the time 

series, with 6 s of hemodynamic delay accounted for. A separate network was constructed for 

each trial. The length of the postcue delay (32 TR’s or ~32 s) was appropriate for network 

construction as indicated by a previous study investigating the detection of functional brain 

networks using different window sizes (Telesford et al., 2016). Since the postcue delay was 

sufficiently long to minimize the stimulus effects from the stimulus presentation, we opted to not 

remove task events from the time series. Nevertheless, we conducted another set of analyses with 

task events removed and produced similar results. Here, we reported findings without the task 

events removed. 

 

Community Detection 

Community detection was performed using an identical procedure described in our study 

in Chapter II. To maximize precision of the algorithm, we used resting data from the first two 

sessions of all subjects. Parameter optimization yielded optimal density threshold of 0.115 and 

resolution of 2.5 which produced a twelve-community partition similar to Power et al. (2011). 

The optimal parameters obtained from resting-state community detection were 

subsequently applied to the working memory task data to identify community structure in each 

trial. As the Louvain algorithm is stochastic, we ran this algorithm 150 times to obtain 150 

partitions for each trial. These partitions were then used to create an agreement matrix which was 

subjected to consensus clustering (Lancichinetti et al., 2009) to yield the trial’s partition. 
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To examine changes in community architecture within each module during working 

memory, community detection was applied to key neurocognitive modules including 

frontoparietal (FP), default mode (DMN), visual, and somatomotor (SMN) using data from each 

trial. Community detection was not applied to the face and scene modules as the low number of 

regions (6 each) would have resulted in unstable structure estimation. Changes in community 

architecture across states, both at global and modular levels, were quantified by normalized 

mutual information (NMI) (Danon et al., 2005), which measures the similarity between two 

partitions. We also calculated module partition similarity to compare resting partition and 

working memory task partition for a given module. The same community detection procedure 

used for whole-brain architecture was performed for each state at the module level. 

 

Graph theoretical metrics 

At the global level, we examined changes in functional segregation and integration in 

brain connectivity across task conditions and across sessions. Connectivity matrices were 

thresholded with the density of 0.115 (as determined by community detection optimization) prior 

to obtaining the graph metrics. 

For the measures of integration/segregation, we used global efficiency, local efficiency, 

and transitivity (see methods section of Chapter 2 for detailed definitions of these measures). For 

the working memory task, these measures were calculated for each trial. For the resting state, we 

separated the resting time courses into 48 overlapping bins with each bin’s length equal that of 

the postcue delay (32 TR’s). Graph measures were calculated for each bin. 

 

Results 
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Behavioral performance 

We examined performance accuracy and response time of the six subjects with two 

sessions of data (Table 3). With the exception of one subject during session 1, no subject showed 

a significant performance difference between the two working memory conditions (updating vs. 

non-updating) (p’s > .29). Across the two sessions, only one subject demonstrated improvement 

in accuracy following practice (p < .01) while the remaining five subjects showed no significant 

differences in either task condition (p’s > .1) (Fig. 10A). With response time, four subjects 

showed faster responses with practice (p’s < .05) whereas the other two did not show significant 

changes (p’s > .15) (Fig. 10B). Overall, there was only limited practice-related improvement in 

response time. 

 

fMRI result 

BOLD signal amplitude in modules associated with visual working memory 

Face module showed higher percent signal change (relative to the baseline of the average 

of second and third scans of each trial) in the face conditions (i.e., Remember Face updating and 

Remember Face non-updating) relative to the scene conditions (i.e., Remember Scene updating 

and Remember Scene non-updating) in two subjects (p’s < .01) and no significant changes in the 

remaining four subjects (p’s > .4). The weak cue effect in the face module was expected as 

previously reported (Gazzaley et al., 2005). The scene module showed higher percent signal 

change in the scene condition relative to the face condition in all (p’s < .05) but one subject (p = 

.8). The inclusion of the two subjects with one single session as well as the third and fourth 

sessions from two other subjects did not change the pattern of relatively weak cue effect in the 

face module and relatively robust cue effect in the scene module. 



