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Abstract of the Dissertation 

Mechanics of advanced architected materials: Design, 3D Printing, Modeling and Testing 

by 

Tiantian Li 

Doctor of Philosophy 

in 

Mechanical Engineering 

Stony Brook University 

2018 

Architecture provides an additional degree of freedom in the design of materials and determines 

their mechanical properties. This dissertation presents some works on designing, fabricating, 

modeling and testing architected materials. The goals are to establish the relationships between the 

internal structure of a material and its mechanical properties and discover existing and potential 

new materials, especially those with improved and even ‘tunable’ properties for potential 

mechanical applications.  

The first key objective aims at exploring the novel architected cellular materials with 

negative Poisson’s ratio (NPR) also named as ‘auxetics’. These materials have unusual mechanical 

behavior, therefore, exhibit many desirable properties and broad potential applications. However, 

most of studied auxetic materials are two-dimensional and exhibit NPR effect at small mechanical 

deformation and few of them have been fabricated to the practical stage.  To solve these 

challenging problems, a class of architected cellular materials were created by replacing regular 

straight beam with sinusoidally shaped ones. These cellular materials exhibit mechanically tunable 

Poisson’s ratio at an extreme large tensile deformation (≥100%). Moreover, our design concept 
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can be extended to construct 3D periodic cellular materials by harnessing out-of-plane deformation 

to achieve a negative Poisson’s ratio. Furthermore, a group of sandwich composites with 3D-

printed auxetic cellular core materials exhibit a sequential snap-through instability under bending 

deformation which significantly enhances the energy absorption abilities.  

The second key objective aims at discovering the structure-property-function relationships 

of architected multi-material composites. Combining multiple (contrasting) materials enabling to 

mix elastic, plastic and viscous materials could lead to completely new classes of mechanical 

architected materials. Here, a system of 3D periodic glassy polymer/elastomer co-continuous 

architected composites with different geometric arrangements of the constituents were created 

through simulations and experiments. These 3D periodic co-continuous composites exhibit 

enhanced mechanical properties including stiffness, strength, energy absorption, and fracture 

toughness, which are due to the mutual constraints between two phases of the co-continuous 

architectures. Another new group of 3D printed architected composites named auxetic composites 

combining with auxetic lattice reinforcement (glassy polymer) and matrix (elastomer) exhibits 

enhanced stiffness, hardness and toughness. This improved mechanical performance is due to the 

NPR effect of the auxetic reinforcements, which makes the matrix in a state of biaxial or triaxial 

compression and hence provides additional support. 

The findings presented here will open new avenues to achieve improved and tunable 

mechanical properties using architected material systems. 



 

v 

 

 

Table of Contents 

Chapter 1. Introduction ................................................................................................................... 1 

1.1 Background and motivation ...................................................................................................... 1 

1.2 Research objective .................................................................................................................... 5 

1.3 Outlines of this thesis ................................................................................................................ 7 

Chapter 2. Materials and Methods ................................................................................................ 11 

2.1 Design and 3D printing technology ........................................................................................ 11 

2.2 Mechanical testing .................................................................................................................. 13 

2.3 Numerical modeling................................................................................................................ 14 

Chapter 3. 2D Lattice metamaterials with mechanical tunable Poisson’s ratio ............................ 15 

3.1 Introduction ............................................................................................................................. 15 

3.2 Materials and methods ............................................................................................................ 17 

3.2.1 Description of geometric model ................................................................................... 17 

3.2.2 Mechanical testing ....................................................................................................... 19 

3.3 Auxetic behavior of 2D lattice metamaterials ........................................................................ 23 

3.4 Mechanical tunable Poisson’s ratios ....................................................................................... 26 

3.5 Effect of the lattice topology................................................................................................... 29 

3.6 Conclusions ............................................................................................................................. 31 



 

vi 

 

Chapter 4. Harnessing out-of-plane deformation to design 3D architected lattice metamaterial with 

tunable Poisson’s ratios................................................................................................................. 32 

4.1 Introduction ............................................................................................................................. 32 

4.2 Materials and methods ............................................................................................................ 34 

4.2.1 Description of geometric model ................................................................................... 34 

4.2.2 Mechanical testing ....................................................................................................... 35 

4.2.3 Numerical modeling ..................................................................................................... 38 

4.3 Auxetic behavior of 3D planar lattice metamaterials ............................................................. 40 

4.4 Theoretical model of the 3D planar auxetic metamaterial ...................................................... 43 

4.5 Effect of the geometric parameters ......................................................................................... 52 

