
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Cancer Diagnosis and Prognosis with
Histopathology Image Analysis and Pattern Recognition

A Dissertation presented

by

Naiyun Zhou

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Biomedical Engineering

Stony Brook University

December 2017



Stony Brook University

The Graduate School

Naiyun Zhou

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Chuan Huang - Dissertation Advisor
Assistant Professor, Radiology and Psychiatry

Program Faculty, Biomedical Engineering

Paul Vaska - Chairperson of Defense
Professor, Biomedical Engineering

Shu Jia - Committee Member
Assistant Professor, Biomedical Engineering

Wei Zhu - Committee Member
Professor, Applied Mathematics and Statistics

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Cancer Diagnosis and Prognosis with
Histopathology Image Analysis and Pattern Recognition

by

Naiyun Zhou

Doctor of Philosophy

in

Biomedical Engineering

Stony Brook University

2017

The dissertation focuses on the histopathology image analysis for cancer
diagnosis and prognosis, based on the innovation of histopathological ma-
chine vision techniques. Histopathology images are regarded as the reference
standard to identify diseases, and especially as a gold standard on cancer di-
agnosis. With the recent advance of the electronic scanners, digitized whole
slide images (WSI) make it possible to analyze cancer tissues in high reso-
lution and large-scale manner. At the same time, computer aided diagnosis
(CAD) algorithms are being developed to detect cancer automatically, both
in radiological and pathological field. However, those CAD algorithms are
based on object segmentation and handcrafted features, which are not fully
automatic. I developed innovative methods and frameworks to assist cancer
diagnosis and prognosis automatically, without sophisticated feature extrac-
tion. The major projects are intermediate prostate cancer grading, cell nuclei
segmentation using deep learning and nuclei segmentation evaluation through
image synthesis. My research novelties include multi-resolution histopathol-
ogy image analysis, fully automatic gland cancerous degree classification, and
nuclei segmentation and synthesis using deep learning.
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Chapter 1

Introduction

1.1 Background and Significance

Cancer is the second leading cause of death. It is a class of diseases caused
by the uncontrolled growth and expansion of abnormal cells. In 2015, over
1,600,000 new cancer cases were expected in United States and over 500,000
Americans were expected to die of cancer [1]. There is no doubt that cancer
is the most important public health problem in the United States.

Since the mid-1990s, the overall cancer mortality rates have dropped
steadily, which is attributable to improvement in diagnosis and treatment [2].
The computer-aided analytical approaches to radiological and histopatholog-
ical images have developed a lot over the past decade. On one hand, CAD
relieves the workload on pathologists by removing the most obvious benign
areas. On the other hand, quantitative tissue analysis alleviates intra- and
inter-observation variations (subjective opinions) among pathologists, yield-
ing a more objective basis for treatment.

However, there remain di�culties and challenges in CAD, especially in
the field of histopathology image analysis. For example, tissue structures
in cancerous conditions provide a wealth of information, which makes ob-
ject segmentation extremely di�cult. In addition, there is a large space for
the research of disease-specific characteristics to improve spatial analysis of
histopathology imagery [3]. Last but not least, almost research on useful
features for machine learning are handcrafted, which is inflexible and not
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specific. There is no general framework for histopathological image classifi-
cation due to too many parameters and method options in the automated
detection system.

Recently, deep learning architectures have achieved great success in com-
puter vision and pattern recognition field. In contrast to human feature
engineering, convolutional neural networks (CNNs), as fully data driven ap-
proaches, have shown outstanding performance in various tough computer
vision tasks [4, 5, 6]. CNN is computationally complex and needs large
amount of training set. But when we use GPUs for CNNs training, we can
get a lot speedup. Moreover, the digitized WSIs are often several gigabytes
in size. Once WSIs are labeled, the amount of image patches extracted from
a single WSI is on the order of thousands. Therefore, CNN is suitable for
automated classification and feature recognition for cancer histopathological
images.

In general, cancer histopathology image analysis is of high importance
in diagnosis, prognosis and treatment. Computer aided diagnosis (CAD)
algorithms are being developed to detect cancer automatically, both in ra-
diological and histopathological field. However, those CAD algorithms are
based on object segmentation and handcrafted features, which are not fully
automatic. Given abundant histopathological images in TCGA database,
state-of-art CNN architectures, and powerful GPU computation resources, I
developed appropriate and e�cient histopathological image analysis frame-
works to solve cancer diagnosis and prognosis issues, thus alleviating human
labor, and intra-,inter-subjective opinions among pathologists.

1.2 Outline

The dissertation focuses on the histopathology image analysis for cancer di-
agnosis and prognosis, based on the innovation of histopathological machine
vision techniques. I developed innovative methods and frameworks to assist
cancer diagnosis and prognosis automatically, without sophisticated feature
extraction. The major projects are automatic cancer grading, histopatho-
logical segmentation using deep learning and evaluation of nuclei segmenta-
tion through image synthesis. My research novelty includes multi-resolution
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histopathology image analysis, gland cancerous degree classification, cell nu-
clei segmentation for di↵erent types of cancer, and nuclei image synthesis
with ground truth mask.

The outline of the proposal is as follows: Chapter 2, Image Analysis
Techniques and Models. Histopathology Image Analysis introduces the basic
methods of the image preprocessing, automated object detection and clas-
sification of histopathology images. Pattern Recognition Techniques part
provides the fundamental algorithms in machine learning and deep learning
that are useful in my research, and the corresponding optimization algo-
rithms. Chapter 3, Intermediate Prostate Cancer Classification, is a fully
automatic approach to grade intermediate prostate malignancy. The content
is the second paper in the Publication List. Chapter 4, Nuclei Segmentation
for Various Types of Cancer, is a challenge solution for nuclei segmentation
in four types of cancer histopathology images. Our deep learning method
outperform the challenge-winning result. The content is the first paper in
the Manuscript List. Chapter 5, Evaluation of Nuclei Segmentation via Im-
age Synthesis, which is an idea of computationally generating ground truth
for nuclei segmentation in histopathology images, to solve the manual anno-
tation issue. The content is the first paper in the Publication List. Chapter
6, Evaluation of Nuclei Segmentation via Image Synthesis, is a deep learn-
ing approach based image synthesis for nuclei segmentation evaluation. The
content is the third paper in the Manuscript List. Appendix A, Clinical
Information Visualization, is a side project on clinical data visualization al-
gorithms. This work was published before my histopathology image analysis
research work. It is a web-based framework for the visualization of human
disease comorbidity and clinical profile overlay. The clinical data is from gen-
eral medicine. Once we obtain cancer clinical data, we could leverage this
framework to carry our further visualization or clinical data mining research.
The content is the third paper in the Publication List. Appendix B, Digi-
tal Pathology Image Viewing Module, is an implementation of a large-scale
pathology image viewing and editing module in 3D Slicer, which is utilized
for image acquisition step in Chapter 3-6.
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Chapter 2

Image Analysis and Pattern
Recognition

2.1 Histopathology Image Analysis

This section will give an introduction to the fundamental techniques in
histopathology image analysis. Color decomposition is the image prepro-
cessing method to extract target tissue composition. Object detection and
segmentation refer in particular to nuclear and gland segmentation because
certain characteristics of them are hallmarks of cancerous conditions. Feature
extraction and classification section consists of multi-scale feature selection,
dimensionality reduction and discriminative classifiers.

2.1.1 Color Decomposition

Histopathology refers to the study of the microscopic anatomical changes in
diseased tissue. By using the microscopic examination of a biopsy or surgi-
cal specimen, pathologists process the diseased tissue and fixed them onto
a glass slides. The most important step of the process is staining, which
is employed to give both contrasts to the tissue as well as revealing cellular
components. Hematoxylin and eosin (H&E stain) is the most commonly used
light microscopical stain for simple morphological diagnosis in histopathol-
ogy. Hematoxylin, a basic dye, stains nuclei blue due to an a�nity to nucleic
acids in the cell nucleus. Eosin, an acidic dye, stains the cytoplasm pink.
Figure 2.1 is an image of human prostate tissue H&E stain. We can tell
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Figure 2.1: A human prostate tissue H&E stain.

that, hematoxylin stains cell nuclei blue, while Eosin stains cytoplasm and
connective tissue pink. Because of the bright future of H&E stain [7], most
of the histopathology images used in my thesis are digitized H&E stained
sections.

In order to diagnose disease with di↵erential staining, we would indi-
cate the amount of the substances, eg., cell nuclei , cytoplasm and other
cell organelles, or structures to which the stain specifically attaches. In
histopathology staining, there is partial overlap in the absorption spectra
of di↵erent dyes, so we cannot use single wavelength to quantify each stain
[8]. RGB information in each pixel is determined by the stain concentrations
according to the Lambert-Beer law [9]. Light transmitting though matter
is attenuated by a ratio, defined as the absorption coe�cient A

c

. Assuming
the medium is homogeneous, we can compute the attenuation of the light by
Lambert-Beer0s law:

I
c

= I0,c · exp(�Ac

) (2.1)

where I0,c is the intensity of the light entering the medium, I
c

is the intensity
of the light detected after passing the medium.

Although the intensities I
R

, I
G

, I
B

are in a nonlinear relationship with the
concentration of stain, the optical density for each channel is linear with the
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concentration of the stain, which can be used for quantification of multiple
stains. The optical density (OD) in each of the channels (RGB) can be
defined as:

OD
c

= �log(I
c

/I0,c) = A
c

(2.2)

where c indicates the detection channel.

Dr. Arnout Ruifrok proposed a quantification of histochemical staining by
color deconvolution in 2000 [10]. In his paper, each pure stain (hematoxylin,
eosin and diaminobenzidine) is characterized by a specific OD for the light
through each of the three RGB channels. Here we represent the OD vector
as a 1 by 3 vector, eg., M

h

for hematoxylin, describing each stain in the
OD-converted RGB color space.

M
h

= [h
R

, h
G

, h
B

],

where h
R

, h
G

and h
B

stand for hematoxylin-specific values for the OD in
each of the three RGB channels. Here, h

R

= 0.18, h
G

= 0.20 and h
B

= 0.08.
Obviously, we can represent the OD for all three channels by a matrix, M,
consisting three OD vectors:

M =

2

4
M

h

M
e

M
d

3

5 ,

where M
e

= (0.01, 0.13, 0.01), M
h

= (0.10, 0.21, 0.29). In order to perform
separation of the stains by orthonormal transformation of the RGB informa-
tion, we have to normalize the OD matrix M, to achieve correct balancing
of the absorption factor for each stain, resulting in a normalized OD matrix,
M

N

:

M
N

=

2

4
0.65 0.70 0.29
0.07 0.99 0.11
0.27 0.57 0.78

3

5 ,

If we represent the image by O and the amounts of three stains on each pixel
by C, we can get the relationship:

O = C ·M
N

, (2.3)

where C = [C
h

, C
e

, C
d

].
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Therefore, we can obtain the vector C, which is the quantification result,
with the inverse of the OD matrix:

C = M�1
N

·O, (2.4)

where M�1
N

=

2

4
1.88 �0.07 �0.60
�1.02 1.13 �0.48
�0.55 �0.13 1.57

3

5 .

After Dr.Ruifrok’s idea, some blind color determination methods were
developed which do not require reference color input. Dr. Rabinovich pre-
sented the first automated system for performing color decomposition by
unsupervised learning [11]. This work investigated the use of two techniques:
NMF (Non-negative Matrix Factorization) and ICA( Independent Compo-
nent Analysis) by comparing the performance with ground truth data.

More recently, Dr. Gavrilovic developed a blind color decomposition
method using statistical techniques for noise modeling of the CCD array
and biochemical noise [12]. They demonstrated the method qualitatively
and quantitatively showing more accurate decompositions than Dr. Rabi-
novich’s NMF and ICA.

2.1.2 Object Detection and Segmentation

The prerequisite to disease identification and classification in histopathol-
ogy images is the segmentation of objects of interest from the background.
A large amount of works have been conducted on breast cell nuclear seg-
mentation and prostate gland segmentation because of their importance in
diagnosis and grading of cancer.

Figure 2.2 shows two example tissue of H&E stains from a common breast
cancer and a grade 4 prostate cancer. Breast cancer and prostate cancer are
the most prevalent form of cancer among women and men respectively. The
aggressive potential of the breast tumor depends on the cell nuclear features
and cell mitotic activity. For prostate cancer grading, the Gleason Pattern
1-5 depends on how well-formed the glands are. Therefore, in breast cancer
and prostate cancer CAD systems, the segmentation of breast cells and the

7



prostate glands is a significant processing step. Algorithms like Bayesian
classifier, level set and active contour are most common ones.

(a) (b)

Figure 2.2: (a) Invasive Ductal Carcinoma of Breast [13]. (b) Grade 4
Prostate Cancer [14].

Bayesian Classifier

For both application, a Bayesian classifier was proposed based on pixel values
to segment nuclear and glandular structures [15]. It is a low-level information
extraction methodology which can be utilized as a preprocessing step for
high-level methodologies described later. In a digital image S = f(s), where
s denotes a 2 dimensional grid of pixels and f is the function that gives
values (RGB channels) to image pixels. A cell comprises two main structures:
cytoplasm and nuclei, which are denoted by a set T = {C,N}. In the training
set T

v

, the pixel values f(s) are known to obtain the probability density
functions p(f(s)|v), where v stands for the class C or N . We employ the
theorem of Bayesian Classifier to get the posterior conditional probability
that s belongs to v,

P (v|f(s)) = P (v)p(f(s)|v)P
w2{C,N} P (w)p(f(s)|w) (2.5)

where p(f(s)|v) is the priori conditional probability obtained in training set,
v 2 {C,N}. P (v) is the prior probability of occurrence for each class, like
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cytoplasm or nuclei. The results are the pixel-wise likelihood scenes, which
are the probability of pixel s belonging to class v. We can set an empirically
predefined threshold to get the binary image for nuclei. In the prostate gland
case, class v will consist of lumen, cytoplasm and nuclei.

Level Set

Level set based deformable methods have been widely used for medical image
object segmentation. In mathematics, a level set of a real valued function f
of n real variables is a set of the form: L

c

(f) = {(x1, ..., xn

)|f(x1, ..., xn

) = c}.
In 2 dimensions, the level set method represents a closed curve P (like the
boundary of nuclear or gland) by using an auxiliary function � that is the level
set function. Mathematically, P can be expressed as P = {(x, y)|�(t, x, y) =
0} If the curve P moves in the normal direction with a speed v, then the level
set function � satisfies the equation:

@�

@t
+ F |r�| = 0 (2.6)

where the function F defines the speed of the movement. For a histopathol-
ogy image segmentation application [15], the initial contour �0 = �(0, x, y)
is defined by the Bayesian classifier. Figure 2.3 is the original image and the
segmentation result.

(a) (b)

Figure 2.3: (a) Original Image (b) Segmentation Result [15].
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Active Contour

The active contour in this section refers to the snake class, also called explicit
or parametric active contour. The snake is an energy-minimizing spline con-
strained by image forces, external constraint forces and internal spline forces
to detect edges or lines [16]:

E⇤
snake

=

Z 1

0

E
snake

(v(s))ds =

Z 1

0

E
int

(v(s)) + E
image

(v(s)) + E
con

(v(s))ds

(2.7)
where v(s) = (x(s), y(s)) is the position in an image, E

int

represents the in-
ternal energy of the spline due to bending, E

image

changes due to the image
forces and E

con

changes due to the external constraint forces. The mini-
mization procedure is an iterative technique using sparse matrix methods.
In terms of the internal energy, each iteration e↵ectively takes implicit Euler
steps, while for the image and external constraint energy, explicit Euler steps
were taken. By deforming a curve of sharp image intensity variations, the
segmentation of any object can be determined.

In 2012, Dr. Madabhushi published a novel boundary and region-based
active contour model to resolve boundaries of overlapped objects [17]. It in-
corporates shape priors with the form of level set algorithm that is initialized
automatically based on watershed. The energy functional of the novel active
contour:

F = �1Fshape

(C) + �2Fboundary

(�, ) + F
region

(�, u
in

, u
out

) (2.8)

where � is the level set function,  is the shape function of the object, u
in

and u
out

are the partitioned foreground and background regions, and �1 and
�2 are the weights balancing the contributions of the boundary, shape and
region terms. The algorithm is able to resolve up to 91% of overlapping
nuclear and glandular structures on digitized histopathology images of 14
breast and 100 prostate biopsy specimens. Figure 2.4 reflects the superiority
of nuclear segmentation of the model.

2.1.3 Feature Extraction and Classification

Research on image feature extraction and selection have been developed in
analysis of histopathology imagery. The image feature itself and the selection
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(a) (b) (c)

Figure 2.4: (a) Original histological image. (b) Segmentation results from
geodesic active contour model. (c) Segmentation results from the novel active
contour model. [17]

algorithm are both crucial for classification (disease grading and diagnosis).
In this section, histopathology image features will be introduced in object
level and spatially related level at first. After feature selection, dimensionality
reduction techniques will be introduced. At last, disease discrimination and
grade quantification are implemented by classification frameworks.

Object and Spatial-Arrangement Features

In a CAD system, image feature extraction and selection follow the segmenta-
tion, which is also crucial for pattern recognition. For the regions of interest,
such as nuclear and gland, object-level features can to classified into four
groups. They are listed in Figure 2.5: 1) Size and Shape, 2) Radiometric
and Densitometric, 3) Texture, and 4) Chromatin-specific. These low-level
metrics that depends on the quality of segmentation can be combined with
statistics to generate very high dimensional feature vectors for a single ob-
ject.

Di↵erent from traditional object features, topological or graph-based fea-
tures represent spatial structure. Voronoi diagrams, Delaunay triangulation
and minimum spanning trees are most popular graph data structures ex-
tracted from histopathology image for classification and prediction. A very
complete summary of all the spatial features published in the literature is
listed in Figure 2.6. The graph data structure constructed from histopathol-
ogy tissue objects are highly related to pathology states. For example, in
[18], Voronoi diagrams, Delaunay triangulation and minimum spanning trees
were constructed from the centers of each nuclei. They were used to quantify
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Figure 2.5: Summary of object-level features used in histopathology image
analysis[3].

the arrangement of nuclei and glandular structures with a support vector
machine to distinguish between all four types of tissue for cancer diagnosis.