47 
 

        Since FPN and DMN have been implicated in visual working memory maintenance of 

relevant and inhibition of irrelevant information (Chadick and Gazzaley, 2011), we compared 

activity in these modules during the updating and non-updating conditions. FPN showed 

significantly higher activity for the updating relative to the non-updating condition in one subject 

(p < .05) and numerically higher activity in two others (p’s ≤ .14), whereas three subjects did not 

exhibit significant differences (p’s > .35). No significant differences activity were found in the 

DMN between the two working memory conditions (p’s > .07), except for one subject (p < .05). 

As a control, we compared SMN activity across cue types and task conditions and found no 

significant differences in any of the subjects (p’s > .07). In sum, we observed a relatively weak 

cue effect in the face module and a relatively robust cue effect in the scene module, while the 

FPN and DMN did not show strong differences across the updating and non-updating conditions. 

 

Effect of working memory demand on whole-brain network integration 

To investigate whether working memory demand affects the degree of integration and 

segregation at the subject level, we compared global efficiency, local efficiency, and transitivity 

between resting and working memory in each session and each subject individually. (The two 

conditions were combined because few differences were observed between updating and non-

updating conditions). Significant increases in global efficiency during working memory relative 

to resting were found in three subjects in session 1 (p’s < .05) and five subjects in session 2 (p’s 

< .01) (Fig. 11A). Significant decreases in local efficiency during working memory compared to 

resting were found in all subjects in session 1 (p’s < .01) as well as session 2 (p’s < .01) (Fig. 

11B). Finally, significant decreases in transitivity during working memory relative to resting 

were found in all subjects in session 1 (p’s < .01) and in five subjects in session 2 (p’s < .05) 

(Fig. 11C). Overall, compared to resting all subjects showed a significant reduction in local 
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processing and all but one subject showed significant enhancement in functional integration 

during working memory. 

We further examined whether the degree of integration and segregation changed with 

task practice. Global efficiency, local efficiency, and transitivity measures for the task state in 

each session were corrected by subtracting the measures obtained from resting state of the same 

session. Global efficiency showed a practice-related increase in four subjects (p’s ≤ .001) and a 

decrease in the remaining two subjects (p’s < .01). The reversed pattern is true of transitivity in 

the same subjects. Local efficiency was less consistent, with one subject showing a significant 

increase (p < .05), another showing a significant decrease (p < .001) and four showing no 

significant session differences (p’s > .13).  

Next, we measured the fluctuation of integration and segregation over time for each 

subject. To avoid the potentially distinct effects due to different cognitive demands, updating and 

non-updating conditions were analyzed separately. The degree of integration and segregation 

varied greatly across trials and across runs within a session. To characterize such variability 

across runs, we calculated the intra-subject covariation of variance (iCV) for global efficiency, 

local efficiency, transitivity, and response time for each task condition and each subject. iCV is 

measured by the standard deviation divided by the mean of each measure across trials within a 

session. Treating the six subjects as a group, iCV did not significantly differ between the two 

sessions for any of the integration measures (p’s > .07) or response time (p’s > .06). 

Furthermore, across subjects there were no differences in iCV between the updating and non-

updating conditions in either session (p’s > .14) or between resting and task (p’s > .32). To 

determine any potential relationships between variability in integration and response 

time/performance accuracy, we correlated the run average of these measures within each 



49 
 

subjects. Except for two significant correlations between performance accuracy and transitivity 

(r = .83, p = .01) as well as global efficiency (r = -.85, p = .008) in the non-updating condition 

for one subject during session 1, no other significant correlations were found (p’s > .07, -.57 < r 

<.67) (Fig. 12). 

Overall, most subjects demonstrated an increase in functional integration and a decrease 

in segregation during working memory relative to resting. This relationship was observed in both 

session 1 and session 2. The degree of functional integration appeared to change with task 

practice though the direction of change varied vastly across runs and sessions from subject to 

subject. Furthermore, integration as well as response time varied across time within subjects and 

yet no a clear associations were observed between the two. 

 

Effect of task practice on whole-brain and module network architecture 

To determine whether network architecture remained stable or changed with task 

practice, we measured the partition similarity of the network architecture in resting state and in 

task state for each session then compared the two sessions.  