4.6 Design concept extension from 1D to 3D lattice metamaterials ............................................. 55 

4.7 Conclusion .............................................................................................................................. 56 

Chapter 5. The design of sandwich composites with cellular cores ............................................. 58 

5.1 Introduction ............................................................................................................................. 58 

5.2 Design and fabrication of sandwich composites ..................................................................... 60 

5.2.1 Structural design .......................................................................................................... 60 

5.2.3 Mechanical testing ....................................................................................................... 64 

5.2.4 Numerical simulation ................................................................................................... 65 

5.3 Poisson’s ratio of core design ................................................................................................. 65 

5.4 Static 3point bending behavior of sandwich composites ........................................................ 68 



 

vii 

 

5.4.1 Effect of face sheets ..................................................................................................... 68 

5.4.2 Effect of core topology ................................................................................................ 69 

5.4.3 Effect of relative density .............................................................................................. 77 

5.4.4 Discussion .................................................................................................................... 83 

5.5 Conclusions ............................................................................................................................. 84 

Chapter 6. Enhanced mechanical performances of auxetic composites ....................................... 86 

6.1 Introduction ............................................................................................................................. 86 

6.2 Design and fabrication of auxetic composites ........................................................................ 89 

6.2.1 Design of auxetic lattice reinforced composites .......................................................... 89 

6.2.2 Sample fabrication ....................................................................................................... 89 

6.2.3 Mechanical testing ....................................................................................................... 91 

6.2.4 Finite element analysis ................................................................................................. 91 

6.3 Compression behavior of auxetic composites ......................................................................... 92 

6.3.1 Mechanical response of auxetic lattice reinforced composites .................................... 94 

6.3.2 Comparisons between auxetic lattice and auxetic lattice reinforced composites ...... 100 

6.3.3 Effect of negative Poisson’s ratio .............................................................................. 104 

6.3.4 Effect of volume fraction ........................................................................................... 108 

6.3.5 Discussion .................................................................................................................. 113 

6.4 Conclusion ............................................................................................................................ 114 

Chapter 7. The fracture behavior of Interpenetration Phase Composites ................................... 116 



 

viii 

 

7.1 Introduction ........................................................................................................................... 116 

7.2 Design and fabrication of Interpenetration Phase Composites ............................................. 118 

7.3 Experiment section................................................................................................................ 121 

7.4 Compression behavior of Interpenetration Phase Composites ............................................. 124 

7.5 Fracture toughness measurements ........................................................................................ 128 

7.5.1 Fracture behavior and mechanisms of IPCs ............................................................... 128 

7.5.2 Comparison between fracture behavior of IPC, PC, FC, and LC .............................. 135 

7.6 Tailored fracture toughness ................................................................................................... 136 

7.6.1 Effect of material properties ...................................................................................... 136 

7.6.2 Effect of volume fraction ........................................................................................... 139 

7.6.3 Effect of 3D printing orientation ................................................................................ 140 

7.7 Conclusion ............................................................................................................................ 141 

Chapter 8. Conclusions ............................................................................................................... 143 

8.1 Main contributions ................................................................................................................ 143 

8.2 Future works ......................................................................................................................... 146 

Bibliography ............................................................................................................................... 150 

 



 

ix 

 

List of Figures/Tables/Illustrations 

Figure 1.1 The extraordinary properties of materials found in nature often achieved through 

complex structures. ......................................................................................................................... 2 

Figure 1.2 Architecture has been used to increase the mechanical efficiency of buildings. ......... 3 

Figure 1.3 New opportunities for the design of architected materials with novel functionalities. 5 

Figure 1.4 Schematic of research objective. .................................................................................. 6 

Figure 2.1 3D Printing technology. .............................................................................................. 11 

Figure 2.2 Four types of architected materials and their 3D printed samples. ............................ 13 

Figure 2.3 Various mechanical testing set-ups for 3D printed architected materials. ................. 14 

Figure 3.1 Schematics and deformation behavior of the sinusoidally architected lattice material.