Dimensionality Reduction

With large amount of features extracted from large-scale histopathology im-
ages, vast quantity of data to be processed can be prohibitive for feasible
classification. Even using current high performance computing machines, di-
mensionality reduction techniques are necessary to select features that opti-
mize classification performance. Most commonly used methods are principal
component analysis (PCA), Linear Discriminant Analysis (LDA), Multidi-
mensional Scaling (MDS) and Independent Component Analysis (ICA).
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Figure 2.6: Summary of spatial-arrangement features used in histopathology
image analysis[3].

Classification Methods

Support Vector Machines (SVM) [18] and AdaBoost algorithm [19] have
been applied most frequently to histopathology image classification for can-
cer grading. More interesting framework has also been proposed based on
Gabor filter texture features [20], with 88% accuracy in Gleason score classi-
fication for prostate cancer. A shape-based template matching algorithm [15]
was applied in automated nuclei segmentation for breast cancer. It shown a
over 80% accuracy in breast cancer grade classification in which the choice
of template is inspired by the nuclei features.

2.2 Pattern Recognition Models and Optimiza-
tion

In histopathology image analysis, numerous machine learning and pattern
recognition techniques have been applied in object detection and disease
classification. In this section, I have selected several e�cient models for
my research of histopathology digital image analysis. Clustering algorithms
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provide the ways to assign data points to a number of components paramet-
rically or non-parametrically. The clustering of pixels might be a step in
an integrated framework while plays a role in detailed annotation of cancer
cells. Markov Random Fields (MRF) are undirected graphical models which
are sets of random variables representing dependencies among nodes. The
MRF inference is to find the most appropriate labeling which is a discrete
set of labels for image pixels such that the corresponding objective function
is minimized. MRFs can deal with various fundamental problems in medical
image analysis such as segmentation, registration and shape alignment, etc.
Convolutional Neural Networks (CNN), in contrast to human feature engi-
neering, are fully data driven approaches. As a deep learning model, CNN
has a large advantage in pattern recognition for large-scale histopathology
image analysis.

2.2.1 Clustering

In this section, I will introduce two common clustering techniques: K-means
algorithm and Gaussian mixture model.

K-means Clustering

Suppose we have an image data set {x1, ..., xN

} consisting of N pixels of 3-
dimensional (RGB) variable x. Our task is to partition the pixels into K
clusters by Euclidean distance between RGB variables. Then we can define
the K centers by a vector C

K

= {c1, ..., cK}. The problem can be described
as finding an assignment of image pixels to clusters (a center c

k

in C
K

) such
that the sum of the squares of the distances of each image pixel to its closest
center C

K

is a minimum. For each image pixel x
n

, we define an indicator
variable i

nk

= 0 or 1, describing which one of the K clusters the image pixel
n is assigned to.

F =
NX

n=1

KX

k=1

i
nk

||x
n

� c
k

||2 (2.9)

We can find values for the i
nk

and C
K

by an iterative procedure to minimize
F . In each iteration, there are two steps: 1) assignment step, 2) update step.
Initially, we choose some random values for the C

K

. In the assignment step,
each pixel is assigned to the center whose Euclidean distance is the least. In
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the update step, new means of the pixels assigned to the same center are set
to be the new centers.

Gaussian Mixture Model

The Gaussian mixture model of a variable is defined as a liner superposition
of Gaussian components,

p(x) =
KX

k=1

⇡
k

N(x|µ
k

,⌃
k

) (2.10)

where the mixing coe�cients ⇡
k

is the probability of cluster k that the vari-
able is assigned to,

p(z
k

= 1) = ⇡
k

2 [0, 1]

where z is a random binary variable, 1-of-K representation, in which a par-
ticular element z

k

is equal to 1 and all other elements are equal to 0.

Therefore, the probability of x given the z is a product of Gaussian mix-
tures,

p(x|z) =
KY

k=1

N(x|µ
k

,⌃
k

)zk .

Since we have conditional probability theorem: p(x, z) = p(z)p(x|z), we have
the model as described in (2.10):

p(x) =
X

z

p(z)p(x|z) =
KX

k=1

⇡
k

N(x|µ
k

,⌃
k

).

The model has a discrete latent variable z, which means for every observa-
tion x

n

, there is a corresponding coe�cients z
n

. In order to find the maximum
likelihood, we need to calculate the posterior probability of z given x,

�(z
k

) = p(z
k

= 1|x) = p(x, z1 = 1)

p(x)
=

p(z
k

= 1)p(x|z
k

= 1)
P

K

j=1 p(zj = 1)p(x|z
j

= 1)

So,

�(z
k

) =
⇡
k

N(x|µ
k

,⌃
k

)
P

K

j=1 pjN(x|µ
j

,⌃
j

)
. (2.11)
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By using Expectation Maximization algorithm, we obtain (N
k

=
P

N

n=1 �(znk)):

µ
k

=
1

N
k

NX

n=1

�(z
nk

)x
n

, ⌃ =
1

N
k

NX

n=1

�(z
nk

)(x
n

� µ
k

)(x
n

� µ
k

)T , ⇡
k

=
N

k

N
.

(2.12)
If we define the data set of observations is {x1, ..., xn

}, and assume that
the image pixels are independently from the distribution, the log likelihood
function:

ln p(X|⇡, µ,⌃) =
NX

n=1

ln{
KX

k=1

⇡
k

N(x
n

|µ
k

,⌃
k

)}. (2.13)

The EM for the case of the GMM is to first choose initialization for the µ, ⌃
and ⇡. Then alternating between 2.11 and 2.12, which are the Expectation
step and the Maximization step respectively. After each iteration, we should
evaluate 2.13 to guarantee the convergence of the log likelihood.

2.2.2 Markov Random Fields

A Markov Random Field (MRF) is an undirected graphical model that spec-
ifies both a factorization and a set of conditional independence relations. In
undirected graphs, it is convenient to discuss conditional independence prop-
erties because there is no link between any pair of nodes. In image analysis,
each node associates a pixel of an image. A MRF is formally defined by a
graph G = (V,E):

• V = {1, 2, ..., N}, a set of nodes, each of which is associated with a
random variable w

n

, n = 1, 2, ..., N .

• A set of neighbors of node i, S = {S1, S2, ..., SN

}, any element S
i

which
have adjacent S

j

satisfies (i, j) 2 E.

• p(w
i

|{w
j

}
j2V \i) = p(w

n

|{w
n

}
j2Si), where S

i

is the Markov blanket of
node i. This property is called the Markov property.

The MRF model can be described as the joint probability of the variables
({w

n

}) as the product of potential functions defined on maximal cliques of
G:

p(w) =
1

Z
exp(�E(w, ✓)), where E(w, ✓) =

X

m2M

 
m

(w̄
m

, ✓
m

)
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whereM is the set of maximal cliques of the graph;  
m

is the clique potential,
m 2 M , a potential function returns a non-negative value parameterized by
✓
m

; Z is the partition function that is a normalizing constant ensuring the re-
sult is a valid probability distribution, Z =

P
w1...wN

Q
m2M exp(� 

m

(w̄
m

, ✓
m

)).

The MRF can be applied in many vision tasks such as de-noising, texture
synthesis, segmentation, etc. In histopathology image analysis, MRF has
been developed to perform the prostate cancer segmentation [21], detection
of prostate cancer [22] and region-based active contour model for cancer lesion
segmentation [23].

2.2.3 Convolutional Neural Network

Motivation

Convolutional Neural Network (CNN) has achieved tremendous success in
computer vision applications. The name “convolutional neural network” indi-
cates that the network employs a mathematical operation called convolution.
It is a specialized kind of linear operation and it is the core building block of
CNNs. Generally speaking, convolutional neural networks are simply neural
networks that use convolution in place of general matrix multiplication in at
least one of their operation layers. If we now have an input two-dimensional
image I, and a two-dimensional kernel K, the discrete convolution can be
defined as:

C(i, j) = (I ⇤K)(i, j) =
X

p

X

q

I(m,n)K(i� p, j � q) (2.14)

Discrete convolution can be considered as matrix multiplication. Specifi-
cally, the matrix is very sparse because the kernel is usually much smaller
than the input image. This property leverages most important ideas in the
motivation of CNNs: sparse interactions, parameter sharing and equi-variant
representations, which are di↵erent from ordinary neural networks. In a deep
convolutional network, units in the deeper layers may indirectly interact with
a larger portion of the input. This allows the network to e�ciently describe
complicated interactions between many units. The form of parameter shar-
ing of convolution causes the layer to have a property called equivariance to
translation. Invariance to local translation can be a very useful property if
we care more about whether some feature is present than exactly where it is.
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This property exactly fits our need of feature existence recognition for biolog-
ical structures. Moreover, by the nature of sparse interactions and parameter
sharing, small features in an image can be detected e�ciently in terms of the
memory requirements and statistics. Details in theoretical explanation can
be found in [24], Chapter 9.

Network Architecture

A typical CNN has several layers of transformation: Convolutional Layer,
Rectified Linear Unit (ReLU), Pooling Layer and Fully-Connected Layer. An
example is shown in Figure 3.4 and Table 3.1. Input layer holds the raw RGB
image data as a long one-dimensional vector. Convolutional layer computes
the output of neurons corresponding to local regions based on convolution
kernels. Each kernel produces one output vector. ReLU layer processes the
data by an element-wise activation function: max(0, x) thresholding at zero.
This layer does not change the dimensions of data. Pooling layer modifies
the output of the net with a summary statistics of the nearby outputs. Sim-
ply speaking, it performs a downsampling operation along the vector spatial
dimension. Pooling over spatial regions provides invariance to local transla-
tion, which is a useful property of preserving features. Fully connected layer’s
neurons have full connections with all activations in the previous layer, same
as those in ordinary neural networks.

The ideal network architecture for a task must be tuned via experimen-
tation guided by monitoring the validation set error. Practically, greater
depth does seem to result in better generalization for a wide variety of
tasks. Statistically speaking, using deep architectures does express a use-
ful prior over the space of functions the model learns. Three CNN archi-
tectures for ImageNet Large-Scale Visual Recognition Challenge (ILSVRC):
AlexNet[4], VGG team’s ConvNet[25] and GoogleNet[6], have achieved suc-
cess in this contest. My CNN models will be developed based on these
networks. AlexNet (Figure 2.7) introduced the Local Response Normaliza-
tion (LRN), a desirable property that does not need input normalization to
prevent it from saturating. In Figure 2.7, each of the 5 relative large blocks
(2nd, 3rd, 4th, 5th and 6th layer) is a combination of convolution, ReLU
and LRN operations in order. It is reported that LRN reduces their top-1
and top-5 error rates by 1.4% and 1.2%. AlexNet achieves top-1 and top-5
test set error rates of 37.5% and 17.0% on ILSVRC-2010. VGG team in-
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creased the depth of the network by adding more convolutional layers, in
their ConvNet (Figure 2.8) models. In ILSVRC-2014, both VGG team and
GoogleNet team combined the outputs of several models by averaging their
soft-max class posteriors to get ensemble of several networks. In the networks
fusion part, GoogleNet (7 nets) was the classification task winner, with 6.7%
error, while VGG team (2 nets) secured the 2nd place with 6.8% test error.
In terms of the single-net performance, VGG team’s architecture achieved
the best result (7.0% test error), outperforming the GoogleNet by 0.9%.

Figure 2.7: An illustration of the architecture of AlexNet[4].

Optimization

CNNs are trained in a purely supervised fashion, using full forward and back-
propagation algorithm through the entire network on each training iteration.
We cannot use closed formulations to express parameter updates because
the nonlinearity of a CNN causes the loss functions to become non-convex.
Therefore, CNNs are usually trained by using iterative, gradient-based opti-
mizers. The iterative gradient-based optimization algorithms is widely used
in training deep learning networks. For example, ca↵e, the most popular
CNN implementation, uses stochastic gradient descent for optimization. Fig-
ure 2.9 shows how to update parameters by gradient descent. Initially, the
learning rate ✏ and parameters are required. During the training, the de-
cay of the learning rate may be changed linearly by monitoring the number
of iterations. While stochastic gradient descent remains a very popular op-
timization strategy, learning with it can sometimes be slow. The method
of momentum is usually designed in large-scale tasks to accelerate learning.
Details in optimization can be found in [24], Chapter 8.
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Figure 2.8: VGG team’s ConvNet configurations[25].

2.2.4 Gradient Descent

In this section, two optimization methods: gradient descent and expectation
maximization will be introduced. Gradient descent is the most widely used
first-order optimization algorithm. It works in spaces of any number of di-
mensions. Expectation Maximization (EM) is a general technique for finding
maximum likelihood estimators in latent variable models. Shape priors can
be incorporated into EM framework [26] to solve complicated segmentation
problems due to color non-standardization.

Gradient descent is a first-order optimization algorithm. For any ob-
jective function f : Rn ! R, assuming f is convex and di↵erentiable, we
want solve the problem: min

X2Rn f(X) by finding X⇤ such that f(X⇤) =
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Figure 2.9: Stochastic gradient descent (SGD) update at iteration k.

minf(X). Using Gradient Descent, we choose initial X(0) 2 Rn, repeat:

X(t) = X(t�1) � ↵
t

·rf(X(t�1)), t = 1, 2, 3, ... (2.15)

This iteration can continue until convergence at local or global minimum.
Figure 2.10 visualizes the steps of several points from an arbitrary point to
the global minimum on a 2D surface. The light blue surface is the objective
function f . The red dots are the position x(t) in each iteration. In this
example, f(x, y) = x2 + 0.01 · y2, in which ↵

t

= 0.1 and X(0) = (�6, 13).

Figure 2.10: The visualization of gradient descent steps on a 2D surface.
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Chapter 3

Intermediate Prostate Cancer
Classification

We present a fully automatic approach to grade intermediate prostate malig-
nancy with hematoxylin & eosin-stained whole slide images. Deep learning
architectures such as convolutional neural networks (CNNs) have been uti-
lized in the domain of histopathology for automated carcinoma detection and
classification. However, few work show its power in discriminating intermedi-
ate Gleason patterns, partially due to sporadic distribution of prostate glands
on stained biopsy samples. We propose optimized staining pigment decom-
position on localized images, followed by CNN to classify Gleason patterns
3+4 and 4+3 without handcrafted features or gland segmentation. Crucial
glands morphology and structural relationship of nuclei are extracted twice
in di↵erent color space by the multi-scale strategy to mimic pathologists’
visual examination. The presented classification scheme evaluated on 169
whole slide images yielded a 70.41% accuracy and corresponding area under
the receiver operating characteristic curve of 0.7247.

3.1 Introduction

Histopathology is the study of microscopic examination of tissues and cells
to uncover the mechanism of disease. The study of histology images was
regarded as the reference standard to identify disease for diagnosis and treat-
ment, especially cancer grading [27]. Recently, the digitization of high-
resolution whole slide images (WSI) makes it possible to implement computer
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aided diagnosis system to analyze large-scale image data, thus alleviating
intra- and inter-observation variations among pathological experts [28]. The
computational algorithms and analytical approaches have been developed for
cancer detection and grading [29].

(a) TCGA-EJ-5497 Grade:3+4. (b) TCGA-EJ-5527 Grade:4+3.

(c) patch of marked area in (a). (d) patch of marked area in (b).

Figure 3.1: Intermediate prostate cancer image examples.

Prostate cancer shows a favorable long-term prognosis with more than
five years of survivor after diagnosis [30]. Gleason score is the grading sys-
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tem for prostate cancer based on analyzing patterns of glandular and nuclear
morphology [31]. Generally, primary grade is assigned to the dominant pat-
tern of the tumor (with greater than 50% in area seen) and secondary grade
is assigned to the subordinate pattern. Each of them has 5 degrees (1-5) ac-
cording to the extent of carcinoma infiltration, as appearance of recognizable
glands. Prostate cancer outcomes, in terms of recurrence risk and specific
mortality, di↵er particularly at the di↵erent Gleason 7 patterns (3+4, 4+3)
after primary therapy [32]. The 10-year prostate cancer specific survival rate
for 3+4 (92.1%) was significantly higher than that for 4+3 (76.5%). Figure
3.1 shows two typical WSI of Gleason 7 patterns (3+4, 4+3) and the patches
extracted from them (Figure 3.1(c) and Figure 3.1(d)). The marked area
in Figure 3.1(a) and Figure 3.1(b) are target areas evaluated during Glea-
son grading. We can easily tell that the structure of glands in Grade 3+4
is more complete than that of Grade 4+3. If prostate cancer patients with
Grade 4+3 can be distinguished successfully from Grade 3+4, they would
receive appropriate treatment and survive longer. So, we are motivated by
this clinically meaningful issue to innovate appropriate computer aided diag-
nosis approach for intermediate malignant prostate cancer grading.

For automatic grading of prostate cancer via histopathological image anal-
ysis, many state-of-the-art works have been conducted in gland feature se-
lection [33]. In contrast to human feature engineering, CNNs, as fully data
driven approaches, have shown satisfying performance in various computer
vision tasks [4]. CNNs are constructed by multiple layers of non-linear trans-
formation and max-pooling, followed by fully-connected layers and a soft-max
classifier. ImageNet, a moderate size CNN, contains 60 million parameters
and 650,000 neurons. Therefore, with su�cient training data sets and GPU
computation resource, CNNs are suitable for histopathology image classifi-
cation tasks.

In the case of binary classification for prostate Gleason patterns 3+4 and
4+3, inhomogeneous tissue (malignant gland, benign gland, stroma, nuclei,
etc.) distributions make pattern recognition less e�cient. We intend to delin-
eate irrelevant image information such as benign glands and stroma, so that
the training data sets consist only malignant glands, which are the object of
Gleason score evaluation. For interest object segmentation, K-Means clus-
tering is a popular algorithm for the segmentation of color images in L*a*b*
color space [34]. In hematoxylin & eosin-stained tissue images, the contribu-
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tions from each of the applied stains are convolved in RGB color space. To
quantify the contribution of hematoxylin, binding to basophilic substances
(such as DNA/RNA - which are the main compositions of cell nuclei) [35],
a general color de-convolution method [10] based on orthonormal transfor-
mation is widely adopted in histopathology analysis. Nevertheless, the sep-
aration of two colors comes with an irreversible matrix or an ill-conditioned
de-convolution, which makes densities of stains incorrect. In this study, we
develop an optimized color decomposition method, for hematoxylin density
extraction. The sum of RGB values in the third channel (background) and
the changes in H&E channels is minimized using Quasi-Newton method [36].
We applied our method on H&E stained patches extracted from localized
areas in WSI. The localized areas, assumed as prostate gland rich areas, are
obtained by K-Means clustering. The gray-scale patches doubly extracted
from Grade 3+3 and Grade 4+4 WSIs are set as training data set. Classified
patches are accumulated to get final accuracy on WSI level. Grade 3+4 and
Grade 4+3 will be graded to WSIs with corresponding dominant pattern of
the tumor (Grade 3+3 and Grade 4+4).