Whole-brain network architecture. Relative to session 1, one subject showed a decrease 

and two subjects showed an increase in similarity with resting in session 2 in the updating 

condition (p’s < .01), while the other three subjects exhibited no significant changes (p’s > .08) 

(Fig. 13A). For the non-updating condition, similarity to the intrinsic architecture significantly 

increased in two subjects (p’s < .05), significant decreased in two subjects (p’s < .01), and 

showed no a significant difference (p’s > .05) following task practice. To show that group 

averaging can obscure individual changes in architectural similarity which may range from 

increases to decreases across individuals, we calculated the difference in similarity value 
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between the two sessions for each subject (Fig. 13 B). Indeed, the average of these values across 

the six subject was close to zero (~.005), incorrectly suggesting that as a group, the subjects did 

not alter task-evoked network architecture due to practice. In sum, our results suggest a mixed 

pattern of whole-brain task-evoked network architectural changes across subjects: some became 

more similar to resting state, some became more dissimilar and some remained relatively 

unchanged. 

Module network architecture. As different functional modules may express different 

patterns of architectural changes related to practice, we compared the resting-task partition 

similarity across the two sessions for FPN, DMN, Visual, and SMN. Since there were no 

differences in this analysis for the updating and non-updating conditions, we combined these two 

conditions for simplicity. Relative to session 1, in session 2 task-evoked FPN showed 

significantly less similarity to its intrinsic architecture in three subjects (p’s < .001), significantly 

more similarity in one subject (p < .001), and no significant changes in two subjects (p’s > .09) 

(Fig. 14A). With practice, task-evoked DMN showed increased similarity to its intrinsic 

architecture in two subjects (p’s < .001), decreased similarity in one subject (p < .001), and no 

significant changes in three subjects (p’s > .07) (Fig. 14B). Similarly, task-evoked Visual 

network demonstrated a mixed pattern of similarity change: three subjects showed significantly 

more similarity (p’s < .001), two showed significantly less similarity (p’s < .001), and one did 

not show a significant difference (p = .17) (Fig. 14C). For SMN, all but one subject showed 

higher similarity in session 2 (p’s < .001) while the remaining subject only showed a numerical 

increase (p = .15) (Fig. 14D). In sum, we demonstrated that different modules exhibited different 

patterns of architectural change relative to their intrinsic state following task practice. FPN 

exhibited decreased similarity or no change compared to resting after practice while the reverse 
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pattern was true for SMN. DMN and Visual both showed a mixture of decreasing and increasing 

similarity to resting, depending on the subject.  

 

Discussion 

We investigated neural network structure and properties during two sessions of working memory 

task in six individuals. Consistent with previous literature, we found whole-brain network 

connectivity showed greater integration during working memory relative to resting, and this 

relationship was largely preserved at the individual subject level for both sessions. Whole-brain 

network architecture showed changes with practice. Different subjects exhibited different 

patterns of changes such that whether the task-evoked architecture became more or less similar 

to the intrinsic architecture at “resting” was subject-dependent. Similarly, at the module level, 

with the exception of SMN, variable architectural alterations were found for distinct modules 

across different subjects, suggesting nuanced functional alterations that may not have been 

captured at the whole-brain or group level in previous studies. 

 

Functional integration increase with working memory maintenance 

By examining global functional integration during working memory maintenance and 

processing, we found evidence for a shift toward a more integrative state in comparison to 

resting. This shift was characterized by enhanced global efficiency, attenuated local efficiency 

and transitivity. Changes in functional integration and segregation in relation to specific 

cognitive demands have been reported in recent literature. The performance of a cognitive 

challenging task such as working memory or cognitive reasoning consistently leads to enhanced 

global integration and diminished segregation relative to rest (Braun et al., 2015; Cohen and 

D’Esposito, 2016; Hearne et al., 2017; Shine et al., 2016). It is thought that such integrative state 
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reflects the increased coordination of specialized and distributed regions for more efficient 

information processing in support of complex behaviors. Such interpretation agrees with past 

reports of widespread activation in cortical and subcortical areas during working memory (Owen 

et al., 2005; Rypma et al., 1999; Smith and Jonides, 1997). Evidence of increases in connectivity 

across multiple brain regions including frontal, parietal, visual association, and striatum in 

working memory (Brooks and Pavese, 2011; Chadick and Gazzaley, 2011; Haeger et al., 2015) 

has provided further corroboration. In contrast, reduced functional connectivity during cognitive 

tasks has been associated with task performance deficits in attention-deficit hyperactivity 

disorder (Cubillo et al., 2010), autism (Villalobos et al., 2005), and schizophrenia (Fornito et al., 

2011). Thus, findings from the current study add to the accumulating evidence that our ability to 

effectively switch cognitive states and engage in complex cognitive processing may arise from 

the brain’s capacity to flexibly reorganize interactions among spatially distributed systems.  