....................................................................................................................................................... 18 

Figure 3.2 Material properties of constituent 3D printed materials. ............................................ 19 

Figure 3.3 Experimental set-up for tension behavior of proposed 3D printed lattice material. ... 20 

Figure 3.4 FE model for mechanical response simulation. .......................................................... 23 

Figure 3.5 Mechanical response of lattice metamaterials under uniaxial stretching. .................. 25 

Figure 3.6 Effects of geometric features of the ligament on the mechanical response. ............... 27 

Figure 3.7 Effects of geometric features of the ligament on stiffness and Poisson’s ratio. ......... 28 

Figure 3.8 Effect of slenderness on the stress-strain relation and Poisson’s ratios of the proposed 

lattice materials. ............................................................................................................................ 29 

Figure 3.9 Effect of the topology on the stress-strain curves and Poisson’s ratio. ...................... 30 

Figure 4.1 Overview of the proposed 3D planar auxetic metamaterials. ..................................... 35 

Figure 4.2 Material properties of constituent 3D printed materials. ............................................ 36 



 

x 

 

Figure 4.3 Experimental set-up for tension behavior of proposed 3D printed lattice material. ... 38 

Figure 4.4 FE model for mechanical response simulation. .......................................................... 40 

Figure 4.5 Experimental and FEA results of 3D planar auxetic metamaterials under uniaxial 

tensile tests. ................................................................................................................................... 42 

Figure 4.6 Schematics of the theoretical model of the 3D planar auxetic metamaterial subject to a 

uniform tensile stress along horizontal stretching. ....................................................................... 44 

Figure 4.7 Schematics of the curved beam on a 2-D reference configuration. ............................ 45 

Figure 4.8 Theoretical and FEA results of 3D planar auxetic metamaterials under uniaxial tensile 

tests. .............................................................................................................................................. 51 

Figure 4.9 Effect of A/L, w/L, t/L, and n on the macroscopic Poisson’s ratio of the 3D planar 

metamaterials, νyx. Evolution of νyx as a function of A/L. ............................................................. 54 

Figure 4.10 The system of lattice metamaterials with curved beams. ......................................... 56 

Figure 5.1 Design of unit cell of the truss, conventional honeycomb, and re-entrant honeycomb 

structure......................................................................................................................................... 61 

Figure 5.2 Three-point bending test set-up and the sandwich samples. ...................................... 63 

Figure 5.3 Three cellular core materials under uniaxial compression test (the volume fraction is 

20%). ............................................................................................................................................. 67 

Figure 5.4 Bending characteristic of sandwich composite specimens with face sheets of different 

materials. ....................................................................................................................................... 69 

Figure 5.5 Bending characteristic of sandwich composite specimens with different core structures 

and U-CFRP face sheets. .............................................................................................................. 72 

Figure 5.6 Comparison of the experiments and FEA predications for mechanical response of 

sandwich composites under bending deformation. ....................................................................... 74 



 

xi 

 

Figure 5.7 Bending characteristic of sandwich composite specimens with re-entrant honeycomb 

core design and U-CFRP face sheets. ........................................................................................... 77 

Figure 5.8 Bending properties of the sandwich structures. .......................................................... 79 

Figure 6.1 Schematics of lattice structures, lattice reinforced composite structures and 3D-printed 

lattice reinforced composite specimens. ....................................................................................... 90 

Figure 6.2 The stress-strain response of 3D printed constituent materials. ................................. 93 

Figure 6.3 Mechanical response of the 3D-printed lattice reinforced composites during uniaxial 

compression tests. ......................................................................................................................... 95 

Figure 6.4 Experimental images of deformation and the calculated Poisson’s ratios for each 

composite design. .......................................................................................................................... 98 

Figure 6.5 Experimental displacement contours for each composite design. ............................ 100 

Figure 6.6 The comparison of mechanical properties for the lattice reinforced composites and the 

lattice counterpart structures are shown. ..................................................................................... 102 

Figure 6.7 The von Mises stress distribution in the lattice reinforced composites and the 

corresponding cellular structures at a nominal compressive strain of 0.05. ............................... 104 

Figure 6.8 Effect of Poisson’s ratio on the mechanical properties of various honeycomb reinforced 

composites during the uniaxial compression test........................................................................ 107 

Figure 6.9 The stress-strain responses of four types of composites at different volume fractions of 

the reinforcing phase. .................................................................................................................. 109 

Figure 6.10 Comparison of mechanical properties of the lattice reinforced composites as a 

function of the volume fraction of reinforcement phase: (a) Young’s modulus, (b) energy 

absorption. ................................................................................................................................... 112 

Figure 7.1 Schematics of 3D IPCs with different lattice symmetries. ....................................... 120 



 

xii 

 

Figure 7.2 Mechanical response of 3D printed composites during uniaxial compression tests. 127 

Figure 7.3 3-point bending tests of the SENB specimens .......................................................... 129 

Figure 7.4 3-point bending tests of the SENB specimens of IPC-BCC and IPC-FCC. ............. 132 