3.2 Related Work

Substantial histopathology studies on computer-aided grading for prostate
cancer investigate novel methods in every aspect of image recognition. Most
of them take classical computer vision approach: compute feature informa-
tion from images, train a classification model, and predict grade using trained
model. A number of works propose novel shape descriptors to discriminate
gland morphology [37]. Some studies develop classification and regulariza-
tion method to improve precision [14]. However, most of them focus on
distinguishing Gleason patterns 3 and 4, which are less complicated than
di↵erentiating Gleason patterns 3+4 and 4+3. Two papers claimed their
approaches on automatic grading intermediate prostate cancer [38] [39], but
their systems are evaluated with images annotated by expert pathologists or
with sub-images from regions of interest, which involve manual data selec-
tion. In recent years, convolutional neural networks have been used to detect
mitosis in breast cancer histology images [40] [41]. In other histopathology
image analysis research, deep learning architectures are applied in basal-cell
carcinoma detection [42], brain tumor [43] and invasive ductal carcinoma
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[44]. As far as know, this study is the first attempt to use CNN in automatic
prostate cancer classification.

3.3 Data

The original whole slide images are downloaded from The Cancer Genome
Atlas (TCGA). We use 31 Grade 3+3 WSIs and 34 Grade 4+4 WSIs as our
training set. For validation, 3 Grade 3+3 WSIs and 3 Grade 4+4 WSIs are
used. In the testing stage, 99 Grade 3+4 WSIs and 70 Grade 4+3 WSIs
are utilized for prediction. We use the openslide library to obtain 2-D image
data in regions of interest from di↵erent layers of WSIs. In localized regions,
patches (512 pixels by 512 pixels) are extracted from level 1 with 50% hor-
izontal and vertical overlap. The number of patches extracted from a WSI
(“baseline”) ranges from hundreds to over 10,000. Our optimized color de-
composition method outputs images with 1 channel (hematoxylin), instead
of original RGB channels.

We select originally informative patches for “baseline” experiment based
on RGB mean values. Five standards are set to exclude patches: 1) RGB
mean value higher than 220; 2) or lower than 50; 3) R channel higher than
200 while others lower than 100; 4) B channel higher than 200 while others
lower than 100) and 5) image size (less than 200k).

3.4 Methods

In this section, the methods will be introduced according to their orders in
the classification pipeline.

3.4.1 K-Means Clustering in L*a*b* Color Space

The localized areas (glands) of WSI for further analysis are segmented by
K-Means algorithm in CIE L*a*b* color space. The L*a*b* color space is a
3-axis color system with dimension L for lightness and a and b for the color-
opponent dimensions. The L*a*b* color space is based on human perception.
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The values in the L*a*b* color space describe all of the colors human could
recognize. Since it is in the form of color representation, not the quantity
that printing instrumentations need, it is regarded as machine unrelated. L
(lightness) ranges from 0 to 100. When the value L = 50, it stands for 50%
black. The ranges of a and b are both from -128 to +127. In the range,
+127a corresponds to pure red, and -128a stands for pure green. Similarly,
+127b corresponds to pure yellow, and -128b stands for pure blue. Each color
is represented by the combination of the three values.

The values of the two channels (a and b) on each pixel are clustered by K-
Means quantization, minimizing the sum of distance functions of each point
in the cluster to the K center [45]:

argmin
s

kX

i=1

X

x2Si

||x� µ
i

||2 (3.1)

where (x1, x2, ..., xn

) observations are partitioned into k  n, µ
i

is the mean
of points in S

i

.

The lowest resolution level of each WSI is converted into L*a*b* color
space, as example shown in Figure 3.2 (a) and(b). WSIs without pathologists’
mark are clustered into 3 groups, while others are clustered into 4 groups.
We select the cluster with second maximum mean value in blue channel. The
final binary patch masks on level 1, as shown in Figure 3.2(c), are generated
to localize gland areas for further color decomposition and classification.

3.4.2 Optimized Color Decomposition

Original Formulation of Color Decomposition

Given an image I(x, y, c), its optical density (absorbance) is computed as:

O(x, y, c) = � log

✓
I(x, y, c) + 1

256

◆
(3.2)
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(a) RGB Space. (b) L*a*b* Space. (c) L1 Patch Mask.

Figure 3.2: K-Means clustering algorithm on WSI.

The three “characteristic” vectors for three channels, u, v, w 2 R3, with
kuk = kvk = kwk = 1, form a matrix M as

M = [u, v, w] 2 R3⇥3 (3.3)

For each point (x, y), let R 2 R3 as R = O(x, y, :). Then, the decopmosed
vector S is S = M�1R. Figure 3.3 shows two typical Grade 3+3 and Grade
4+4 patches (Figure 3.3 (a) and (b)) and corresponding results of Hema-
toxylin channel decomposition (Fig.3.3 (c) and (d)).

Optimization

From Figure 3.3 (c) and (d), we can tell that the density of them di↵er a
lot, due to tissue density variance or staining process variance. The classifier
can easily di↵er these two image patches by their density, but not the gland
morphology. This is a strong bias in the system. So we have to manipulate
the matrix M to adjust decomposition process for each whole slide image to
avoid large systematic color variance. In order to produce a specific matrix
M for each whole slide image, we will need to optimize matrix M by the
color feature of each whole slide image. Obviously, the third row in decom-
posed vector S is unrelated to further steps. In original color decomposition
method, we just regard them and fix matrix M for each whole slide image.
In the optimization part, we propose an idea to minimize the sum of the
third row of S and the absolute changes in D. With a multiplier � , this
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optimization process is similar to the second order of regularization.

We can directly optimize the matrix D := M�1.
Define

E(D) :=

Z Z
kS(3)k2dxdy + �kD � D̄k2 (3.4)

=

Z Z
kDO(x, y, c)k2dxdy + �kD � D̄k2 (3.5)

=

Z Z
(d ·O(x, y, c))2dxdy + �kD � D̄k2 (3.6)

where D̄ is the original D matrix from experience and d is the 3rd row
of D.

Denote D as

D =

2

4
D1 D2 D3

D4 D5 D6

D7 D8 D9

3

5 (3.7)

We use the quasi-newton algorithm to minimize E(D) in MATLAB Op-
timization Toolbox.

3.4.3 Convolutional Neural Network

We adopted the CNN architecture from [4], with appropriate modifications
for our application. All the layers are constructed as shown in Figure 3.4
[46]. Layers 1, 2 and 5 consist of convolutional (Conv) layers, Rectified Lin-
ear Unit (ReLu) activation layers and Max-pooling layers. Layer 6 and 7 are
fully connected layers, as in traditional neural networks. The outputs of the
Layer 8 are two neurons, representing Grade 3+3 and Grade 4+4. They are
activated by a logistic regression model called Softmax. The specification
of our CNN architecture is listed in Table 3.1. In the training process, we
augment data by setting mirror (reflection of original images). The batch
size for training data set is 64. The drop out ratios in Layer 6 and 7 are both
0.5. Each CNN is trained on GPU for 100,000 iterations (approximately 50
hours on one Nvidia K80 GPU).
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(a) Grade:3+3. (b) Grade:4+4.

(c) hematoxylin density in (a). (d) hematoxylin density in (b).

Figure 3.3: The original color decomposition results.

3.5 Results and Discussion

The results of our prostate cancer classification experiments are shown in
Table 3.2. We designed six experiments to test the performance of gland
localization (3.4.1) and optimization color decomposition (3.4.2). Color de-
composition is described in 3.4.2. The convolutional neural networks for each
experiment are the same except for the input image channel number. CNNs
are trained by Grade 3+3 and Grade 4+4 patches. After prediction, classi-
fied patches are accumulated to get final accuracy on WSI level. Grade 3+4
will be graded to those WSIs with more than 50% of the region comprising
Grade 3+3. Similarly, Grade 4+3 will be graded to those WSIs with more
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Figure 3.4: The convolutional neural network architecture in our pipeline.

than 50% of the region comprising Grade 4+4. From the table, we can easily
observe that only two models: “color decomposition on localized WSIs” and
“optimized color decomposition” are able to classify intermediate prostate
cancer, with accuracy of 67.46% and 70.41% respectively. Optimized color
decomposition has positive e↵ect on prediction performance.
The receiver operating characteristic (ROC) curves for two classification

results are plotted in Figure 3.5. By majority, the ROC curve of optimized
color decomposition method is on the left-top of that of color decomposition
method. Therefore, our proposed optimized color decomposition has general
advantage on intermediate prostate cancer automatic grading. The area un-
der ROC curve of optimized color decomposition method is 0.7247, which
can be considered as accurate comparable to the first four models listed in
Table 3.2. The first four experiment results show no discriminative ability
in classifying Grade 3+4 and Grade 4+3, mainly because eosin stained tis-
sue makes training data and testing data no specialty. Structure features of
hematoxylin and eosin are totally di↵erent, so there is no point to predict
prostate cancer based on image patches without appropriate screening.

3.6 Conclusion and Future Works

In this paper, we have introduced deep learning architecture trained by op-
timized color decomposed image patches in localized areas. The workflow
consists of gland region segmentation by K-Means clustering, optimized color
decomposition of hematoxylin channel and convolutional neural network clas-
sification. The first two steps extract target image information in L*a*b*
color space and Euclidean color space respectively. Experimentations have
demonstrated that the optimized color decomposition of localized WSIs can
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Table 3.1: The architecture parameters of the CNN.

Layers Filter Stride Pad Output Size

Input — — — 512⇥ 512⇥ 3
Conv 11⇥ 11 4 — 126⇥ 126⇥ 96

ReLu+LRN — — — 126⇥ 126⇥ 96
Max-pool 3⇥ 3 2 — 63⇥ 63⇥ 96
Conv 5⇥ 5 1 2 63⇥ 63⇥ 256

ReLu+LRN — — — 63⇥ 63⇥ 256
Max-pool 3⇥ 3 2 — 31⇥ 31⇥ 256
Conv 3⇥ 3 1 1 31⇥ 31⇥ 384

ReLu+LRN — — — 31⇥ 31⇥ 384
Conv 3⇥ 3 1 1 31⇥ 31⇥ 384

ReLu+LRN — — — 31⇥ 31⇥ 384
Conv 3⇥ 3 1 1 31⇥ 31⇥ 256

ReLu+LRN — — — 31⇥ 31⇥ 256
Max-pool 3⇥ 3 2 — 15⇥ 15⇥ 256

FC — — — 4096
ReLu+Drop — — — 4096

FC — — — 4096
ReLu+Drop — — — 4096

FC — — — 2
Softmax — — — 2

achieve feasible classification accuracy. Our work provides a new approach
for intermediate prostate cancer grading without handcrafted ground truth
(as in those approaches mentioned in the related works part), which makes
large scale (eg. hundreds of WSIs) processing possible.

Future works can be considered in many promising directions to improve
classification precision. For example, more iterations for each model may
make loss convergence more satisfying. Moreover, by K-Means clustering,
each pixel’s distance to cluster center is given, which can be utilized in patch
selection. In optimized color decomposition part, ratio � should be adapted
for more accurate prediction. For more practical evaluation, we could invite
some medical students or volunteers to manually grade the whole slide im-
ages in the test datasets, thus providing baseline from human observers. In
this situation, we could add the ROC curves of human observers into Figure
3.5 for more realistic comparisons.
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Table 3.2: The prediction results of the experiments.

Experiments Accuracy

Baseline (Originally Informative Patches) 46.15%
Color Decomposition 53.25%

Optimized Color Decomposition 49.70%
Baseline + K-Means 46.75%

Color Decomposition + K-Means 67.46%
Optimized Color Decomposition + K-Means 70.41%
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Figure 3.5: The ROC curves for the results of proposed methods.

Moreover, in the respect of practice in the clinic, possible works can be
conducted in more realistic cancer prediction. For example, all of ten of
prostate cancer scores, in terms of combination of primary score and sec-
ondary score in the Gleason system, can be designed to be 10 classes in the
classification prediction system. There are a number of whole slide images
from each of these 10 classes, while the quantity distribution is not uniform,
which means the training data set is imbalanced. Furthermore, the number
of whole slide images in some of the classes is very small, so we might come
up with a good data augmentation method to make the training feasible in
our framework. If we want to learn a deep learning classifier based on these
data, we need to tackle these issues at first.
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Chapter 4

Nuclei Segmentation for
Various Types of Cancer

Automatic nuclei segmentation plays an important role in the study of histopathol-
ogy images. We use a simple yet e↵ective deep learning framework trained
with end-to-end pixel-wise supervision for nuclei segmentation in various
types of cancer histopathology images. In order to preserve all spatial infor-
mation, We propose to use no pooling layers nor strided convolutions. Ad-
ditionally, to separate clustered nuclei more accurately, we enhance the edge
representation capability of the deep convolutional networks by hard negative
mining. Our approach is fully automatic without pre-, post-processing nor
fine-tuned hyper-parameters. We evaluate our method on the 2017 MICCAI
Nuclei Segmentation Challenge dataset [47] and outperform the challenge-
winning result.

4.1 Introduction

4.1.1 Background and Motivation

Histopathology is the branch of medicine associated with the study of the
essence of disease and its causes, processes, development and consequences
[48]. In the most commonly used Hematoxylin and Eosin stained histopathol-
ogy images, Hematoxylin stains nucleic acids (nuclear chromatin and nucle-
oli) blue, whereas Eosin stains proteins (cytoplasm and connective tissue)
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pink [49]. Figure 4.1 shows two Hematoxylin and Eosin (H&E) stained breast
tissue images. We can see the nuclei are stained blue and we can even dis-
tinguish the nucleoli and nuclear matrix within nucleus.

(a) Normal (b) Invasive Ductal Carcinoma

Figure 4.1: Examples of H&E breast tssues [50]. The morphology, appear-
ance, distribution of nuclei (indicated by arrows) distinguish normal versus
cancerous tissues.

Nuclear atypia, or nuclear pleomorphism is usually the diagnostic stan-
dard of cancer grading. Pleomorphism is commonly the variation of size in
malignant nuclei. In Figure 4.1, we can easily tell the uniformity di↵erence
of nuclei in normal and invasive ductal carcinoma breast tissues. The shape
of the nucleus, frequently abnormal in carcinoma cells (Figure 4.1(b)), is dic-
tated by the characteristics of the nuclear margin. Specifically, salient visual
morphological features of cancer nuclei in H&E images are nuclear margin,
nucleoli, nuclear chromatin and nuclear matrix. For nuclear envelope, or nu-
clear margin, the nuclear boundary is regularly rounded, oval and smooth
in normal cells [51], while in malignancy, the nuclei become angulated with
irregular thickening of nuclear margin and often-nuclear moulding, as we can
see those relatively uniform oval nuclei in Figure 4.1(a) and irregular shape
distribution in the nuclei in Figure 4.1(b). Furthermore, the morphological
alterations of cancer nuclei are also likely to be associated with larger nucle-
olus of the proliferating cells, changes of chromatin pattern (the peripheral
heterochromatin formation in the nuclear periphery of the malignant nuclei)
and vesicular nucleus with peripheral margination of nuclear matrix [52]. In
Figure 4.1(a) and (b), nucleolus size variation, chromatin patterns and nu-
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clear matrix density di↵erence could all be discerned clearly.

The morphological features of neoplastic cell nuclei are important in the
diagnosis and grading of various forms of neoplasms [52]. In the field of im-
age analysis, a lot of researchers are utilizing e↵ective machine learning and
deep learning algorithms to diagnose cancer automatically. In order to do
objective analysis of nuclear morphology features, we need to obtain nuclei
boundaries at first. Therefore, fully automatic nuclei segmentation methods
of H&E images are essential prerequisite to automatic computer aided di-
agnosis of di↵erent types of cancer. Recently, convolutional neural network
(CNN) has been the most powerful method in semantic segmentation [53].
The e�ciency of deep learning is the capability to learn appropriate feature
representations for the specific problem in an end-to-end fashion. It does not
need domain knowledge in hand-crafted features extraction, neither too much
fine-tuning in model training. Taking advantages of the availability of high
resolution digital pathology images, e�cient deep learning algorithms and
GPU computation power, automatic nuclei segmentation algorithms could
be developed to assist pathologists’ diagnosis or further analysis.

4.1.2 Related Work

In the past few years, many researchers in pathological image analysis field
have explored the capabilities of convolutional neural networks for nuclei seg-
mentation. In [54], the authors proposed a multi-scale convolutional network
scheme to segment cervical cytoplasm and nuclei. After deep learning coarse
segmentation, a graph partitioning method was developed with learned fea-
ture to localize the appearance of distinctive boundary. Xing [55] proposed
a learning-based framework for robust and automatic nucleus segmentation
of brain tumor, pancreatic neuroendocrine tumor, and breast cancer. Those
two paper both have two stages, with deep learning performing coarse seg-
mentation, followed by traditional feature based segmentation. It starts with
a deep convolutional network with an iterative region merging approach for
contour initialization. Then, a more accurate segmentation algorithm is ex-
ploited based on repulsive deformable model constrained by sparsity-based
shape prior. The approach in [56] augmented challenging patches sampling.
The process of hard negative mining improved the nuclei boundary delin-
eation for estrogen receptor positive breast cancer. The framework of [57]
could be divided into three stages: 1. background removal by the sparse
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reconstruction method; 2. deep network segmentation; 3. post-process with
morphological operations and prior knowledge. The deep contour-aware net-
works [58] improved fully convolutional network to segment nuclei and glands
from histology images. For better separation the touching nuclei, a multi-
task learning framework was designed to predict objects and contours indi-
vidually. The CAE (Convolutional Autoencoder) [59] is a semi-supervised
learning approach, which detects and encodes nuclei based on sparse feature
maps that encode both the location and appearance of nuclei.