Using a working memory design with an extended delay enabled the current study to 

characterize the relationship between functional integration and working memory demand 

specifically in the context of information maintenance and updating. Recent work investigating 

network configuration in relation to working memory processing has typically utilized the n-back 

task (Braun et al., 2015; Cohen and D’Esposito, 2016; Shine et al., 2016). While the n-back 

serves well as an effortful cognitive task compared to rest, it simultaneously engages multiple 

complex processes including encoding, maintenance, updating, and motor response/decision 

making. Due to such complexity, it is not possible to attribute changes in integration and 

segregation to a particular aspect of working memory. Previous research has demonstrated that 

despite the overlapping in neural substrates, different processes in working memory recruit 

distinct neural circuitries such as the frontoparietal, striatal, and sensory systems (D’Esposito et 
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al., 1999; Mayer et al., 2010; Rypma et al., 1999). Among these processes, working memory 

maintenance receives a significant amount of attention as its neural mechanism remains 

inadequately understood. Various studies have suggested the contribution of different regions 

and networks involving the prefrontal (Goldman-Rakic, 1995; Miller et al., 1996), posterior 

parietal (Bettencourt and Xu, 2015; Todd and Marois, 2004), and visual (Harrison and Tong, 

2009; Riggall and Postle, 2012) cortices. By restricting our analysis to the postcue delay, we 

extended previous research by showing increased global integration during both working 

memory maintenance and updating.  

Despite the consistent relationship between cognitive effort and functional integration, 

we observed a significant degree of integration variability across trials and across runs. This 

finding complements recent reports that whole-brain network fluctuates between an integrated 

and segregated state during resting (Mišić et al., 2011; Shine et al., 2016). Other studies have 

also indicated changes in strength and spatial distribution of functional connectivity patterns in 

an ongoing temporal manner during auditory detection (Sadaghiani et al., 2015) and working 

memory (Shine et al., 2016) tasks. While the neural mechanism of such variability is currently 

not well defined, neural variability is thought to be a fundamental characteristic of the brain 

network (Deco et al., 2009; Dinstein et al., 2015; McIntosh et al., 2008). Variability may 

facilitate switching between network configurations to aid the transition across different 

cognitive states (Armbruster-Genc et al., 2016; Bassett et al., 2011; Cole et al., 2013). In our 

task, such switching may have been related to the constant trial-to-trial shifts between the 

updating and non-updating conditions.  

 

Individual differences in network measures and performance 
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It is worth noting that neither trial-to-trial nor run-to-run variability in network 

integration or architecture exhibited a clear relationship with task performance. This lack of an 

association between neural and behavioral measures may have been related to a number of 

factors. First, while task performance accuracy and response time are informative behavioral 

indicators, they may not accurately reflect working memory processing due to the potential 

influence of decision making and speed of motor response. Second, the long postcue delay may 

have introduced unintended mindwandering and thus functional networks constructed from this 

window potentially included other mental processes in addition to working memory. Third, 

thermal noise and physiological artifacts may have affected the variability in neural activity. 

Previous research (Bodurka et al., 2007; Triantafyllou et al., 2011, 2005) has indicated that such 

noise could result in reduced sensitivity to task-induced activation changes. While the current 

study adopted a stringent procedure of scanning protocol and post-scan artifact correction, the 

complete removal of noise is presently not feasible. Finally, due to the extended scan time, it is 

plausible that fluctuations in motivation, attention, and fatigue played a role in the absence of a 

clear relationship between neural network characteristics and task performance. In the future, 

measures of more restricted time windows and/or more task-driven localization including those 

associated with multivariate pattern analysis and region-specific connectivity will be utilized to 

explore evidence for such relationship.  