Figure 7.5 Representative responses of IPC SENB samples with SC, BCC and FCC lattice 

symmetries showing the load as a function of (a) the load line displacement, and (b) the crack 

mouth opening displacement, δ. The crack-growth (c) J-integral, JIC and (d) and fracture 

toughness, KJIC are plotted as a function of crack extension, Δa, for IPC SENB samples, 

respectively. ................................................................................................................................ 133 

Figure 7.6 3-point bending tests of the SENB specimens of IPCs, PCs, FCs and LCs. ............ 136 

Figure 7.7 The effect of stiffness ratio, EB/EA, on the mechanical response of FCC IPCs. ..... 138 

Figure 7.8 The effect of the volume fraction of material A on the mechanical response of FCC 

IPCs. ............................................................................................................................................ 140 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

 

Acknowledgments 

 

First, I would like to express my deep gratitude towards my advisor, Professor Lifeng Wang, who 

gave me this great opportunity to pursue my PhD degree. Without his continuous encouragements 

and mentoring, I won’t be able to complete this thesis timely. I also would like to thank my thesis 

committee members, Professor Fu-pen Chiang, Professor Shikui Chen, and Professor T. 

Venkatesh, whose insightful comments were a tremendous help to improve this thesis. 

I highly appreciate the department of Mechanical engineering at Stony Brook University, where I 

received great course learning and research training. I would also like to thank Professor Toshio 

Nakamura, Professor Foluso Ladeinde, Professor Sam Huang, Professor Maen Alkhader and 

Professor Lei Zuo for their intellectual instruction of graduate courses and lectures.  

I would also like to thank all my collaborators: Dr. Yanyu Chen, Professor Fu-pen Chiang, 

Professor Shikui Chen, Professor Fabrizio Scarpa, Professor Nicholas Fang, Professor Howon Lee, 

Professor Yangbo Li, Nicolas Casazzone, Dr. Shuyu Wang, Zian Jia, Professor Arash Afshar, 

Xuedong Zhai, Panagiotis Vogiatzis, Yue Wang, Shaoyu Hou, Mang Zhang and Fan Liu. I have 

benefited substantially from the discussions and exchange of ideas with them. 

Also, I would like to take this opportunity to thank Dr. Shuyu Wang, Gwen Wright, Dr. Ming Lu, 

and Dr. Charles Black who provided assistance for conducting the experiments in Brookhaven 

National Lab. My experiments could not have been carried out smoothly without their support. 

I would also like to thank my undergraduate supervisor Professor Jingfeng Li, Professor Zhengcao 

Li and my master supervisor Professor Koichi Tsuchiya. Without their significant support, I could 



 

xiv 

 

not have this precious opportunity to come to US and study for my PhD degree here. I am very 

grateful for the financial support from the SUNY at Stony Brook, NSF and ONR. 

Last but not least, I would like to express my sincerest and deepest gratitude to my parents for their 

devoted love and understanding. I would like to give my special thanks to my girlfriend Xiaoyi 

Hu, whose selfless love, deep care and constant supports enable me to complete this thesis.   

 

 

 

 

 

 

 

 

 

 

 



 

xv 

 

Vita, Publications and/or Fields of Study 

 

1. Panagiotis Vogiatzis, Shikui Chen, Xiao Wang, Tiantian Li and Lifeng Wang. “Topology 

optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level 

set method”, Computer-Aided Design, 2017, 83, P. 15-32. 

 

2. Yanyu Chen, Tiantian Li, Fabrizio Scarpa and Lifeng Wang. “Lattice Metamaterials with 

Mechanically Tunable Poisson’s Ratio for Vibration Control”, Physical Review Applied, 

2017, 7(2): 024012. 

 

3. Tiantian Li and Lifeng Wang. “Bending behavior of sandwich composite structures with 

tunable 3D-printed core materials”, Composite Structures, 2017,175, P.46-57. 

 

4. Tiantian Li, Xiaoyi Hu, Yanyu Chen and Lifeng Wang. “Harnessing out-of-plane deformation 

to design 3D architected lattice metamaterials with tunable Poisson’s ratio”, Scientific Reports, 

2017, 7(8949). 

 

5. Yanyu Chen, Tiantian Li, Zian Jia, Fabrizio Scarpa, Chun-Wei Yao and Lifeng Wang. “3D 

printed hierarchical honeycombs with shape integrity under large compressive deformations”, 

Materials & Design, 2018, 137, P.226-234. 