4.1.3 Overview

Those contributions to nuclei segmentation have obtained reasonable results,
however, they require pre- or post-processing and/or data specific processing.
We use a simpler yet e↵ective end-to-end deep learning scheme with edge rep-
resentation and pixel-wise supervision. Our main contribution is to use
a deeper convolutional network without pooling layer. Additionally, to sep-
arate clustered nuclei more accurately, we enhance the edge representation
capability of the deep convolutional networks by hard negative mining. We
evaluate our method on the 2017 MICCAI Nuclei Segmentation Challenge,
our method achieves the average dice coe�cient of 0.7847, outperforming
the challenge winning team. By employing transfer learning and ensemble
techniques, our results reach the score of 0.7871 with an individual model
and 0.7893 with an ensemble model.

We compare our method with those six methods introduced in the related
work section. Using our individual model result which is without transfer
learning, the dice-1 is 0.8560, and the dice-2 is 0.7133, thus with the average
of 0.7847. In [54], the dice-1 reached 0.912 on cervical nuclei. Although the
results are really good, this approach is not fully based on deep learning. Be-
fore CNN, it uses texture, shape and contextual information of the objects
to segment nuclei by graph partitioning method. Our end-to-end deep learn-
ing method is an integrated approach, which is simpler and more robust to
future data. In [55], the authors use a CNN to generate a probability map,
and then use an iterative region merging approach and to generate shape
initialization and finally, use a sparse shape and deformable combined model
to separate individual nuclei. This method obtained the average dice-1 of
0.77, 0.88 and 0.78 on brain tumor, pancreatic neuroendocrine tumor and
breast cancer respectively. This method applies two very complicated seg-
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mentation methods after deep learning, so it needs many domain knowledge,
which cannot the simplicity of our method. In [56], this method empha-
sizes the edge information in deep learning approach, reaching the dice-1 of
0.83 across 12,000 breast cancer nuclei. I borrow the negative edge mining
to apply in my approach. However, instead of using single label for each
patch, I use pixel-wise patch training scheme like bag algorithm to improve
the model performance. Therefore, in similar amount and type of cancer,
our method is marginally higher than this method by 0.026 in respect of
dice-1. In [57], this paper applies a sparse reconstruction method, CNN,
and morphological operations to improve the segmentation performance. On
58 breast cancer images, the method reaches dice-1 of 0.8393. This method
employs pre-processing and post-processing besides deep learning, thus need-
ing prior knowledge. In [58], the authors propose a contour-aware network
for histopathological object segmentation. They use two network to output
nuclei and also its boundaries. Their obtained the dice-1 of 0.876, dice-2
of 0.748 and the average of 0.812, based on the dataset of 2015 MICCAI
Nuclei Segmentation Challenge. Although their dices are higher than our
method, their data are di↵erent to what we used. [59] is a semi-supervised
approach of nuclei detection and segmentation. It uses a sparse convolutional
auto-encoder (CAE) to extract feature and a CNN to classify patches. The
dice-1 reaches 0.8362 on the dataset of 2015 MICCAI Nuclei Segmentation
Challenge. Di↵erent from our fully supervised integrated approach, it need
to pre-train the CAE as a feature extractor.

4.2 Methods

For the model architecture, we design two types of convolutional network
architectures, each with three kinds of depths. Di↵erent from other segmen-
tation deep learning approaches, we do not apply any pooling layers in our
architecture. During training, we design the label to be a patch with the same
size of the training patches, which intelligently improves the nuclei boundary
discrimination capability. In regard to batch sampling, we borrow the idea
from [56], augmenting the challenging negative patches with the appropriate
ratio.
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4.2.1 Deep CNN Models

We design two main CNN network models: the straight one (Figure 4.2) and
the concatenated one (Figure 4.3). For each mode, we exploit three di↵erent
depths to try to capture more nuclei features. For the straight models, the
architecture of the 3 straight models are listed in Table 4.1. (16-layer, 23-layer
and 30-layer). Their convolutional layer filter size are same in each block. For
example, the16-layer model has 5 convolutional blocks and 1 fully connection
block. We apply leaky rectify nonlinear unit after each layer as activation
function. For the concatenated models, we combine di↵erent blocks of feature
maps to obtain more information. The 16-layer concatenation model is shown
in Figure 4.3. Similarly, the 23-layer concatenation model combines Layer
5 & Layer 10, and Layer 13 & Input. The 30-layer concatenation model
combines Layer 7 & Layer 14, and Layer 20 & Input.

Figure 4.2: The computation flow of the 16-layer straight model.
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Figure 4.3: The computation flow of the 16-layer concatenated model.

4.2.2 Novel Pixel-wise Label

A large amount of CNN based methods follow a sliding window scheme.
The sliding window is trained and predicted at the center where the pixel
is labeled and to be regressed. In our framework, the size of the training
patches is 40⇥ 40. We also designed the labels to be 40⇥ 40 patches, which
leverage the ability of deep representation to improve the nuclei boundary
discrimination. Furthermore, this technique is equivalent to training 40 ⇥
40 models simultaneously. In each training iteration, we randomly select
patches, like the random one within the bounding box in the left image shown
in Figure 4.4. The enlarged patch is illustrated on the top right image, with
its label patch illustrated on the bottom right image.

4.2.3 Negative Edge Mining

Generally, when solving machine learning or deep learning problems, we
should keep training datasets distribution the same as that of testing datasets.

40



Table 4.1: The architecture of three CNN straight models.

Model Layers Filter Size Filter Num

Input 5⇥ 5(conv) 80

Layer 4 3⇥ 3(conv) 100

Layer 9 3⇥ 3(conv) 64

16-layer Layer 13 1⇥ 1(conv) 64

Layer 14 1⇥ 1(conv) 32

Layer 15 1⇥ 1(fully) 1

Output sigmoid —

Input 5⇥ 5(conv) 80

Layer 5 3⇥ 3(conv) 100

Layer 10 3⇥ 3(conv) 64

23-layer Layer 15 3⇥ 3(conv) 32

Layer 20 1⇥ 1(conv) 32

Layer 22 1⇥ 1(fully) 1

Output sigmoid —

Input 5⇥ 5(conv) 80

Layer 7 3⇥ 3(conv) 100

Layer 14 3⇥ 3(conv) 64

30-layer Layer 22 3⇥ 3(conv) 32

Layer 27 1⇥ 1(conv) 32

Layer 29 1⇥ 1(fully) 1

Output sigmoid —
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Figure 4.4: Random patch selection and pixel-wise label.

Using stochastic sampling can modeling the training data distribution, how-
ever, in the case of nuclei segmentation, random patch sampling usually does
not guarantee good prediction performance. Because the edge feature may be
underrepresented in the training sets by deep learning models. Therefore, we
intend to use the successful idea in [56], in which, the author supplemented
the training set with the patches centering on edges of the nuclei.

We also use dilation operation to get the edge masks with three pixels
dilated from the binary mask. Specifically, binary image dilation is a process
that changing a background pixel to foreground when the background pixel
has a 4-neighbor foreground pixel. So, a three-pixel-width nuclei margin bi-
nary mask is obtained via processing the binary mask with dilation operation
by three iterations, and subtracting the binary mask itself from the dilated
binary mask. In Figure 4.5, the left image is the original RGB image. The
middle image is the nuclei binary mask of the left one. The right image is
the three-pixel-width nuclei margin binary mask of the left one.

The three-pixel-width nuclei margin binary mask (right one in Figure 4.5)
demonstrates the negative areas, which also are most near to the edges of
the nuclei. During training, if the center of a random selected patch is in the
positive area of nuclei margin binary mask, we supplement 12 such patches
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into each batch of 80 random patches.

Figure 4.5: The original image, mask and edge mask.

4.3 Evaluation and Datasets

4.3.1 Evaluation Dice Coe�cients

In this paper, the proposed method is applied on the datasets from 2017
MICCAI Nuclei Segmentation Challenge[47]. In this challenge, the scoring
is composed by one traditional dice coe�cient (dice-1) and one variant dice
coe�cient (dice-2). The dice-1 is the traditional dice coe�cient to mea-
sure the overall overlapping between the ground truth and the participant
segmentation. The dice-2 captures disparity in the way the segmentation
connected components are separated, while the overall overlapping may be
very promising. The two dice coe�cients will be computed for each image
tile in the testing dataset. The two dice coe�cients for the entire testing
dataset will be the average of the scores for each image tile. The average of
two dice coe�cients will be ranked in the challenge leaderboard.

To set up the dices computation algorithms, the inputs are two sets of im-
ages. In the ground truth image set, each image is G

i

: ⌦! {0} [ Z+. In the
prediction image set, each image is I

i

: ⌦ ⇢ IR2 ! {0, 1}. The pseudo-codes
(using matlab functions) for dice-1 and dice-2 computation are illustrated
below (J = bwlabel(I, 4)).

43



Dice-1 Computation(G, I)

1 sum G, sum I, sum overlap = 0
2 for i 1 to length[G]
3 do nnz G nnz(G(i))
4 nnz I  nnz(I(i))
5 nnz overlap nnz(G(i)&I(i))
6 sum G + = nnz G
7 sum I + = nnz I
8 sum overlap + = nnz overlap
9 dice� 1 = 2 ⇤ sum overlap/(sum I + sum G)

Dice-2 Computation(G, J)

1 sum G, sum I, sum overlap = 0
2 for i 1 to length[G]
3 do p max(G(i))
4 q  max(J(i))
5 for m 1 to p
6 do s1 = (G(i) == m)
7 for n 1 to q
8 do s2 = (J(i) == q)
9 nnz G nnz(s1)
10 nnz I  nnz(s2)
11 nnz overlap nnz(s1&s2)
12 sum G + = nnz G
13 sum I + = nnz I
14 sum overlap + = nnz overlap
15 dice� 2 = 2 ⇤ sum overlap/(sum I + sum G+ eps)

4.3.2 Datasets

2017 MICCAI Nuclei Segmentation Challenge delivered training and testing
images of four types of cancer: 1. glioblastoma multiforme (GBM); 2. head
and neck squamous cell carcinoma (HNSCC); 3. lower grade glioma (LGG)
tumors; 4. non small cell lung cancer (NSCLC). The training and testing
set both consist of 32 image tiles, 8 tiles from each cancer type. Most of the
images are of size 500⇥ 500. Only a few of the images are of size 600⇥ 600.
Four example images (as in Figure 4.6) are selected from the testing set.
Each of them is from one type of cancer respectively.
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(a) GBM (b) HNSCC

(c) LGG (d) NSCLC

Figure 4.6: Testing dataset example images.
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4.4 Experiments, Results and Discussion

4.4.1 Implementation

The framework is implemented with python 2.7. We choose theano and
lasagne as our deep learning library. All the training and predicting experi-
ments run on 2 Tesla-K80 GPUs.

Training Stage

In the training stage, we use cross entropy to compute loss function and the
nesterov momentum as our parameter update algorithm. Batch normaliza-
tion is applied after convolutional operation. The batch size is 92 for each
iteration. We train each model by 30,000 epochs. Data augmentation is ap-
plied via resizing the original images; flipping, rotating and changing the hue
of randomly selected patches. Since we also have data from the same chal-
lenge in 2015, we merge two years’ data to try to enhance feature database.

Testing Stage

In the testing stage, we predict sliding patches in the testing images with
a stride of five. By averaging overlapped patches of nuclear probabilities,
we can get nuclear probability maps with pixels in the range of zero to one.
After transforming probability maps to 8-bit depth of integer images, we
can binarize them by an empirical threshold (from 2015 Challenge data) to
get final prediction binary maps. Last but not least, we apply the ensemble
method of averaging results of six models to improve prediction accuracy. We
simply average corresponding probability maps, which is actually a procedure
of noise removal to some extent.

4.4.2 Results and Discussion

For each model we design in the method section, we deploy the trained model
to get binary nuclei mask for each testing image.

The qualitative segmentation results are shown in Figure 4.7. The yel-
low(ground truth) and cyan(our segmentation results) boundaries are ob-
tained by erosion operation on nuclei regions. We can compare the deep
learning output with ground truth in Figure 4.7. For the GBM, HNSCC and
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LGG examples, our method outputs good results with a little weakness in
clustered nuclei separation. For the NSCLC example, some of the nuclei are
very di�cult to capture their boundary appropriately, because the intensity
contrasts of the nuclei with that of the cytoplasm are too small.

More objectively, the quantitative segmentation results are shown in Ta-
ble 4.2. The first half of the table shows dice-1, dice-2 and average of two
dices from the six models trained with the dataset from the challenge in 2017.
The second half of the table shows the results from the same models, but
trained with two datasets merged from the challenge in 2015 and 2017. From
the table, five experiments output excellent results (bold) that beat the first
ranked average dice (0.783) in the challenge. In general, deeper models pro-
duce better results, both in dice-1 and dice-2. Nevertheless, my concatenated
models do not show e↵ective progress. Adding the dataset from 2015 also
helps improve both scores. Furthermore, two ensemble results are the two
best ones in the table, which means ensemble method really enhance the seg-
mentation performance. Obviously, any increase in dice-2 with no trade-o↵
in dice-1 will definitely improve the result, so the de-clumping technique will
be an important research project in future.

Although more convolutional layers produce more feature maps (which
improves the discriminative ability), the improvement e↵ect depends on the
amount of training data and the complexity of the network. Within a fixed
network model, the model starts from under-fitting, to best fitting and ends
at overfitting along with the increase of the convolutional layer number. We
need to avoid overfitting in model design by doing experiments of di↵erent
layers of convolution. Furthermore, large number of convolutional layers will
also cause more computational time, more GPU memory usage and more
local minima in the high dimensional spaces. So, we list the computation
time in the training stage for each model in Table 4.2. In order to investigate
the positive and negative e↵ects of adding layers to the CNN, we add more
experiments to the project, by keeping adding layers until the test error does
not improve anymore. The additive experiments results are shown in the
third part of Table 4.2. In the third part of Table 4.2, based on the pre-
diction accuracy and training time of straight 30 layer, straight 37 layer and
straight 44 layer model, we can conclude that keeping adding layers causes
much more training time cost, but gains little accuracy improvement. There-
fore, with considerable training time, the straight 30 layer model is the most
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appropriate model for this nuclei segmentation problem.

Each dataset usually has one set of manual segmentation from patholo-
gists. The manual segmentation from pathologists are regarded as ground
truth. Therefore, currently, we may not be able to compute dice coe�cients
of pathologists’ segmentation because we cannot obtain more pathologists’
manual segmentation on the same histopathology images, at least no second
manual segmentation from pathologists could be found on histopathology on-
line database. Once we find second manual segmentation from pathologists,
we will apply dice coe�cients on them to evaluate the pathologists work.
Based on dice values from section 4.1.3, 2nd paragraph, a dice-1 of over 0.83
is a publishable good result of a segmentation algorithm. Nevertheless, dice
value not only depends on segmentation algorithm, but also on image data
and segmentation di�culty. Clinically, we compare two sets of segmentation
from automatic algorithms by applying a statistical hypothesis test: t-test
[60].

4.5 Conclusion

This paper presents a fully automatic end-to-end deep learning framework
for nuclei segmentation for various types of cancer. Our method outperforms
existing state-of-the-art nuclei segmentation methods.

Our network uses no pooling nor strided convolutional layers, and en-
hances the edge representation capability of the deep convolutional networks
by hard negative mining and pixel-wise supervision. This simple yet e↵ec-
tive nuclei segmentation method is deployed without pre-processing, post-
processing nor specific domain knowledge.
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GBM original image GBM ground truth GBM segmentation

HNSC original image HNSC ground truth HNSC segmentation

LGG original image LGG ground truth LGG segmentation

NSCLC original image NSCLC ground truth NSCLC segmentation

Figure 4.7: The visualization of segmentation results. (left: original images;
middle: ground truth; right: our segmentation results)
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Table 4.2: The quantitative segmentation results.

Model (2017 data) dice-1 dice-2 Average Time

straight 16 layer 0.8497 0.6976 0.7737 23 hrs

concatenated 16 layer 0.8459 0.6966 0.7713 28 hrs

straight 23 layer 0.8583 0.6904 0.7744 31 hrs

concatenated 23 layer 0.8593 0.6949 0.7771 34 hrs

straight 30 layer 0.8560 0.7133 0.7847 52 hrs

concatenated 30 layer 0.8593 0.6979 0.7786 48 hrs

ensemble 0.8621 0.7132 0.7877

Model (2017+2015 data) dice-1 dice-2 Average Time

straight 16 layer 0.8544 0.6989 0.7767 25 hrs

concatenated 16 layer 0.8587 0.6920 0.7754 31 hrs

straight 23 layer 0.8615 0.7037 0.7826 33 hrs

concatenated 23 layer 0.8598 0.6859 0.7729 38 hrs

straight 30 layer 0.8567 0.7102 0.7835 48 hrs

concatenated 30 layer 0.8614 0.7127 0.7871 46 hrs

ensemble 0.8634 0.7152 0.7893

straight 37 layer 0.8592 0.7088 0.784 59 hrs

straight 44 layer 0.8636 0.6967 0.7801 81 hrs
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Chapter 5

Evaluation of Nuclei
Segmentation via Image
Synthesis

Digital histopathology images with more than 1 Gigapixel are drawing more
and more attention in clinical practice, biomedical research, and computer
vision. Among the multiple observable features spanning multiple scales in
the pathology images, nuclear morphology is one of the central criteria for
diagnosis and grading. As a result it is also the most studied target in im-
age computing. Many research papers have been devoted to the problem of
extracting nuclei from digital pathology images, which lies at the foundation
of any further correlation study. However, the validation and evaluation of
nucleus extraction have yet been formulated rigorously and systematically.
Some researcher report a human verified segmentation with thousands of nu-
clei, whereas a single whole slide image may contain up to million. The main
obstacle lies in the di�culty of obtaining such a large number of validated
nuclei, which is essentially an impossible task for pathologist. We propose
a systematic validation and evaluation approach based on large scale image
synthesis. This could facilitate a more quantitatively validated study for
current and future histopathology images analysis field.
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5.1 Introduction

Digital histopathology image computing is becoming an ever more active field
due to its superb spatial resolution and the availability of large data sets. At
a spatial scale between genomics and radiology, histopathology images have
shown the promising possibility of revealing detailed image based features
that can be linked with genetics in a straightforward manner, as well as the
epigenetic and environmental factors, which are not present in the DNA se-
quences.