 

Task practice and individual differences affect functional network configuration 

Recently, reports of alterations in large-scale functional networks due to practice, 

particularly in motor tasks, have begun to emerge. A number of studies have demonstrated that 

the learning of motor sequences decreases the task-evoked activation in the dorsolateral 
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prefrontal cortex and presupplementary motor area (Floyer-Lea, 2005; Sakai et al., 1999) while 

increasing activation in the primary motor cortex (Honda et al., 1998), primary somatosensory 

cortex, and cerebellum (Floyer-Lea, 2005). Findings of changes in functional connectivity show 

heightened interactions among cortico–striatal, cortico–cerebellar and limbic structures at the 

early phase of learning, which may contributing to developing specific motor programs (Doyon 

et al., 2003; Doyon and Benali, 2005). Once the motor skills have become automatic, increased 

dissociation between these systems is observed (Doyon et al., 2003; Wu et al., 2004). More 

recently, it was shown that extensive training on simple motor sequences over the course of six 

weeks led to segregation between the visual and motor modules (Bassett et al., 2015). The 

authors interpreted the transition of motor and visual areas from functioning as a cohesive unit to 

two relatively independent systems as evidence for neural automaticity following skill 

acquisition. Collectively, these studies demonstrated practice-related changes in brain activity 

and connectivity in agreement with previous proposal (Petersen et al., 1998) that practice reduces 

the recruitment of higher-order cortical regions (e.g., prefrontal cortex) and facilitates the 

involvement of task-related areas (e.g., sensorimotor). 

Literature on practice effects of complex cognitive tasks including working memory so 

far has suggested a different pattern of neural alterations. Practice on a visuo-spatial n-back task 

was associated with increased task-evoked activity in the dorsolateral prefrontal cortex and 

parietal (Hempel et al., 2004). Similarly, repeated exposure to object (Moore et al., 2006) and 

verbal (Wexler et al., 2000) working memory tasks led to higher frontal and parietal activity. 

Nevertheless, these changes in the frontal cortex was not associated with improvement on task 

performance. Furthermore, unlike motor learning, integration across distant brain regions has 

been associated with higher performance during working memory practice across subjects 
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(Langer et al., 2013). Simple motor tasks (Biswal et al., 1995; Weinstein et al., 1997) have been 

shown to recruit fewer brain regions than working memory (Desimone, 1996). Additionally, 

working memory requires the updating of information constantly, necessitating the need to 

process and spread such new information to different neural systems (Christophel et al., 2017), 

making network communication less likely to be reduced with task exposure. Our own findings 

support this possibility. We found a greater degree in functional network integration after 

practice, lending weight to the suggestion that the neural alterations involved in working memory 

task training are likely to be substantially differentiable from those underlying the learning of 

motor processing. It is also worth noting that two of our subjects did exhibit diminishing 

integration in the second session. Thus, individual differences may further contribute to the 

altered connectivity patterns though further research is needed to shed light on this possibility.  

Another finding from the current study is the architectural changes at the whole-brain and 

module levels due to working memory practice but vary in different directions from individual to 

individual. Such evidence for adaptive and flexible functional network configuration agrees with 

previous research which shows organizational changes in functional modules following task 

training (Bassett et al., 2011). In this particular study, the authors reported increased switching of 

nodal membership (i.e., when a node becomes a member of a different module to the one it 

previously belonged to) in subjects with faster learning rates (Bassett et al., 2011). As such nodal 

flexibility is related to the stability of network architecture, these results suggest learning 

capacity and behavioral adaptation may have implications in neural network connectivity pattern 

changes. This is in line with the idea that architectural flexibility is beneficial as it promotes 

probabilistic decision making, signal detection, or creative thought (Deco et al., 2009). In 
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contrast, pathologically low flexibility is associated with tissues damage due to seizures 

(Protzner et al., 2010) as well as autism spectrum disorder (Bosl et al., 2011).  

It should be pointed out that a recent study (Cole et al., 2014) has reported a high degree 

of network architectural stability across multiple cognitive states including working memory, 

reasoning, decision making, language, and motor. However, that study did not investigate 

changes due to task practice. Furthermore, as our results indicated, individual subjects exhibited 

different patterns of alterations relative to resting. Group averaging can mask these individual 

differences, leading to a potentially incorrect conclusion of minimal changes across tasks. We 

also provided evidence for different degrees and trajectories (i.e., similarity vs. dissimilarity) of 

architectural change in FPN, DMN, Visual, and SMN. These module differences are unlikely to 

be detectable at the whole-brain level. As it is beyond the scope of the current study to delineate 

the neural mechanism underlying such differences, our findings call for a closer examination of 

module architecture in future work to further understand the contribution of these modules to the 

global patterns in support of cognitive processing.  