 

6. Zian Jia, Tiantian Li, Fu-pen Chiang and Lifeng Wang. “An experimental investigation of the 

temperature effect on the mechanics of carbon fiber reinforced polymer composites”, 

Composite Science and Technology, 2018, 154, P.53-63. 

 

7. Tiantian Li, Yanyu Chen, Xiaoyi Hu, Yangbo Li and Lifeng Wang. “Exploiting negative 

Poisson’s ratio effect to design 3D-printed composites with enhanced mechanical 

performance”, Materials & Design, 2018, 142, P.247-258. 

 

8. Yangbo Li, Yanyu Chen, Tiantian Li, Siyu Cao and Lifeng Wang. “Hoberman-sphere-

inspired lattice metamaterials with tunable negative thermal expansion”, Composite 

Structures, 2018, 189, P. 586-597. 

 

9. Tiantian Li, Yanyu Chen and Lifeng Wang. “Enhanced fracture toughness in 3D printed 

architected interpenetrating phase composites”, submitted, 2018. 

 



 

1 

 

Chapter 1. Introduction 

The research in this thesis lies with the area of architected material design, 3D printing, mechanical 

testing, analytical and numerical modeling. The theme is establishing the relationships between 

the internal structure of a material and its mechanical properties and discovering existing and 

potential new materials, especially those with improved and even tailorable properties for potential 

mechanical applications. The background, motivation, research objective and the outline of this 

thesis will be addressed in this chapter. 

1.1 Background and motivation 

Architecture has played an important role in not only human-made structures such as buildings, 

tools, transportations but also natural materials such as bone, nacre, tissues in plants and among 

others. Nature evolved architected materials for many situations in which low density as well as 

high stiffness and strength are needed. Examples are the beaks and bones of birds that consist of 

thin, solid skins attached to a highly porous, cellular core. The complex core structures are 

producing an efficient structure for resisting bending and buckling loads with little increase in 

weight. Moreover, researchers found that in nature the complex structures can achieve some 

extraordinary properties of materials. (Figure 1.1) For example, the deep-sea sponge has a square 

lattice cage-like structures with hierarchical levels which can not only provide lightweight, high 

stiffness and strength but also overcome the brittleness of its constituent material [1]. Another 

example is from the Morpho butterfly, which uses multiple layers of cuticle structures to produce 

their striking blue color which is also a natural photonic structure [2]. The third example is the feet 

of Gecko with hierarchical fiber structures which provide a good ability of adhesion [3]. Therefore, 

nature usually use architecture to achieve functionality. 
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Figure 1.1 The extraordinary properties of materials found in nature often achieved through complex 

structures. (a) Deep-sea sponge has a square lattice cage-like structures with hierarchical structures 

which can overcome the brittleness of its constituent material. (b) Morpho butterfly uses multiple 

layers of cuticle structures to produce their striking blue color which is also a natural photonic 

structure. (c) Gecko feet have hierarchical fiber structures to achieve adhesion. 

Architecture has also played an important role in human society. Humankind always has the 

knowledge to develop architectures to enhance the structural efficiency. The good examples are 

from the revolution of buildings over centuries. From the Pyramids of Giza in 2500 BC to St. 

Peter’s Basilica in 1500 AD and from the Eiffel Tower in 1880 AD to the highest building Burj 

Khalifa today, it can be found that the modern buildings have a superior architecture in which more 

than 99.8 % of the material has been replaced with air. In large scale, we are able to use 

architectures to increase the mechanical efficiency of buildings and many other familiar structures.  
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Figure 1.2 Architecture has been used to increase the mechanical efficiency of buildings. (a) Pyramids of 

Giza, 2500 BC; (b) St Peter’s Basilica, 1500 AD; (c) Eiffel Tower, 1880 AD; (d) Burj Khalifa, 

2009 AD. 

The same engineering and architectural principles that have been used to increase the mechanical 

efficiency of structures can be applied at the material scale. Modern materials with complex 

architecture can achieve higher structural efficiency. Furthermore, architecture provides an 

additional degree of freedom in the design of a material. In recent years, there are many new 



 

4 

 

opportunities for the design of architected materials with novel functionalities. This is because the 

computational power and computational methods have improved enough to enable design and 

simulation of materials and structures with complex architecture. Moreover, the emergence of 

additive manufacturing technologies enables fabrication of materials with more complex 

architectures, and many novel architected materials have been created over the last few years and 

some of them exhibit novel functionalities. Figure 1.3 exhibits several top of novel functionality 

of architected materials. Researchers from Prof. Greer’s group can fabricate the hierarchical lattice 

structures [4] in micro even nano meters level and these hollow ceramic lattice structures exhibit 

enhanced mechanical performances including strength, stiffness and superior recovery ability 