Among the vast amount of image features in the digital pathology images,
the nuclei lie at a central position. Their morphologies are the main criteria
for the pathologist making diagnostic and grading decisions. Image comput-
ing often starts with nucleus analysis, the accurate extraction of every nuclei
being the pre-requisite of such analysis [3].

There exists an extensive literature discussing nucleus segmentation [61,
62, 63, 64, 65, 66, 15, 67, 68, 69, 70]. The quantitative validation and evalua-
tion of a given nucleus segmentation algorithm is one of the most challenging
issues in all of the aforementioned publication. Indeed, it is di�cult, if not
impossible, to ask a skilled pathologist to manually contour thousands of nu-
clei to be compared with algorithm output. Even so, one whole slide image
may contain up to a million nuclei. Therefore, instead of relying on human
annotation, we need a systematic approach to computationally generate large
enough data set to test the accuracy and robustness of the algorithm, which
is the main topic of this paper.

5.2 Methods

5.2.1 Image Synthesis and Quantitative Evaluation Frame-
work

To set the stage: The algorithm starts with a set of images I
i

: ⌦ ⇢
R2 ! C; i = 1, . . . , N where C denotes the RGB color space. We have
expert validated segmentation of the nuclei in I

i

’s, denoted as label images
J
i

: ⌦ ! {0} [ Z+. In the label images, 0 denote background and di↵erent
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integer values indicate di↵erent nuclei. Denote the bounding box of the j-th
nucleus in I

i

as Bj

i

:= (xj

i

, yj
i

, uj

i

, vj
i

); j = 1, . . . , N
i

where (x, y) (resp. (u, v))
denotes the top-left (resp. bottom-right) coordinates for the bounding box,
and N

i

is the number of nuclei in I
i

. With slight abuse of notation, the image
domain of the bounding box is also denoted as Bj

i

. Furthermore, the restric-
tion of the image and the label image, i.e., the patch around the nucleus, are
denoted as Ij

i

:= I
i|Bj

i
and J j

i

:= J
i|Bj

i
, respectively. Finally, the non-nuclear

region in the patch is removed by defining Ij
i

:= Ij
i

⇤ J j

i

. To simplify the
notation, we use single index and denote P1 = I1

i

, P2 = I2
i

, and Q1 = J1
i

,
Q2 = J2

i

etc.

Nucleus Synthesis

In this step, we synthesize new nuclei based on those in the training images.
To proceed, a random nucleus P is picked from all P

i

’s. Together with its
mask Q, they will be used to generate a new nucleus. In order to generate
nuclei with di↵erent orientation and thus evaluate the orientation invariance
of the segmentation algorithm, the patch P and Q are rotated with a random
degree ✓ 2 [0, 2⇡). The size of nucleus is also a key factor being considered
in clinical practice. To simulate the size variation, the sizes of the training
nuclei are computed and the size distribution, p

S

, is estimated through a
kernel density estimation process [71]. Then, a sample is drawn from p

S

and
the new nucleus is scaled to the size [72].

After that, a nonlinear deformation is applied to the new nucleus. At the
same time, the corresponding label map is also deformed. As a result, we
still have the exact segmentation of the nucleus. To this end, one possible
approach is to generate a random deformation field and smooth it to certain
degree. Such a random deformation may be feasible from a computational
point of view. Yet, the random deformation may generate some unrealistic
shape. Because of this, we propose a relative conservative approach so that
the resulting deformed nucleus is within the space spanned by the training
nuclei.

Specifically, for the training nuclei, without loss of generality, we assume
their sizes (areas) have been normalized. Then, a Procrustes alignment
is performed so that all major axes are aligned north-south. After that,
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each nucleus is mapped to the unit disk though the optimal mass trans-
port (OMT) [73, 74]. Formally, a set of points G := {x

i

2 R2 : i = 1, . . . ,m}
is sampled uniformly from a unit disk, and a same number of points H :=
{y

i

2 R2 : i = 1, . . . ,m} are sampled from the nucleus to be registered to
the disk. Each point is considered to have a Dirac metric. Then, an optimal
matching between the two sets of points is constructed. To that end, we de-
note the correspondence between X and Y by a matrix A 2 {0, 1}m⇥m where
A

i,j

= 1(0) indicates x
i

is corresponding (not corresponding, resp.) with y

j

.
Denoting the pair-wise distance matrix C 2 Rm⇥m as C

i,j

= kx
i

� y

j

k2
where k · k2 is the L2 norm, we find the correspondence between the two sets
of points by solving such an assignment problem:

A = min
Ã2Rm⇥m

kC � Ãk
F

s.t.
X

j

Ã
i,j

= 1 8i 2 {1, . . . ,m}

X

i

Ã
i,j

= 1 8j 2 {1, . . . ,m}

Ã
i,j

� 0 8i, j 2 {1, . . . ,m} (5.1)

where � is the Hadamard product of the two matrices and k · k
F

is the ma-
trix Frobenius norm. Moreover, it is noted that the optimization variable
Ã is not restricted to be a binary matrix. Otherwise the optimization be-
comes an NP-hard combinatorial problem. On the other hand, due to the
fact that the constraint matrix of (6.10) is totally unimodular, the result-
ing optimal A is a binary matrix [75]. This optimization problem can be
shown to be convex, and it can be e↵ectively solved by using, for example,
the interior point method [76]. The resulting matrix A will give a one-to-
one correspondence between G and H. The deformation field D

i

is therefore
constructed as the displacement vector field among the corresponding points.

In a high dimensional deformation space, the D
i

’s most likely reside on
a manifold rather than in a linear space [77, 78]. In order to generate ar-
bitrary deformations in a similar fashion to that has been observed in the
training data, one can interpolate the deformation fields on the manifold.
However, due the high dimensional nature of the manifold, characterizing its
topology for interpolation is di�cult. To overcome this problem, we apply
a local linear embedding (LLE) method to map the high dimensional man-
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ifold to a lower dimensional space, and perform the interpolation therein [79].

Mapping the manifold to a locally linear lower dimensional space enables
us to locally approximate the topology of the manifold with the Delaunay
triangulation [80]. The local structure of the manifold (in low dimension) is
thus characterized by the d-simplex (e.g. triangle in 2D or tetrahedron 3D),
and we can now generate a sample on the manifold by interpolating it on
the d-simplex, and then map it back to the high dimensional space: First, a
d-simplex, along with its associated deformation field, is randomly selected
from the manifold, and a d-dimensional random vector r 2 Rd is generated
such that each of r’s components are uniformly distributed on [0, 1]. r is
then normalized so that krk1 = 1. After that, a new deformation field can
then be generated as D⇤ =

P
d

i=1 riDi

. Similar to the k parameter above,
larger d results in more deformation fields contributing in the generation of
the new one, which usually cause the new deformation to be smoother. The
above process can be repeated indefinitely, and allows us to create arbitrary
deformation fields.

It is noted that learning the object manifold and generating new objects
are topics having been studied by many researchers [81, 77, 78, 82] and we
are not claiming the proposed algorithm being superior to any of the exist-
ing ones. In fact, our key objective is to simulate a known deformation so
that we can always keep track of the exact boundary of the nucleus, for the
ultimate purpose of evaluating nuclear segmentation algorithms.

The final nucleus is determined as D⇤ � P . Moreover, the segmentation
of the nucleus is also known, which is characterized by D⇤ � Q. This is the
key that enables us in using such synthesized images for evaluating nucleus
segmentation.

Local Structure Synthesis

The above nucleus synthesis addresses the appearence of each newly gener-
ated neucleus. It does not explicite its location. This is the subject of this
section. Indeed, the spatially local arrangement of the nuclei is a indicator of
local cell/tissue type. Epithelia cells are often tightly aligned whereas brain
cells are mostly separated in an close to uniformly distributed fashion. Ev-
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idently, one needs the category information of the nucleus to determine the
closeness of its neighbors. This, however, requires another layer of work for
manual labeling.

To alleviate such a problem, we take an approximated approach. First,
slides from the same organ, e.g., lung, are grouped together. Within the
group, a clustering is performed based on straightforward nuclear features
including:

Area.

Circularity. The ratio between the two major axes

Intensity. The mean of hematoxylin component within the nucleus.

Speckleness. The standard variation of hematoxylin component in the nu-
cleus.

The a�nity propagation algorithm is used to cluster the nuclei into several
groups.

For each group, a new location is randomly generated globally to place
the first synthesized nucleus. Afterwards, the nuclei from the same group
is only placed in a relatively local approach. Specifically, the Delauney tri-
angulation is constructed among the centroids of the segmented nuclei. For
each nucleus, the mean and standard deviation of distances to its neighbors
are recorded. In generating a new neighboring nucleus, a random number is
drawn from such a normal distribution and used as the distance to learn the
distances to local neighbors.

In synthesis, first, only throw a few representative nuclei. Then, start-
ing from them and grow their neihgbors according to the local distances to
neighbors. This way we have epithelial cell very close to another epithelial
cell.

Cytoplasm and Stroma

Once we have generated the nuclear regions, we can “fill in” the cytoplasmic
and the inter-cellular regions. While the segmentation of the cytoplasm is
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not available in our training data and in many times an ambiguous problem
even for human eyes, it fortunately does not a↵ect the present work sig-
nificantly because we are mainly interested in the nuclei. In this work, we
model the image content in the non-nuclear regions as a Markov Random
Field (MRF) [83, 84].

More explicitly, we start with any pixel location x in the newly synthe-
sized image U that is not in, but bordering, the nucleus. The choice of such
a location is because with some nucleus structures around, it is easier to infer
the image intensity at this location. Then, a neighborhood !

x

is extracted
centering at x. According to the assumption, some pixels in !

x

have already
been known. Then, we find the most similar patch ↵ in non-nuclear region
of the training images. In the computation of similarity, the mean-square-
di↵erence (MSD) is computed over color image values of the already filled
pixels. In addition, denote the similar patches as the set �:

� := {� : MSD(�, U(!
x

))  1.3MSD(↵, U(!
x

))} (5.2)

Based on the MRF assumption, the distribution of the center pixels of all
the patches in � is the same as that of the U(x), weighted (inversely) by
MSD(�, U(!

x

)). A random sample is therefore drawn from this distribution
and assigned to U(x).

After this, we move onto the next un-filled pixel and repeat the same
procedure above, until all the pixels in the image have been filled.

5.2.2 Evaluation of Segmentation Algorithm

The proposed algorithm is able to synthesize arbitrarily large image data
with known segmentation of the nuclei. With that, we can evaluate a given
nucleus extraction algorithm at large scale.

Brief Description of Our Segmentation Algorithm to be Evaluated

Here, we briefly describe the nucleus segmentation algorithm that is to be
evaluated. Given a new H&E stained digital pathology image I : R2 ! C,
we want to extract the nuclei from it. To that end, we first normalize the
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color distribution in the CIE Lab color space to correct for possible staining,
imaging, and illumination artifacts. Then, the RGB image is separated into
hematoxylin and eosin channels [10].

Then, in the hematoxylin channel, the Otsu threshold is computed to
give the initial extraction of the nuclei. This is followed by the fine tuning of
the local statistics driven level set evolution [85]. The resulting segmentation
may consist regions where several nuclei are clumped together. In order to
de-clump the region and obtain the definition of each individual nuclei, the
mean shift algorithm is used [86, 87], which gives the final segmentation of
individual nuclei.

The algorithm is implemented using the Insight Toolkit [88] and the
OpenSlide library [89], which is able to run on large ti↵-like images out-
put from the microscopy scanner.

5.3 Results

5.3.1 Image Synthesis Results

Figure 5.1 demonstrates the synthesized brain pathology image results. Note
that in addition to being visually realistic, the most desired feature is that
the manual segmentation results have been fully transferred to the newly
generated images, including “touching” nuclei that are also labeled correctly.
Separating those nuclei is particularly important, and challenging for any
nucleus segmentation algorithm.

5.3.2 Quantitative Evaluation Results

Performing nucleus segmentation in the above images gives the segmentation
results as shown in Figure 5.2. It can be observed that in the left-most image,
the two touching nuclei are correctly separated. While in the next image, the
touching nuclei in the top-right corner are not separated correctly, forming a
Mickey-mouse head shape. The two nuclei below Mickey-mouse are not de-
tected as two nuclei at all. Such di�culty is expected when we generate the
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Figure 5.1: Synthesized images (the first row) with the ground truth segmen-
tation (the second row). Note: the proposed synthesis algorithm naturally
handles the labeling of the touching nuclei. This enables the evaluation of
the segmentation algorithms ability in separating them, which is often time
one of the most challenging step in the nucleus segmentation.

Figure 5.2: The segmentation algorithm run on the above synthesized images.
In the second (from left) figure, the touching nuclei in the top-right corner
are not separated correctly, forming a Mickey-mouse head shape. The two
nuclei below Mickey-mouse are not detected as two nuclei at all.

images. More importantly, the purpose of the proposed synthesis framework
is to enable large scale evaluation. To that end, 1000 images containing a
total of half-million ground truth nuclei are synthesized. The segmentation
algorithm is tested on those images and an average Dice coe�cient of 0.71 is
achieved with standard deviation of 0.04.
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5.4 Conclusion and Discussion

In this work we proposed a method to synthesize arbitrarily large histopathol-
ogy images from a small set of training images in which the nuclei have
already been segmented. In doing so we can systematically generate large
validated data sets to evaluate any given automatic nucleus extraction algo-
rithms.

There are several limitations that will be topics of our future research.
First, in the training image we do not have the cytoplasm information marked
out. Therefore, in the synthesized images, while we do observe the texture
information in the non-nuclear region, we do not have a clear definition for
cytoplasm and cell boundary. This is acceptable for the current nucleus seg-
mentation evaluation purpose. But this will need to be extended in a future
more comprehensive study. Second, the global/topological information is not
well presented. We present in the results section the images generated from
brain slides. However, for tissues from other organs, meso-scale features such
as crypts and glands are also very important. Since our synthesis algorithm
works at a fine resolution only, the current framework does not generate such
meso-scale structure. To perform multi-scale tissue synthesis is part of our
on-going research.

We will further investigate on the synthesis in multiple scales: this will
simultaneously solve the problems of synthesizing the very large WSI, as
well as synthesizing structures at multiple size. Specifically, we will first
synthesize, at low resolution, the entire whole slide image. In this image, on
pixel spans roughly 8 micrometers. Then, we will dive into higher resolution
but at more restricted tile size. In the synthesis at higher resolution, the
already synthesized lower resolution pixel values will be used as prior in
formation in searching for similar patches. By doing this, the image contents
along multiple scales are naturally coherently connected. Moreover, spatially,
the image contents across multiple tiles are smoothly patched.
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Chapter 6

Evaluation of Nuclei
Segmentation via Deep Image
Synthesis

Multi-scale feature analysis renders the main theme for most image-genetics
correlation study. Such joint computing of drastically heterogeneous fea-
tures links information extracted from nano-to-millimeter, covering six de-
gree of magnitudes. In particular, at sub-micron level, the giga-pixel digi-
tal histopathology images reveals much information of the cells and nuclei.
Among the multiple observable features spanning several scales in the pathol-
ogy images, nuclear morphology is one of the central criteria for diagnosis
and grading. As a result, it is also the most studied target in computer
aided analysis. Many research papers have been devoted to the problem of
extracting nuclei from digital pathology images, which lies at the foundation
of any further correlation study. The quality of the nucleus extraction, have
only been evaluated at the level of about thousands of nuclei, whereas a sin-
gle slide may contain almost a million. The lack of large scale systematic
validation and evaluation poses a rather serious challenge especially when
interpreting the results of the downstream correlative study. In this report,
we aim to address such an issue through a deep neural network framework.
Specifically, large scale images with ground truth nucleus morphology are
synthesized and the sensitivity and specificity of several nuclear segmenta-
tion algorithms been evaluated. We believe such a quantitative evaluation
framework could facilitate a more validated study for current and future
histopathology images analysis field.
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6.1 Introduction

Genome is not able to tell the entire trajectory of a human, due to the ab-
scent of epigenetic and environmental influence in all the years after birth.
Such information can be incorporated through a longitudinal homogeneous
fashion, and it can also be captured from multiscale heterogenous sources.
Image-genetics correlation study is one attempt in the later direction[90, 91].

Multiscale feature analysis renders the main theme for most image-genetics
correlation study. Such joint computing of drastically heterogeneous fea-
tures links information extracted from nano-to-millimeter, covering six de-
gree of magnitudes. In particular, at sub-micron level, the gigapixel digital
histopathology images (whole slide images, WSI) reveals much information
of the cells and nuclei. Digital histopathology image computing is becoming
an ever more active field due to its superb spatial resolution and the avail-
ability of large data sets. At a spatial scale between genomics and radiology,
histopathology images have shown the promising possibility of revealing de-
tailed image based features that can be linked with genetics in a straightfor-
ward manner, as well as the epigenetic and environmental factors, which are
not present in the DNA sequences, and not visible in radiology imagery.

Among the multiple observable features spanning several scales in the
pathology images, nuclear morphology is one of the central criteria for diag-
nosis and grading. As a result, it is also the most studied target in computer
aided analysis. Many research papers have been devoted to the problem of
extracting nuclei from digital pathology images, which lies at the foundation
of many further correlation study [3].

There exists an extensive literature discussing nucleus segmentation [61,
62, 63, 64, 65, 66, 15, 67, 68, 69, 70]. The quantitative validation and evalua-
tion of a given nucleus segmentation algorithm is one of the most challenging
issues in all of the aforementioned publication. The quality of the nucleus
extraction, have only been evaluated at the level of about thousands of nu-
clei, whereas a single slide may contain almost a million. Indeed, it is very
di�cult, if not impossible, to ask a skilled pathologist to manually contour
millions of nuclei to be compared with algorithm output, which is the stan-
dard validation approach used in radiology images.
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The lack of large scale systematic validation and evaluation poses a rather
serious challenge especially when interpreting the results of the downstream
correlative study. In this report, instead of relying on human annotation,
we need a systematic approach to computationally generate large enough
data set to test the accuracy and robustness of the algorithm. We propose a
method to address such an issue through a deep neural network framework.
Specifically, large scale images with ground truth nucleus morphology are
synthesized and the sensitivity and specificity of several nuclear segmentation
algorithms been evaluated. To the best of our knowledge, this work is the first
addressing this problem at a large scale. We believe that this type of analysis
is not only informative for algorithm developers to improve their techniques
but also necessary knowledge to be provided to the end-user community
whose analysis is based on nuclear segmentation algorithms.