 

Limitations 

A limitation with the current study is the small sample size. Across six subjects, we found 

different patterns of network connectivity pattern alterations during working memory processing. 

While individual differences were predicted, the small number of subjects prevented better 

characterization of these patterns according to individuals’ task performance levels and learning 

ability. Another potential limitation is the long experiment time. The significant time in the 

scanner can lead to change in motivation and fatigue, affecting task performance and increasing 

motion-related artifact. For future continuation of the study, shorter sessions may be considered. 

 



58 
 

CHAPTER IV. GENERAL DISCUSSION 

 

Our two studies demonstrated that the functional brain network can adaptively and flexibly vary 

its connectivity patterns to support cognitive processing. Such changes likely reflective of both 

biological constraints and demand from external environment. In the first study, we specifically 

examined the neural network in late childhood/early adolescent children during the performance 

of three cognitive tasks. Our findings suggest an interaction between neuronal maturation, which 

have been shown to affect the development of functional network organization (Menon, 2013, 

Fair et al., 2009), and the ability to switch between different cognitive states in response to 

changing task demands. Our study replicated and extend previous literature by showing that 

network configuration may be a useful measure for both cognitive ability and neuronal 

maturation during development. Such measure can potentially be utilized to track healthy as well 

as atypical trajectories of neural and cognitive progress in children. Several recent studies have 

provided preliminary evidence for abnormalities in functional brain network in a number of 

neurodevelopmental and neurological disorders including autism (Di Martino et al., 2014; Rudie 

et al., 2013), epilepsy (Bonilha et al., 2014; Kellermann et al., 2015), and attention deficit 

hyperactivity disorder (Alonso et al., 2014; Xia et al., 2014). Findings from these studies suggest 

these disorders can be described in terms of altered functional connectivity in the large-scale 

neural systems. Network alterations may further be investigated in relation to specific 

information processing patterns associated with each disorder. 

In the second study, we focused our investigation on the association between cognitive 

demand and neural network organization in healthy adults during working memory processing. 

Our findings add to the expanding body of literature showing that functional network 

connectivity patterns can be measured during the extended working memory postcue delay and 
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this patterns showed clear changes from the resting state. Importantly, these changes are subject 

to temporal variability and individual differences which likely include learning rate and cognitive 

capacity. The impacts of individual differences should be addressed in future studies with a 

larger sample. Understanding the complex relationship between task practice and neural network 

reorganization can further the efforts to derive global markers for training efficacy. Recently, 

there has been increasing attention given to the effectiveness of cognitive training, particularly in 

the working memory domain (Melby-Lervåg and Hulme, 2013; Shipstead and Engle, 2012). 

Current evidence is inconclusive, particularly regarding the long-term impact of such training on 

the neural substrates that underlie cognition. Disentangling any potential training effects is 

further complicated by the variability in functional connectivity patterns over time and across 

individuals. Nevertheless, these challenges also represent an opportunity to further improve our 

methodology to better characterize the relationship between the dynamic brain and the constantly 

changing environment. 

While the two studies investigated two distinct populations, they converge in showing the 

use of the network approach is well suited for the investigation of the neural substrates of 

cognition and complex behavior. Far from a unitary function, cognitive processing, particularly 

working memory processing, is supported by multiple neural systems with different anatomical 

and functional characteristics. The patterns of interaction among these systems can be reliably 

identified and measured. More importantly, such patterns have been shown here and in other 

work (e.g., Cole et al., 2014; Heinzle et al., 2012; Shier et al., 2012) to reflect the underlying 

cognitive processing. The two studies also revealed complex patterns of connectivity at the 

module level. First, it calls for careful considering whole brain measures and individual 

measures, which can produce mixed results if not considered together and also separately. 
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Second, it also demonstrates the importance of the examination of individuals as group averages 

may produce false null effects. Finally, our results highlight the significance of a balance in 

using network measures to evaluate the neural substrates of cognition. While examining the 

large-scale neural configuration can be meaningful, such configuration represents the collective 

connectivity and activity of multiple circuitries with distinct functions and properties. 
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Table 1. Participant demographics and number of task sessions completed for study 2. 