6.2 Method

A segmentation evaluation platform has to provide two interconnected major
components: first, image: we need to have a large set of images. Second,
contours: one has to have the ground truth for each target, in the current
case nuclei. In this section we first briefly review some texture synthesis
methods and then present our proposed evaluation framework.

6.2.1 A Brief Review of Texture Synthesis Methods

The image/texture synthesis problem has been the main topic in many pre-
vious studies [84, 92, 93, 94, 95, 96, 97]. The target of texture synthesis is
to learn a generative model from a small region of texture. When samples
drawn from the model, they look like extensions of the same texture. Most
synthesis algorithms can be categorized into two classes: exemplar based and
feature model based. Exemplar based methods start with one or few points
and look for the most similar patches from the original image. Once the
similar patches have been identified, the corresponding point is picked from
one randomly chosen patch. Such process is repeated at the pixel level or
small block level until the entire new image is filled.

Contrastingly, the second class of method synthesizes a new image through
matching the features in the transformed space. Conceptually, this is because
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the texture synthesis is a problem dual to the texture classification. The tex-
ture classification constructs a feature space for certain type of texture and
classifies all images with similar texture to be of the same type. From the
other direction, one can generate a new image from the learned feature model,
which by definition is of the same texture category.

In [97], the author demonstrates the generative power of their model
while trained in a purely discriminative fashion. This approach explicitly
defines a parametric texture model by the correlations between feature maps
in some layers of the CNN. For notification, a layer with N

l

distinct filters
has N

l

feature maps each of size M
l

vectorized, which can be stored in a
matrix F l 2 RNl·Ml . The feature correlations are given by the Gram matrix
Gl 2 RNl·Nl , where Gl

ij

is the inner product between feature map i and j in
layer l:

Gl

ij

=
X

k

F l

ik

F l

jk

(6.1)

The feature correlations Gl

ij

are spatial summary statistics on these feature
responses to characterize source image. To generate a new texture that is
similar to a given image, the author uses gradient descent from a white noise
image to determine the result which matches the Gram matrix representation
of the given image. The model is the optimization problem: minimizing the
mean-squared distance between Gram matrix from original image and image
to be generated:

E
l

=
1

4N2
l

M2
l

X

i,j

(Gl

ij

� Ĝl

ij

)2 (6.2)

L(~x, ~̂x) =
LX

l=0

w
l

E
l

(6.3)

@E
l

@F̂ l

ij

=
1

N2
l

M2
l

((F̂ l)(Gl � Ĝl))
ji

, if F̂ l

ij

> 0 (6.4)

where ~x and ~̂x are the vectorized original and generated images; L(~x, ~̂x) is
the total loss; w

l

are weighting factors of each layer to the total loss. The
gradient @L

@~̂x

can be readily computed using standard error back-propagation.
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Due to the fact that the feature map based methods capture both local
and global information with various levels of rotational, scaling, and transla-
tional invariances, they are considered to be able to synthesize more realisti-
cally looking images [93, 97]. As a result, our image synthesize and evaluation
framework will be based on this group of methods. In particular, due to the
outstanding performance of the deep convolutional neural networks (CNN),
we will adopt such an architecture for our system.

6.2.2 Image Synthesis and Quantitative Evaluation Frame-
work

The image synthesis starts with a set of training images I
i

: ⌦ ⇢ R2 ! C; i =
1, . . . , N where C denotes the RGB color space. For each I

i

, the pathologist
validated segmentation of the nuclei are denoted as label images J

i

: ⌦ !
{0} [ Z+. In the label images, 0 denotes background (non-nucleus) and
di↵erent integer values indicate di↵erent nuclei. Figure 6.1 presents two real
histology images of lung adenocarcinoma, with their respective segmentations
shown in yellow contours.

Texture Image Synthesis

Comparing Figure 6.1(a) and (c), we can observe that di↵erent image regions
have very distinct image characteristics. The proposed synthesis algorithm
should take such spatial variation into consideration. As a result, a deep
neural network architecture is designed as shown in Figure 6.2.

As an example, Figure 6.3 and Figure 6.4(the right column) shows the
images synthesized for various types of tissue. It can be seen that the syn-
thesized images look visually realistic.

However, the major challenge in constructing the image segmentation
evaluation system lies in the fact that one has to not only synthesize the
image itself, but also, we have to provide the segmentation ground truth in
the synthesized image. In particular, when the nucleus regions are touching
each other, as shown in the expert manual segmentation in Figure 6.1 (b)
and (d). This is particularly di�cult in the CNN based methods due to the
fact that newly generated image does not have a pixel-wise correspondence
with the original one. How to synthesize a image using CNN and passing the
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(a) (b)

(c) (d)

Figure 6.1: (a) (c) are two example patches from two WSI with the ground
truth nuclei segmentations shown as contours in (b) (d). Note the two images
have distinct appearance and the nuclei regions are “touching” each other
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Figure 6.2: Deep neural network structure for image synthesis.

segmentation ground truth is the main challenge we address in the following
discussion.

In subsequent discussion, this synthesize process, given any input image
set I to generate a new image I 0, will be denoted as: I 0 = S (I ).

The Characteristics of Image Synthesis with a Nuclear Mask

As having been eluded above, for each point x in the newly generated image
P : ⌦! C, it is not evident that whether x is within a certain nucleus. This
is due to the inherent property of DNN based texture synthesize.

In order to synthesize an image and passing the label information along,
we first investigate the fine details in the synthesized images. In particular,
we will investigate how a region with constant color value will appear in the
synthesized image. This will provide the insight for passing the nuclear label
information.
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(a) (b)

(c) (d)

Figure 6.3: Image synthesized (b, d) for Lower Grade Glioma(LGG), Lung
Squamous Cell Carcinoma(LUSC)(a, c respectively).
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(e) (f)

(g) (h)

(i) (j)

Figure 6.4: Image synthesized (f, h, j) for Lung Adenocarcinoma(LUAD),
Breast Cancer(BRCA), Prostate Adenocarcinoma(PRAD) (e, g, i, respec-
tively).
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(a) (b)

(c) (d)

Figure 6.5: One case study where nucleus is not touching.

For simplicity, we start from only one training image I1. In it, denote the
regions Di

1 as Di

1 := {x : J1(x) = i}. Then, with out loss of generality, let

K1(x) =

(
[0, 0, 0]? if x 2 D1

I1(x) otherwise
(6.5)

That is, we paint the region of the first nucleus as pure black color. Using
the method in Section 6.2.2, a new image K̃1 is synthesized as K̃1 = S (K1).
The images K1 and K̃1 are both shown in Figure 6.5(a and b, respectively).

From the color value profile we observe that: in the original image Fig-
ure 6.5(c), the colors in the nucleus are to zero. However, in the synthesized
Figure 6.5(d), the distinction between its surrounding is much less evident.
This is an expected e↵ect due to the fact that, in the synthesis algorithm, the
optimization goal is to matching the texture descriptor computed from the
feature layer responses, not to image color. In theory, there is even no guar-
antee that the synthesized image would contain such a “dark spot”. As long
as the feature maps match, the synthesize process will converge. Fortunately,
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(a) (b)

(c) (d)

Figure 6.6: One case study where nucleus are touching.

in the case of Figure 6.5, the nucleus is not in contact with any others. In
such a case, one may try to set a threshold in the synthesized image to define
the region of the nucleus. However, in the more common cases as shown in
Figure 6.6, the nuclei are touching each other and to di↵erentiate the specific
nucleus in the synthesized image is particularly challenging. In the original
image with one nucleus marked pure black as shown in Figure 6.6(a), the
nucleus is easy to be distinguish from its neighbors, see also the single row
profile Figure 6.6(c). However, in the synthesized image, the color values
have a long transition zone and the exact nuclear boundary is very di�cult
to define, as shown in Figure 6.6(d).

Based on the experiments in Figures 6.5 and 6.6, two observations can
be made. First, filling the nuclear region with a distinct color and then syn-
thesize the new image using the filled image, it is able to define the nucleus
in the new image. More generally, if all the nuclear regions are filled with
a single color, then, in the synthesized image, the entire nuclear region can
also be identified. Second, such a scheme is not able to specifically identify

71



di↵erent nuclei when they are spatially close to each other.

Because the ultimate goal of the image synthesis procedure is to evaluate
the sensitivity and specificity of various nuclear segmentation algorithms. In-
spired by the two observations above, we proposed an approach that evaluates
the sensitivity and specificity of nuclear segmentation algorithms separately.

Image Synthesis for Segmentation Sensitivity Evaluation

Since the synthesize process does not transfer the label information, we have
to “burn” the nuclear label information into the image and “decode” them
after new image is synthesized. As we mentioned above, a region of constant
color value will result in a region with varying colors in the synthesized image.
Therefore, in order to minimize the color varying e↵ect on the determination
of the nucleus boundaries, one need to find the color that is “most distinct”
from the existing color in the image. As a result, even with the color mixing
e↵ect, the decision on nucleus boundaries would be of less ambiguity.

To that end, an optimization problem is set up as:

c⇤ = argmax
c2R3

E(c) (6.6)

s.t. [0, 0, 0]?  c  [255, 255, 255]?. (6.7)

In that,

E(c) :=
1

|⌦|N

NX

i=1

Z

x2⌦
(c� I

i

(x))2 dx (6.8)

where |⌦| is the domain size.

Solving such a constraint optimization problem results in a color c⇤ which
is furthest from the existing color in the training images and least likely to
be mixed with existing tissue colors after synthesis.

After the “optimal filling color” c⇤ is identified, the entire nuclear region
in the training images are filled with c⇤:

P
i

(x) =

(
c⇤ if J

i

(x) > 0

I
i

(x) otherwise
(6.9)
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To synthesize a new image Q̃ = S ({P
i

}N1 ), the nuclear region in Q̃ is
determined as D

Q̃

:= {x 2 ⌦ : |Q̃(x)� c⇤|  ↵}. Evidently in Q̃, the image
is filled with color similar to c⇤, which need to be in-painted. However, first,
nuclei have rich internal textures. Second, the rich nuclear texture does not
exist in the region outside D

Q̃

. Therefore, regular in-painting algorithms
which restore the missing values from surroundings do not meet this need
and we need to seek other approaches. In particular, we would utilize the
nuclear region in the training images to restore those in the synthesized im-
age.

To that end, denote the entire nuclear region for each training image I
i

as B
i

:= {x 2 ⌦ : J
i

(x) > 0}. The similarity between D
Q̃

and each B
i

is
compared. Then, the nuclear texture in the most similar image is transferred
to fill in the new image.

More explicitely, the distance E
i

between D
Q̃

and each B
i

is defined
follows [73, 74]: A set of points G := {x

i

2 D
Q̃

: i = 1, . . . ,m} is sampled
uniformly from D

Q̃

, and a same number of points H := {y
i

2 B
i

: i =
1, . . . ,m} are sampled from each nuclear region. Each point is considered
to have a Dirac metric. Then, an optimal matching between the two sets of
points is constructed. To that end, we denote the correspondence between
X and Y by a matrix A 2 {0, 1}m⇥m where A

i,j

= 1(0) indicates x

i

is
corresponding (not corresponding, resp.) with y

j

. Denoting the pair-wise
distance matrix F 2 Rm⇥m as F

i,j

= kx
i

� y

j

k2 where k · k2 is the L2 norm,
we find the correspondence between the two sets of points by solving such
an assignment problem:

A = arg min
Ã2Rm⇥m

kF � Ãk
F

s.t.
X

j

Ã
i,j

= 1 8i 2 {1, . . . ,m}

X

i

Ã
i,j

= 1 8j 2 {1, . . . ,m}

Ã
i,j

� 0 8i, j 2 {1, . . . ,m} (6.10)

where � is the Hadamard product of the two matrices and k ·k
F

is the matrix
Frobenius norm. Moreover, it is noted that the optimization variable Ã is
not restricted to be a binary matrix. Otherwise the optimization becomes
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an NP-hard combinatorial problem. On the other hand, due to the fact that
the constraint matrix of (6.10) is totally uni-modular, the resulting optimal
A is a binary matrix [75]. This optimization problem can be shown to be
convex, and it can be e↵ectively solved by using, for example, the interior
point method [76]. The resulting matrix A will give a one-to-one correspon-
dence between G and H. The deformation field D

i

is therefore constructed
as the displacement vector field among the corresponding points. Finally,
the distance E

i

between D
Q̃

and B
i

is the optimal kF � Ãk
F

.

Such an optimal matching construct a point-wise correspondence between
D

Q̃

and the optimal B
i

, and the image values of Q(x) inD
Q̃

is then filled with
those in B

i

, following the mapping computed in A. As a result, we have a
realistic looking new image Q(x) in which the entire nuclear region is marked.

This image will be served as the ground truth for a nuclear segmentation
algorithm. Furthermore, the texture synthesize procedure S (·) can be ex-
ecuted with di↵erent initial random state, and produces di↵erent resulting
images. As a result, such a process can be repeated arbitrarily many time,
this is the key factor that enables the large scale evaluation of the sensitivity
of any nuclear segmentation algorithm.

It is noted that such a synthesized image together with the label image
of the entire nuclear region, is only able to evaluate the sensitivity of nuclear
segmentation algorithm in extracting nuclear material. It is, however, not
able to evaluate its performance on individual nucleus and/or separating
touching nuclei. This is the subject in the next section.

Image Synthesis for Segmentation Specificity Evaluation

For solving the issue mentioned in the end the previous section, the labeling
information for each nucleus, especially the touching ones, has to be syn-
thesized. Unfortunately, as have been discussed in Section 6.2.2, the strong
color variation makes it impossible to distinguish between adjacent nuclei.

In order to address this issue, in this section we take another approach.
Instead of burn the label mask into the original image, here we burn the
nucleus contours into the original image. Specifically, we denote the boundary
of all nuclei in I

i

, shown in Figure 6.7(a), as T
i

= {x 2 ⌦ : |rJ
i

(x)| > 0},
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.7: Synthesis through contour. (a)Original image; (b)Ground truth
of image(a); (c)New image synthesized from image(b); (d)Filled nuclei with
closed boundaries; (e)Subtraction area (original RGB value) of image(c) from
image(d); (f)Image(c) with cyan color boundaries removed; (g)Image for
segmentation: image(f) with blank boundaries in-painted; (h)Ground truth
for segmentation evaluation: boundaries of image(e) overlaid on image(g).

shown in Figure 6.7(b). It can be seen that due to the discrete computation of
rJ

i

(x), T
i

is usually two-pixel thick where there is a one-pixel layer outside
the nuclear regions. This property will be useful in the subsequent processing.
Then, we define U

i

: ⌦! C as

U
i

(x) =

(
c⇤ if x 2 T

i

I
i

(x) otherwise
(6.11)

Then, synthesize a new image Ũ = S ({R
i

}N1 ). In Ũ , shown in Fig-
ure 6.7(c), the nuclear boundary region is determined as T

Ũ

:= {x 2 ⌦ :
|Ũ(x)� c⇤|  ↵}. Two issues remains to be solved before Ũ can be used for
segmentation evaluation.

First, the synthesis algorithm S (·) cannot guarantee a closed contour in
the original image results in another closed contour. We can observe that,
while many contours are enclosing correct nuclear region, some are spurious
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branches not forming closed contours. One possible strategy would be to
close those branches. This, however, would create false positives that enclose
non-nuclear regions. On the other hand, with the sensitivity examination in
the previous section, it is not necessary here to label all the nuclei. Therefore,
we only pick those nuclei that are correctly enclosed in the synthesis process.

To that end, first, define Ṽ to be the characteristic function of the set
T
Ũ

. Then, for any point p 2 ⌦ such that p /2 T
Ũ

, if p can be connected to
@⌦ without passing the set T

Ũ

, we set V̊ (p) = 1. For all other points x 2 ⌦,
set V̊ (x) = 0. This way, we mark all the pixels inside closed contours in the
set T

Ũ

, as shown in Figure 6.7(d).

As a result, the image V̊ labels a portion of nuclei in the image Ũ . Based
on Figure 6.7(c) and Figure 6.7(d), we can get closed nuclei region by sub-
tracting Figure 6.7(c) from Figure 6.7(d). The subtraction result would be
a binary mask of closed nuclei. We multiply this binary mask with Fig-
ure 6.7(c), then we can get closed nuclei regions, as shown in Figure 6.7(e).

Yet, the colors in T
Ũ

need to be filled. However, comparing the restoring
of the nuclear texture, first, here the set T

Ũ

(as shown in the white part
of Figure 6.7(f)) only occupies the boundary region which has a relatively
small area. Second, the texture to be restored “under the T

Ũ

” is of the
same characteristics of those around them. As a result, a PDE based in-
painting algorithm is adopted for this purpose [98]. The result is shown in
Figure 6.7(g), which is the synthesis result being supplied to segmentation
algorithms. Simply, we can overlay the boundary of the closed nuclei onto
Figure 6.7(g), which generates the ground truth of the synthesis result, as
shown in Figure 6.7(h).

Therefore, Figure 6.7(g) is one of the synthesized images originated from
Figure 6.7(a). Figure 6.7(h) is the ground truth of Figure 6.7(g). Indeed,
not all nuclei are enclosed in the synthesized image. That is, such a “ground
truth” does not contain all the nuclei to be segmented. On the other hand,
when evaluating a certain nucleus segmentation algorithm, it could extract
more nuclei than those labeled here. As a result, the evaluation metric should
be designed accordingly to reflect such a situation.
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Quantification Metric for Image Realism Evaluation

For deep learning based synthesis model, we use the optimization cost func-
tion L(~x, ~̂x): weighted feature correlations among all layers from the deep
learning model we used, between original image ~x and synthesized image ~̂x
to evaluate how realistic our synthesized images are.