Subject Age Sex 

No. of 

sessions 

1 34 M 4 

2 19 M 2 

3 28 M 3 

4 20 F 2 

5 23 F 3 

6 26 F 3 

7 18 F 1 

8 19 M 1 

 

 

Table 2. MNI coordinates of face and scene regions. 

Face module Scene module 

  x y z   x y z 

lFFA -41 -43 -26 lPPA -25 -36 -17 

rFFA 46 -50 -24 rPPA 28 -34 -15 

lOFA -43 -85 -15 lTOS -36 -82 11 

rOFA 46 -80 -12 rTOS 37 -85 18 

lSTS -50 -59 9 lRSC -16 -59 11 

rSTS 56 -64 13 rRSC 14 -52 6 

 

Table 3. Behavioral results. Mean (standard deviation) of performance accuracy (in percentage) 

and response time (in millisecond) for the updating and non-updating condition in each session. 

Abbreviations: ACC: accuracy; RT: response time; NUD: non-updating; UD: updating. 

  Session 1 Session 2 

Subject  ACC - NUD RT- NUD ACC - UD RT - UD ACC - NUD RT- NUD ACC - UD RT - UD 

1 85.41 (35.7) 1250.2 (267.8) 91.66 (27.9) 1237.3 (234.6) 89.95 (30.9) 1211.2 (256.6) 89.95 (30.9) 1212.7 (237.4) 

2 52.08 (50.5) 1777.2 (396.9) 50 (50.5) 1837.9 (598.6) 79.16 (41.0) 1288.0 (340.2) 85.41 (35.66) 1223.5 (322.7) 

3 91.6 (27.9) 1952.7 (365.6) 91.6 (27.93) 1872.4 (449.0) 87.5 (33.42) 1896.9 (377.8) 89.58 (30.8) 1923.7 (429.4) 

4 77.0 (42.4) 1321.6 (486.7) 79.16 (41.04) 1387.3 (457.9) 87.5 (33.42) 1182.7 (333.2) 85.41 (35.66) 1131.2 (274.7) 

5 93.7 (24.4) 1276.7 (293.4) 75 (43.75) 1281.9 (391.2) 79.16 (41.04) 1040.3 (255.2) 75 (43.75) 1105.4 (193.6) 

6 93.7 (24.4) 1063.4 (268.8) 93.75 (24.46) 1125.6 (292.8) 87.5 (33.42) 993.0 (176.9) 83.33 (37.66) 981.7 (213.0) 

 

 

Figure 1. Functional segregation and integration. (A) Intrinsic functional neural network (i.e., 

during resting state) shows a high a degree of segregation. (B-C) Distinct cognitive processes 

enhance integration between specific modules. During cognitive processing, nodes belonging to 

a module may switch membership to another module, as illustrated by change of node color 

compared to resting state. (D) Task-evoked functional network shows a high degree of 

integration. 
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Figure 2. Task schematics for study 1. (A) Reward/decision task: participants were instructed to 

choose one of the two doors which resulted in either a win or a loss. (B) Visual perception task: 

visual discrimination was required to determine either two faces or the houses were identical. (C) 

Working memory task: 1-back task with two load conditions required participants to indicate 

whether the current location(s) of the stimulus differed from that in the previous trial. 

 

 

 

 

Figure 3. Visual illustration of graph theory measures. (A) Global efficiency: a network with 

high global efficiency (left) is more densely connected and thus having shorter paths between 

any two given nodes than a network with low global efficiency (right). (B) Participation 

coefficient: a network with a high participation coefficient (left) has more inter-modular 

connections than a network with a low participation coefficient (right). (C) Transitivity: a 

network is highly transitive when it has more nodes that form a complete triangle (far right) and 

fewer nodes that do not (far left). (D) Connector hubs: nodes (in red) that have more 

connections between different modules than within a module. 
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Figure 4. Community detection and neural network architecture. (A) Community partition in 

each of the resting and task state. (B). Partition similarity was lower between resting and each 

task (in blue) and higher among task states (in red). (C) Older children show higher partition 

similarity to young adults. 
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Figure 5. Changes in functional integration and segregation across tasks in children (in red). For 

comparison, resting state measures in young adults were also presented (in blue). Relative to 

resting, task states showed a significant increase in global efficiency (A), connector hubs (B), 

participation coefficient(C), and a significant decrease in transitivity (D). No significant 

differences were found for modularity (E). 