L(~x, ~̂x) =
LX

l=0

w
l

E
l

(6.12)

where E
l

= 1
4N2

l M
2
l

P
i,j

(Gl

ij

� Ĝl

ij

)2, and Gl

ij

=
P

k

F l

ik

F l

jk

. The detailed

explanations could be found in Section 6.2.1
Theoretically, this cost function quantifies the feature correlation between

original image and synthesized images based on feature maps in deep learning
models. The smaller this metric is, the more realistic our synthesized images
are. This metric could also be applied to the exemplar based synthesis model
we introduced in Chapter 5.

6.3 Evaluation of Nucleus Segmentation Al-
gorithms

With the image synthesis framework setup, this enables the evaluation of
nuclear segmentation algorithms at an arbitrarily large scale.

6.3.1 Separate metric for sensitivity and specificity

In the synthesis step, the di↵erent images are synthesized to test di↵erent
aspects of the segmentation algorithms. In the evaluate step, we also need
to measure the segmentation quality di↵erently. Before that, we denote the
two frequently used quantities for measuring the (dis-)similarity between
the set G of the pixels annotated as a ground truth object and S a set of
pixels segmented as a nucleus object. The Dice coe�cient and the Hausdor↵
distance (HD) are defined, respeciively, as:

�(G,S) :=
2|G \ S|
|G|+ |S| (6.13)
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⇥(G,S) := max{sup
x2G

inf
y2S
kx� yk, sup

y2S
inf
x2G
kx� yk}. (6.14)

First, we evaluate the sensitivity of the segmentation algorithm in cor-
rectly identify the nuclear region. To that end, the color image Q(x) as
well as the image D

Q̃

that masks the entire nuclear region are generated as
in Section 6.2.2. Q(x) is input to the nucleus segmentation algorithm A ,
which compute a segmentation label image G. In some cases, G may be a
labeled image where di↵erent nuclei are labeled with di↵erent values. How-
ever, in the evaluation of sensitivity, we treat all the labeled region as a single
object, and the Dice coe�cient and the HD are computed betweenD

Q̃

and G.

Second, the specificity of the segmentation algorithm, that is, the ability
of that to articulate each individual nucleus, is evaluated. To that end, color
image Ũ and the nucleus label image V̊ (x) are generated through the proce-
dure in Section ??. Applying the segmentation A (Ũ) to obtain the nuclear
label image H. Here, it is likely that H may contain more regions than V̊ (x)
due to the way it is constructed. However, we confine the evaluation only on
those nuclei already marked in V̊ (x).

Inspired by the multiple object evaluation framework at [99], we denote:
G as the set of ground truth objects in image V̊ . S denote a set of algorithm
segmented nuclei in image H. Furthermore, G̃

i

2 G
a

denote the i-th ground
truth nucleus, and S̃

i

2 S denote a segmented object that maximally over-
laps G̃

i

. n
S

, n
G

denote the total number of segmented objects in S and G,
respectively.

We define the object-Dice coe�cient as:

�
o

(G,S) :=
nGX

i=1

w
i

�(G̃
i

, S̃
i

) (6.15)

and the object-HD is defined as:

⇥
o

(G,S) :=
nGX

i=1

w
i

⇥(G̃
i

, S̃
i

) (6.16)

where

w
i

= |G̃
i

|/
nGX

j=1

|G̃
j

| (6.17)
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6.3.2 Brief Discussion of Segmentation Algorithm

Three nucleus segmentation algorithms will evaluated and they are briefly
reviewed here.

Level-set based hierarchical mean shift method

Here, we briefly describe the nucleus segmentation algorithm that is to be
evaluated. Given a new H&E stained digital pathology image I : R2 ! C,
we want to extract the nuclei from it. To that end, we first normalize the
color distribution in the CIE Lab color space to correct for possible staining,
imaging, and illumination artifacts. Then, the RGB image is separated into
hematoxylin and eosin channels [10].

Then, in the hematoxylin channel, the Otsu threshold is computed to
give the initial extraction of the nuclei. This is followed by the fine tuning of
the local statistics driven level set evolution [85]. The resulting segmentation
may consist regions where several nuclei are clumped together. In order to
de-clump the region and obtain the definition of each individual nuclei, the
mean shift algorithm is used [86, 87], which gives the final segmentation of
individual nuclei.

The algorithm is implemented using the Insight Toolkit [100] and the
OpenSlide library [89], which is able to run on large ti↵-like images output
from the microscopy scanner.

Level-set based Watershed Method

Authors in [69] proposed a watershed based segmentation algorithm which
is applied to the segmentation of whole slide images of the glioblastoma
data in TCGA. The watershed algorithm is applied as another de-clumping
approach. The previous steps in level-set based watershed are the same
as those in level-set based hierarchical mean shift. We will evaluate this
algorithm too.

Deep Learning Method

In Chapter 4, I proposed a deep learning model for nuclei segmentation of
four types of cancer. It can separate clustered nuclei more accurately be-
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cause I used hard negative edge mining, pixel-wise supervision and very deep
CNN models. Of all of those CNN models, I selected the most e↵ective one
(30-layer Straight Model) to segment nuclei for this case in Section 6.4.2.

It is noted that we only tested a small subset of the nucleus segmentation
methods, as very few are available and reimplementing all these algorithms
is beyond the scope of this work.

6.4 Experiments and Results

In this section, we first present the image synthesis on Lung Squamous Cell
Carcinoma (LUSC) tissue in Section 6.4.1. Then, in Section 6.4.2, the synthe-
sized images will be used for quantitatively evaluate four di↵erent algorithms.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6.8: Five example images synthesized from Figure 6.7(b). (a)-(e)New
images synthesized from Figure 6.7(b); (f)-(j)Images for segmentation; (k)-
(o)Ground truth for segmentation evaluation.
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6.4.1 Image Synthesis

We generate 5 new textures from Figure 6.7(b) using the methods described
in 6.2.2, 4th Section: Image synthesis for segmentation specificity evalua-
tion. The 5 new textures are displayed in Figure 6.8(a)-(e). As described
in the 4th Section in 6.2.2, we generate in-painted images for segmentation
algorithms, displayed in Figure 6.8(f)-(j). The corresponding ground truth
of Figure 6.8(f)-(j) are displayed in Figure 6.8(k)-(o). In reality, we could
generate arbitrary number of image and ground truth based on single image
in this way. The four segmentation algorithms are going to be applied on
Figure 6.8(f)-(j). Then, evaluation metrics will be computed by the segmen-
tation results and the ground truth (Figure 6.8(k)-(o)).

6.4.2 Algorithm Evaluation

We qualitatively evaluate four segmentation algorithms based on the ground
truth (shown in Figure 6.9(a)-(e) again for comparison) we generated in
Section 6.4.1. The first algorithm no de-clumping method. It contains all
the steps in the level-set based hierarchical mean shift method without de-
clumping, as described in 6.3.2, 1st Section. The no de-clumping segmen-
tation results are shown in Figure 6.9(f)-(j). The second algorithm is the
level-set based hierarchical mean shift method in 6.3.2, 1st Section. The
mean shift segmentation results are shown in Figure 6.9(k)-(o). The third
algorithm is the level-set based watershed method in 6.3.2, 2nd Section. The
watershed segmentation results are shown in Figure 6.9(p)-(t). The fourth
algorithm is the deep learning method in 6.3.2, 3rd Section. The deep learn-
ing segmentation results are shown in Figure 6.9(u)-(y).

The quantitative segmentation results are shown in Table 6.1. The Table
is separated into four parts corresponding to the four segmentation algo-
rithms. We compute Dice 1, Dice 2 and Hausdor↵ Distance for each image.
The Dice 1 is the evaluation metric described in Equation 6.12 and 6.14.
While the Dice 2 is the similar metric conducted on each nucleus. The Dice
2 is described in Section 4.3.1. The Hausdor↵ Distance is described in Equa-
tion 6.13 and 6.15. We also compute the statistics for each evaluation metric
of four algorithms. In terms of Dice 1, the deep learning method outperforms
other three methods. But the Hausdor↵Distance of the deep learning method
is larger than those of the others. Based on our synthesis and segmentation
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 6.9: Four segmentation algorithms results of Figure 6.8(f)-(j). (a)-
(e)Ground truth; (f)-(j)No-declumping method; (k)-(o)Mean shift method;
(p)-(t)Watershed method; (u)-(y)Deep learning method.
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Table 6.1: The segmentation evaluation results.

no declumping 1 2 3 4 5 statistics

Dice 1 0.746 0.553 0.631 0.595 0.827 0.670±0.113

Dice 2 0.234 0.193 0.284 0.242 0.332 0.257±0.053

Hausdor↵ Distance 4.899 5.745 4.796 5.831 5.657 5.386±0.496

mean shift 1 2 3 4 5 statistics

Dice 1 0.730 0.541 0.631 0.630 0.856 0.678±0.120

Dice 2 0.220 0.183 0.282 0.284 0.321 0.258±0.055

Hausdor↵ Distance 4.583 5.831 4.796 5.477 5.657 5.269±0.549

watershed 1 2 3 4 5 statistics

Dice 1 0.793 0.533 0.623 0.635 0.831 0.683±0.125

Dice 2 0.234 0.226 0.284 0.294 0.342 0.276±0.048

Hausdor↵ Distance 3.742 6.245 5.000 5.196 5.657 5.168±0.930

deep learning 1 2 3 4 5 statistics

Dice 1 0.791 0.708 0.818 0.647 0.796 0.752±0.072

Dice 2 0.231 0.193 0.275 0.277 0.315 0.258±0.047

Hausdor↵ Distance 5.477 5.916 5.196 5.745 4.690 5.405±0.484

evaluation framework, we can compare di↵erent segmentation algorithms by
statistical significance computation. In general, it could be claimed that the
large statistical evaluation is more objective than the small data set evalua-
tion.

6.5 Conclusion and Discussion

In this work, we proposed a deep learning based method to synthesize ar-
bitrarily large histopathology images from a small set of training images.
The synthesis process is a generative image update using a deep discrimi-

83



native model. By this way, we can evaluate any given automatic nucleus
extraction algorithms based on systematical generation of large validated
data sets. In order to transfer the nuclei ground truth in the original small
set of training images, we design two approaches: sensitivity evaluation and
specificity evaluation. For the latter one, we provide 5 image synthesis re-
sults in Section 6.4.1. The four segmentation algorithms are applied on those
5 synthesized images. The qualitative and quantitative results are shown in
Figure 6.9 and Table 6.1. Generally, we provide a feasible framework to solve
the large ground truth demand.

There are several limitations which could be methods of our future projects.
For example, we do not incorporate histopathological specific feature filters
in the deep learning generation approach. Based on the principles described
in Section 6.2.2, the parameters such as convolutional kernels are pre-trained
for Gram matrix computing during texture generation. Therefore, the task is
to design specific architecture of convolutional neural networks before param-
eter fine tuning. For example, histopathology image has object level features
and spatial arrangement features. We will use di↵erent feature scales to de-
sign the convolutional kernels for di↵erent types of cancer. For the method
to do texture similarity evaluation, we can compare the mean-squared dis-
tance between Gram matrix computed from di↵erent architectures, which
is exactly the minimization item in this optimization problem. The smaller
the mean-squared distance an architecture produces, the higher the texture
similarity the architecture o↵ers.

84



Chapter 7

Summary

There are five complete research projects in this dissertation: Intermediate
Prostate Cancer Classification (Chapter 3); Nuclei Segmentation via Deep
Learning (Chapter 4); Evaluation of Nuclei Segmentation via Image Synthe-
sis (Chapter 5); Evaluation of Nuclei Segmentation via Deep Image Synthesis
(Chapter 6); Clinical Information Visualization (Appendix A).

In Chapter 3, I proposes a new approach for intermediate prostate can-
cer grading, which makes large scale processing possible. I introduce deep
learning architecture trained by optimized color decomposed image patches
in localized areas. Our framework could achieve feasible classification accu-
racy.

In Chapter 4, I present a fully automatic end-to-end deep learning frame-
work for nuclei segmentation for various types of cancer. Our method out-
performs existing state-of-the-art nuclei segmentation methods. Our network
uses no pooling nor stride convolutional layers, and enhances the edge rep-
resentation capability of the deep convolutional networks by hard negative
mining and pixel-wise supervision. This simple yet e↵ective nuclei segmenta-
tion method is deployed without pre-processing, post-processing nor specific
domain knowledge.

In Chapter 5, our nuclei segmentation evaluation framework could sys-
tematically generate large validated data sets to evaluate any given auto-
matic nucleus extraction algorithms. This exemplar based image synthesis
approach provides newly synthesized nuclei, cytoplasm and tissue separately,
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which needs to be refined.

In Chapter 6, I propose a deep learning based method to synthesize arbi-
trarily large histopathology images from a small set of training images. The
synthesis process is a generative image update using a deep discriminative
model. It solves the nuclei tissue separation issue in Chapter 5, which is a
fast and integrated scheme.

In Appendix A, I propose a practical framework for visual exploration
of comorbidity between diseases. Experimental results show the goodness of
SFDP graph drawing algorithm on large-scale data set, which also provide
clinical meaning and nice visualization for future clinical oncology informa-
tion research.
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Appendix A

Clinical Information
Visualization

We present a practical framework for visual exploration of co-morbidities
between diseases. By utilizing high-quality multilevel layout and clustering
algorithms, we have implemented an innovative two-layer multiplex network
of human diseases. Specifically, we extract the International Classification of
Diseases, Ninth Revision (ICD9) codes from an Electronic Medical Records
(EMRs) database to build our map of human diseases. In the lower layer,
the abbreviated disease terms of ICD9 codes in the irregular regions look
like cities in geographical maps. The connections represent the disease pairs
co-morbidities, calculated by using co-occurrence. In the upper layer, we vi-
sualize multi-object profile of clinical information. For practical application,
we propose an interactive system for users to define parameters of represen-
tations of the map (see a map representation example in Figure A.1). The
demonstrated visualization method o↵er an opportunity to visually uncover
the significant information in clinical data.

A.1 Introduction

EMRs contain insightful clinical information for assessing disease risk [101].
In the diagnosis table of an EMRs database, disease comorbidity refers to
multiple diseases co-occurring in same patients more than chance alone [102].
Due to its implication for understanding human health, it is universally
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Figure A.1: A map of top 80 human diseases rendered in the web browser.
The base map specification: Force Directed Placement (FDP) drawing al-
gorithm, load factor: 5, edges disabled, coloring disabled. The heat map
specification: the patient number density distributions of 5 large hospitals
on Long Island.

regarded as an important healthcare research topic. Many statistics and
bioinformatics research have been conducted on comorbidity to invent com-
putational inference tools [103, 104]. In clinical informatics field, we hope
to provide an e�cient and e↵ective visualization technique for EMRs data
mining, especially comorbidity analysis. The main challenges for this inter-
disciplinary study lie in e↵ective computation of diagnosis data, embedding
comorbidity network (represented as graph strings) and clinical information
highlight as a heat map overlay.

A recent work [105] on visual exploration of research papers in computer
science field has addressed most of our visual analytics issues. It is an open-
source visualization system based on graph drawing and map representation
for data co-occurrence in large-scale relational database. Thanks to their
open source github repository, we leveraged their document processing codes
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on our EMRs data (Diagnosis Table) to calculate similarity matrix of disease
pairs. The disease terms are represented as nodes and the connections of
high comorbidity are represented as edges. We also use Graphviz [106] open
source graph drawing library to visualize graphs in our approach. In the
graph embedding and clustering part, we choose the scalable force directed
algorithm and modularity based geometric clustering algorithm respectively.
The two algorithms are highly related [107], because the spring model layout
is consistent with clustering by optimal modularity. For clinical information
overlay, we created multiple objects in our program to demonstrate categories
in one type of clinical information (e.g. male and female in gender). At the
same time, we manipulate the issue of heat spots overlap on single node by
displacing heat spots in di↵erent directions by a small proportion. In the
system, we nicely enable selections for top disease number, base map color
representation, connection display and clinical information type.

In general, the main contributions of Maps of Human Disease are: First,
we generate an esthetically symmetric layout of disease comorbidity by scal-
able force directed placement (SFDP), a graph drawing algorithm, which
demonstrates relationships between prevalent diseases nicely. Second, dif-
ferently from [105], we develop a multi-object heat map overlay solution to
visualize multiple information profiles simultaneously on single base map.
This is a very e�cient mechanism for users to compare and discriminate
clinical information via disease comorbidity within one visual space. Finally,
we propose an interactive browser-based system for users to do parameter
selection prior to the process of map generation.

A.2 Related Work

Analyzing and visualizing information in EMRs have been conducted to guide
the diagnosis of future patients or to be used in studies of a certain disease.
A number of researchers have explored visualization techniques for organiz-
ing the patient records in temporal event sequences [108], in which an out-
flow is proposed to summarize temporal event data that has been retrieved
from EMRs. Other works focused on building an intuitive multi-faceted as-
sessment of the patient overall information [109]. Interesting functionalities
and hierarchies via body-centric data arrangement and standard health care
coding support doctors or physician’s review and analytical reasoning. Par-
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ticularly, these EMRs representations typically operate without disease co-
occurrence visualization, which enlightens us to apply the state-of-art graph-
drawing methods on disease co-morbidity.

In the respect of research on human disease network, comprehensive ap-
proaches have been investigated on disease-related gene clusters detection
[110], properties of the Disease Gene Network [111], and molecular rela-
tionships among distinct phenotypes [112]. Few of them discussed disease
network layout algorithms in their research paper, except NodeXL, a free
and open-source network analysis and visualization software package for Mi-
crosoft Excel. NodeXL provides well-known Force-directed graph drawing
layout algorithms such as Fruchterman-Reingold [113] and Harel-Koren [114].
Another interesting work developed a phenotypic human disease network de-
rived from two statistical measures quantifying associations between diseases
[115]. In their two layer map, they used di↵erent colors to group nodes on the
base map by first letter of the ICD 10 codes. The heat map shows significant
group of related diseases over age and gender. However, their maps do not
show any text information (eg. disease terms) on the nodes. Furthermore,
they have not applied any geographic components to strengthen the map
metaphor, which leads to poor vision e↵ect.