 

  

 

 

Figure 6. Stability and flexibility at the module level. (A) Functional modules (from left to 

right): Frontoparietal, Default mode, Salience, Visual, Somatomotor. (B) Global variability 

coefficient was higher in FPN relative to other modules across the four cognitive states. (C) 

Partition similarity between resting and task states was lower in FPN and Salience compared to 

other modules. (D) Nodal flexibility across resting and task states was higher in FPN than other 

modules. 
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Figure 7. Relationship between neural and behavioral measures in the working memory task. 

(A). Performance accuracy (measured by load effect) negatively correlated with the number of 

connector hubs. (B) Whole-brain architecture similarity between resting and working memory 

state positively correlated with performance accuracy. (C-D) Performance accuracy negative 

correlated with DMN and SMN nodal flexibility. (E) Response time positively correlated with 

Salience nodal flexibility 

 

 

Figure 8. Relationship between neural and behavioral measures in the visual perception task. (A) 

Global efficiency positively correlated with performance accuracy. (B) Transitivity positive 

correlated with response time variability. (C) Partition similarity between resting and visual 

perception negatively correlated with performance accuracy. 
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Figure 9. Working memory task design. For the update condition (first two rows), a face and a 

scene is presented sequentially. A following cue indicates the image to be remembered. For the 

non-updating conditions (last two rows), one image is a face or a scene and the other is a 

scrambled image. For simplicity, the visual mask and ITI (~13-15 s) were not shown in the 

figure. 

 

 

Figure 10. Behavioral results. (A) Mean accuracy in percentage for each subject in the non-

updating condition for session 1 and session 2 (left 2 columns) and updating condition (right 2 

columns). Lines indicate the same subject across the two conditions. (B) Mean response time in 

millisecond for each subject in each condition and each session. Abbreviations: UD: updating, 

NUD: non-updating, Sess: session. 

A              B 

        

 

 

Figure 11. Functional integration and segregation during resting and during working memory 

task. (A) Global efficiency during resting and during both working memory conditions combined 

(left) and in each task condition (right), each session, and each subject. (B). Local efficiency. (C) 

Transitivity. Abbreviations: S: subject, wm: working memory, UD: updating, NUD: non-

updating 

A 
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Figure 12: Selective sample of subjects demonstrating the relationship between functional 

integration and task performance across both sessions. (A) Response time and global efficiency 

in the non-updating condition in subject 1. (B) Response time and global efficiency in the 

updating condition in subject 2. (C) Response time and local efficiency in the non-updating 

condition in subject 6. (D) Response time and local efficiency in the updating condition in 

subject 5. (E) Response time and transitivity in the non-updating condition in subject 4. (F) 

Response time and transitivity in the updating condition in subject 3. 
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Figure 13. Whole-brain partition similarity between resting and working memory. (A) Partition 

similarity in each session and each subject (same data as in A) showing non-updating condition 

in session 1 (solid black) and session 2 (checkered black), updating condition in session 1 (solid 

white) and session 2 (dotted white) (left). Partition similarity difference in session 1 (unfilled 

columns) and session 2 (filled columns) (right). Each dot represents a subject. (B) Rest-task 

architectural similarity changes between session 1 and session 2 (i.e., Session 2 partition 

similarity – Session 1 partition similarity) in each subject. For partition similarity difference, 

updating and non-updating conditions were collapsed. Negative values indicate more 

dissimilarity to resting compared to session 1, positive values indicate more similarity to resting 

compared to session 1. Error bars show standard error of differences across trials. Abbreviations: 

NUD: non-updating; UD: updating; S: subject. 
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Fig 14. Rest-task partition similarity changes between session 1 and session 2 at the module level 

for each subject. Negative values indicate more dissimilarity to resting compared to session 1, 

positive values indicate more similarity to resting compared to session 1. Error bars show 

standard error of differences across trials. (A) Frontoparietal module. (B) Default mode module. 

(C) Visual module. (D) Somatomotor module. Abbreviation: S: subject. 

      

           

        

 