A.3 Data and Methods

The raw data for this research is Practice Fusion De-Identified Data Set down-
loaded from https://www.kaggle.com/c/pf2012/data. We use records from
two of the tables: the Diagnosis Table and the Patient Table. The Diagno-
sis Table consists of three columns: DiagnosisID (Primary Key), PatientID
(Foreign Key) and ICD9Code. The Patient Table consists of three columns:
PatientID (Primary Key), Gender and YearOfBirth. The total number of
patient is 10,000. The hospital information in our system is fictitious.
The three main steps in our system is 1) generating comorbidity graph from
comorbidity matrix, 2) generating base map via several graph related algo-
rithms and finally, 3) generating clinical information heat map. Before the
first step, we preprocess the raw data by merging the diagnoses (represented
by ICD9 codes) belong to every patient together as an entity. In the process
of map representation when disease terms needed, we create a look up table
containing ICD9 codes and corresponding disease terms, which allow short
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access time.

A.3.1 Comorbidity Graph Generation

In this thread, we defined two variable parameters, ‘top number’ as the num-
ber of nodes in the final comorbidity graph, and ‘load factor’ as the number
of emitting edges from each node. The top number is used in step 3.1.1 and
3.1.2, and the load factor is used in step 3.1.3.

3.1.1 Disease Term Ranking:

Once the entities are loaded into the memory, we rank the ICD9 codes ac-
cording to their occurrence frequency. Each code’s weight is assigned by the
times it occurred within the Diagnosis Table. The ranking list is acquired by
sorting the codes weights and slicing based on the ‘top number’. In our maps,
the font size of each node is proportional to its rank in this list, clinically
expressed as prevalence rate.

3.1.2 Comorbidity Matrix Computation:

Comorbidity matrix is the measurement to quantify edge lengths in the final
comorbidity graph. Every element in comorbidity matrix is the pairwise
similarity values between top diseases. We use Jaccard coe�cient [116] to
accommodate the Boolean nature of ICD9 codes in the entities. The Jaccard
similarity coe�cient is defined as the size of the intersection divided by the
size of the union of the sample sets. In our study, pairwise comorbidity will
be calculated within every pair of ‘top’ diseases:

J(S
i

, S
j

) = Si\Sj

Si[Sj
,

where S
i

and S
j

are the sets of patientID with disease i or j in the Diag-
nosis Table.

3.1.3 Edge Number Filtering and Edge Length Calculation:

Considering the visual clarity of the map, we select most highly related dis-
eases from S

j

for each disease in S
i

(‘load factor’ = 1). In the next stage,
the pairwise comorbidity matrix is transformed into a matrix of edge lengths
for graph drawing. Since the value of J(S

i

, S
j

) is in range of 0 and 1, in
order to get an appropriate distribution, we need as well normalize J(S
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where E is a scaling factor, we set it to be 1, and � is a smoothing value,

set to be 0.05. Logarithm scaling provides a better map metaphor by enlarg-
ing comorbidity values within the small range [105].

A.3.2 Base Map Generation

Base map generation is the most important thread in our approach. We
apply Scalable Force Directed Placement (SFDP) [117], a fast graph drawing
algorithm that e�ciently layout large graphs, on large map generation. In the
following part, we use a modularity based clustering algorithm [118] to group
vertices into clusters. Lastly, in order to uncover beautifully the underlying
structural information and neighborhoods, we apply the mapping and the
coloring algorithms described in GMap [119].

3.2.1 Embedding:

In our system, we generate the positions of the nodes in two-dimensional
plane by a spring-embedder [120], which relies on spring forces and mechan-
ical energy based on Hooke’s law. Basically, in the spring model, repulsive
forces between all nodes and attractive forces between directly connected
nodes are calculated iteratively to assign an energy state for each node, thus
achieving a minimal energy state by moving each node based on the resul-
tant force. In this basic model, the geometric layout is determined by the
initial state and the structure of the graph itself, which shows independence.
However, the lengths between pairs of nodes may not match the graph the-
oretic distances calculated in step 3.1.3. Here, we adopted Kamada and
Kawai’s refined spring model [120], minimizing the di↵erence between en-
ergy states corresponds to the geometric and graph distances. The graph
distances in this model are computed by and All-Pairs-Shortest-Path com-
putation (Floyd-Warshall algorithm or Johnson’s algorithm).

Clinical researchers usually need a quite large map. So, we use SFDP, a
multi-level force-directed placement algorithm o↵ering good layouts for large
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graphs within reasonable running time. This algorithm uses a k-centers ap-
proximation to coarsen the original graph, followed by Kamada and Kawai’s
layout model. For implementation details in this algorithm, please refer [114].
We can compare the visual di↵erence of FDP and SFDP on a top 800 dis-
eases graph from Figure A.2 to Figure A.5. In Figure A.4, SFDP provides
much clearer groups of nodes (like cities of countries in geographic maps)
than that of FDP (Figure A.2). Obviously, SFDP algorithm makes it easy
for doctors or physicians to understand the co-occurrence of prevalent dis-
eases. In Figure A.3, the connection edges between pairs of diseases are so
intricate that the layout is not informative for representation or research. In
contrast, in Figure A.5, the diseases having high co-occurrence with Mixed
Hyperlipidemia surround it without any edge intersection, which shows the
relationship in a great way. Therefore, we recommend using SFDP for large
map representation.

Figure A.2: A map of top 800 human diseases. The base map specification:
FDP drawing algorithm, load factor: 1, edges enabled, coloring enabled.
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Figure A.3: The enlarged area within the black square in A.2.

3.2.2 Clustering:

Human diseases with high prevalence usually have dense connections among
groups. We use a modularity based clustering method [107] to group nodes.
It maximizes the modularity of the adjacent matrix of the graph via a spec-
tral technique. The adjacent matrix modularity is defined as real edge num-
bers within groups minus the expected number of edges placed at random.
Clusters can be detected based on computing the leading eigenvector of the
adjacent matrix modularity and classifying nodes according to the signs in
the eigenvector.

3.2.3 Geographic Mapping and Coloring:

To make a visually pleasing geographical map, we adopt a modified Voronoi
diagram of the nodes as the mapping algorithm, which is described in [119].

95



Figure A.4: A map of top 800 human diseases. The base map specification:
SFDP drawing algorithm, load factor: 1, edges enabled, coloring enabled.

In this diagram, the boundaries of the clusters are more rounded than tra-
ditional Voronoi diagram, while some of the inner boundaries are kept ar-
tificially straight. In the last step, we color the countries (clusters) with
ColorBrewer Theorem [121], which distinguishes adjacent clusters with two
most di↵erent colors. For more information about the color distance function
used in this method, please see details in [119].

A.3.3 Heat Map Generation

The heat map intensity in the overlay represents the significance of the in-
formation over certain nodes. There are three clinical information items:
hospital, gender and age. The diameter of each heat spot is calculated by
taking logarithm scale of normalized patient number density respective to

96



Figure A.5: The enlarged area within the black square in A.4.

the option within selected information type. Particularly, every node might
have multiple highlight spots of information options, so we shift the heat
spot centers by a little proportion in di↵erent directions to solve overlapping
issue (as Figure A.1 shown). Solid semi-transparent circles are laid over the
nodes as raster overlay.

A.3.4 Implementation

The system is implemented using Django Web application framework with
modular design in Ubuntu 12.04. The four main modules in our system
are: comorbidity graph generation, base map generation, heat map genera-
tion and map rendering. We render our SVG formatted base maps in web
browser using AT&T’s GraphViz system [106]. For the heat maps, we utilize
heat map modules, together with zooming and panning tools from the open
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source OpenLayers JavaScript library. The programming language used in
the framework is Python 2.7.3.

A.4 Case Studies

Figure A.6: A map of top 100 human diseases. The base map specification:
SFDP drawing algorithm, load factor: 1, edges enabled, coloring enabled.

Two case studies focused on the base map and the heat map were done
respectively to demonstrate the layout of disease co-occurrence relationships
and clinical information highlight. There is a ‘Map Generation Parameters’
input user interface in our system, which is rendered in the web browser be-
fore map representation, as shown in the left part of Figure A.6.

In the first case study, we intend to get a colorful map of 100 preva-
lent diseases. In order to illustrate the most important relationship between
diseases occurred frequently, we set the load factor for each node to be 1,
which means only one edge emitting from each node in the graph. For bet-
ter clustering, we choose SFDP for graph drawing algorithm. Since no heat
map is needed in this case, we just leave the ‘overlay’ selection part blank,
as shown in the user interface (Figure A.6). The result shows a hierarchical
structure of a hundred prevalent diseases (extracted from the data set) that
are grouped into 11 clusters. We can tell from the map that ‘Mixed Hyper-
lipidemia’ is the Top 1 human disease and it is the center of 9 sub-prevalent
diseases. Obviously, the hierarchical structure improves our understanding of

98



Figure A.7: Maps of top 70 human diseases. The base map specification:
SFDP drawing algorithm, load factor: 1, edges disabled, coloring disabled.
The heat map specification: the patient number density distributions of 5
large hospitals on Long Island, with Glen Cove Hospital, North Shore Uni-
versity Hospital and Winthrop University Hospital selected.

these one hundred diseases. It does make sense that mixed hyperlipidemia,
hypertension and diabetes mellitus are highly related. For another example,
in the red region (in the left bottom corner of the map), both acute bronchitis
and acute sinusitis NOS are diseases of respiratory system.

In the second case study, the heat maps are clinical information overlays
of hospital, age and gender respectively. In Figure A.7, we demonstrate three
hospitals‘ heat maps (five hospitals altogether) over Top 70 Human Disease
base map. The distribution of patient number density of every hospital is
di↵erent, which can illustrate, to some degree, the clinical strength of hospi-
tals or patient concentration near to hospitals. In Figure A.8, heat maps of
three elder age ranges are overlaid on a base map of Top 60 Human Disease.
In the map, the patient number density distribution is normalized in each
age range. For example, in Figure A.8, people of elder than 72 years old
cover more diseases than that of other age rangers. It is very interesting to
do research on prevalent diseases in di↵erent age rangers. In Figure A.9, a
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Figure A.8: Maps of top 60 human diseases. The base map specification:
SFDP drawing algorithm, load factor: 1, edges disabled, coloring disabled.
The heat map specification: the patient number density distributions of 5 age
ranges, with >72 Years Old, 49-71 Years Old and 33-48 Years Old selected

Figure A.9: Maps of top 50 human diseases. The base map specification:
SFDP drawing algorithm, load factor: 1, edges disabled, coloring disabled.
The heat map specification: the patient number density distributions of gen-
ders.
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comparison of patient number density distribution from two genders is over-
laid on a base map of Top 50 Human Disease. Despite Routine Gynecological
Examination is exclusively for women, the information in this map driven by
gender data shows significant trend of prevalent diseases among each gen-
der. This visualization approach provides an e�cient way for researchers or
doctors to filter or determine gender-exclusive diseases.

A.5 Conclusion and Future Works

Our work proposes a practical framework for visual exploration of comor-
bidity between diseases. Experimental results show the goodness of SFDP
graph drawing algorithm on large-scale data set, which also provide clinical
meaning and nice visualization for researchers. Clinical information (hospi-
tal, age, gender) profiles are visualized by heat map overlay. In this paper,
we have shown clinically valuable case studies that evaluate our system.

Future works could be considered in many promising directions to help
medical personnel to arrive at more accurate diagnoses and treatments. For
example, we can incorporate database technique with our visualization to
standardize data entry queries and clinical data management. This work
might need to be cooperated with physicians who are professional at EMR
database. In addition, the flexibility of our system should be improved in
respect of more types of clinical information overlay, comparable data visu-
alization among options in a heat map and further statistical analysis. For
comparable data visualization, we can solve this issue by normalizing pa-
tient number density in di↵erent groups. While this processing may lead to
poor visual e↵ect due to large distribution bias among di↵erent groups, we
can create an option button in the user interface to control this functionality.
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Appendix B

Digital Pathology Image
Viewing Module

For visualization and algorithm implementation, 3D Slicer is an open-source
medical image computing environment for clinical researchers and it is well
designed to extend modules for programmers. I developed modules in 3D
Slicer to read/write, visualize and process high-resolution images used in
digital pathology, which can occupy tens of gigabytes and cannot be com-
fortably uncompressed into RAM. Slicer supports three types of modules:
command line interface (CLI), scripted modules and loadable modules. I
used scripted modules as they are recommended for fast prototyping and
custom workflow development. Like my standalone application, a scripted
module in 3D Slicer consists on widget part and logic part. In Slicer, the
global repository for all data model is MRML scene. Each MRML scene
contains list of nodes (display and storage) and relationship between nodes
(references and hierarchies). The widget class defines the module user in-
terface and launches processing methods implemented in the logic class. It
is important that the widget class also keeps user interface and nodes in
synchronization by observing MRML nodes to get change notifications. The
logic class is the reusable core of the processing program. The logic mod-
ule should be separated from the widget class and MRML nodes in object
oriented design. I will learn and comply rules and conventions in 3D Slicer
during the development to accomplish an e�cient scripted module.

A standalone application has been written to import and visualize the
large two-dimensional histopathological images via interactive input of multi-
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ple parameters. For visualization implementation, I used PyQt and openslide-
python library. The interactive front panel is shown in the following Figure
B.1. The image region being visualized is defined by multiple parameters by
users. As shown in the figure, after loading specific image file with .svs su�x,
the filepath, filename and image meta information will be displayed. Accord-
ing to the dimension, level number and down sample rate on each level, users
can input their desired level, start point position, width and height of the
region. Then the desired image region can be shown on the left scene by
simply clicking the ‘Show Image’ button. The image input mechanism is
implemented by utilizing the methods in openslide and openslie-python li-
braries. The image data were converted into numpy array and then were
displayed in the interface using methods in QGraphicsScene.

Figure B.1: The interactive panel of my histopathology image visualiza-
tion tool. The source code is stored in my Github account repository:
https://github.com/naiyunzhou/GSOC2016.

Future possible biomedical engineering or informatics research could be
considered in many promising directions to help medical personnel to arrive
at more accurate diagnoses and treatments. For example, we can incorporate
database technique with our visualization to standardize data entry queries
and clinical data management. This work might need to be co-operated
with physicians who are professional at EMR database. In addition, the
flexibility of our system should be improved in respect of more types of
clinical information overlay, comparable data visualization among options in
a heat map and further statistical analysis.
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Max A Viergever, and Josien PW Pluim, “Automatic nuclei segmen-
tation in h&e stained breast cancer histopathology images,” PloS one,
vol. 8, no. 7, pp. e70221, 2013.

[71] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density es-
timation via di↵usion,” The Annals of Statistics, vol. 38, no. 5, pp.
2916–2957, oct 2010.

[72] Luc Devroye, “Sample-based non-uniform random variate generation,”
in Proceedings of the 18th conference on Winter simulation. ACM,
1986, pp. 260–265.

[73] Eldad Haber, Tauseef Rehman, and Allen Tannenbaum, “An e�cient
numerical method for the solution of the l 2 optimal mass transfer
problem,” SIAM Journal on Scientific Computing, vol. 32, no. 1, pp.
197–211, 2010.

[74] Yi Gao, Liangjia Zhu, Sylvain Bouix, and Allen Tannenbaum, “In-
terpolation of longitudinal shape and image data via optimal mass
transport,” in Proceedings of SPIE, 2014, p. 90342X.

112



[75] Rainer E Burkard, Mauro Dell’Amico, and Silvano Martello, Assign-
ment Problems, Revised Reprint, Siam, 2009.

[76] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cam-
bridge university press, 2004.

[77] Sarang C. Joshi, Michael I. Miller, and Ulf Grenander, “On the geom-
etry and shape of brain sub-manifolds,” IJPRAI, vol. 11, no. 8, pp.
1317–1343, 1997.

[78] Samuel Dambreville, Yogesh Rathi, and Allen Tannenbaum, “A frame-
work for image segmentation using shape models and kernel space
shape priors,” IEEE transactions on pattern analysis and machine
intelligence, vol. 30, no. 8, pp. 1385–1399, 2008.

[79] Sam T Roweis and Lawrence K Saul, “Nonlinear dimensionality re-
duction by locally linear embedding,” Science, vol. 290, no. 5500, pp.
2323–2326, 2000.

[80] T.T. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to algo-
rithms, MIT Press, 2001.

[81] David G Kendall, “Shape manifolds, procrustean metrics, and complex
projective spaces,” Bulletin of the London Mathematical Society, vol.
16, no. 2, pp. 81–121, 1984.

[82] Kaleem Siddiqi and Stephen Pizer, Medial representations: mathemat-
ics, algorithms and applications, vol. 37, Springer Science & Business
Media, 2008.

[83] Andrew Blake, Pushmeet Kohli, and Carsten Rother, Markov random
fields for vision and image processing, Mit Press, 2011.

[84] Alexei A Efros and Thomas K Leung, “Texture synthesis by non-
parametric sampling,” in Computer Vision, 1999. The Proceedings of
the Seventh IEEE International Conference on. IEEE, 1999, vol. 2, pp.
1033–1038.

[85] Shawn Lankton and Allen Tannenbaum, “Localizing region-based ac-
tive contours,” IEEE transactions on image processing, vol. 17, no. 11,
pp. 2029–2039, 2008.

113



[86] Yizong Cheng, “Mean shift, mode seeking, and clustering,” IEEE
transactions on pattern analysis and machine intelligence, vol. 17, no.
8, pp. 790–799, 1995.

[87] Dorin Comaniciu and Peter Meer, “Mean shift: A robust approach
toward feature space analysis,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[88] Luis Ibanez, William Schroeder, Lydia Ng, and Josh Cates, “The itk
software guide,” 2005.

[89] Adam Goode, Benjamin Gilbert, Jan Harkes, Drazen Jukic, Mahadev
Satyanarayanan, et al., “Openslide: A vendor-neutral software foun-
dation for digital pathology,” Journal of pathology informatics, vol. 4,
no. 1, pp. 27, 2013.

[90] Hugo JWL Aerts, Emmanuel Rios Velazquez, Ralph TH Leijenaar,
Chintan Parmar, Patrick Grossmann, Sara Carvalho, Johan Bussink,
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Vidal, and Albert-László Barabási, “The human disease network,”
Proceedings of the National Academy of Sciences, vol. 104, no. 21, pp.
8685–8690, 2007.
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