(Figure 1.3 (a)). Figure 1.3 (b) shows the architected metamaterial by using the geometry non-

linearity to achieve programmable shape-shifters when uniaxially compressed from Prof. Hecke’s 

group [5]. By combining the 3D printed composite hydrogel architectures with localized, 

anisotropic swelling behavior, researchers in Prof. Lewis’s group generated a shape-morphing 

system [6] by biomimetic 4D printing (Figure 1.3 (c)). Researchers introduce deterministric routes 

to hard and soft structural composites with architecture design [7] that can be tailored precisely to 

match the non-linear properties of biological tissues, with application opportunities that range from 

soft biomedical devices to constructs for tissue engineering (Figure 1.4 (d)). Moreover, researchers 

in Professor Studart group report a 3D printing platform for the seamless digital fabrication of 

robotic soft actuators with bioinspired architectures exhibiting programmable motions [8] (Figure 

1.4 (e)). Furthermore, the material scientist even designed the microstructures of steel with 

hierarchical and laminated, similar to the substructure of bone, realizing the superior crack 

resistance [9] (Figure 1.4 (f)). Above all, the developing of advanced additive manufacturing 
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methods combining with powerful computational optimization and simulation provide the many 

opportunities for the design of architected materials with  novel functionalities. 

 

Figure 1.3 New opportunities for the design of architected materials with novel functionalities. 

 

1.2 Research objective 

The overall research objective for this thesis is combining the architectures, materials and additive 

manufacturing to achieve the architected materials with superior performance. On one hand, 

various architectures of materials will be tailored including the cellular, lattice structures, bio-

inspired structures, hierarchical structures, particle, fiber or laminate reinforced composites, co-

continuous phases even aperiodic structures with defects. On another hand, the different 

constituent materials will be utilized including polymer, ceramics, carbon, metals, composites and 

cells. Combining the developing additive manufacturing methods to achieve three aspects of 

superior performances of architected materials. The first aspect involves materials with improved 
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mechanical properties such as light weight, enhanced stiffness, strength, toughness, hardness, 

energy dissipation and damage tolerance. The second aspect involved materials with unusual and 

tunable properties such as negative Poisson’s ratio, negative thermal expansion, negative 

compressibility and negative stiffness. The third aspect of properties are the multi-functionality of 

materials including thermoelectric, piezoelectric, shape memory, soft activate, soft robotic and 

programmable materials.  

 

Figure 1.4 Schematic of research objective. 

The research objectives and approaches for this thesis are shown in Figure 1.5. Specifically, the 

optimally architected materials should have tunable mechanical properties, such as tunable 

Poisson’s ratio. In addition, the architected materials with enhanced energy dissipation ability will 

be explored. Importantly, excellent mechanical properties such as stiffness, toughness, hardness, 

crack resistance will be considered in the architected materials design. These research objectives 
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will be accomplished by integrating architecture design, 3D printing, mechanical testing and 

modeling including theoretical and numerical analysis. 

 

Figure 1.5 Flow chart of the specific objectives and approaches of this thesis. 

 

1.3 Outlines of this thesis 

In this these, it will be experimentally and numerically demonstrated that enhanced mechanical 

performance and novel mechanical properties can be simultaneously achieved using architected 

material designs and additive manufacturing (3D printing). 

In Chapter 2, I will briefly introduce the 3D printing technology involved in this thesis. Four types 

of rationally designed architected materials will be proposed to achieve various novel mechanical 
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performance. In addition, various experimental testing methods and numerical methods will also 

be briefly introduced. 

In Chapter 3, a classes of stretchable lattice metamaterials with mechanically tunable negative 

Poisson’s ratios will be presented. The proposed architected lattice materials are built by replacing 

regular straight beams with sinusoidally shaped ones in plane direction, which are highly 

stretchable under uniaxial tension. Numerical and experimental results indicate that the proposed 

lattice metamaterials exhibit Poisson’s ratios varying between -0.7 and 0.5 over large tensile 

deformations up to 50%. This large variation of Poisson’s ratio values is attributed to the 

deformation pattern switching from bending to stretching with the sinusoidally shaped beams. 

In Chapter 4, a 3D architected lattice system showing a negative Poisson’s ratio over a wide range 

of applied uniaxial stretch was presented. 3D printing, experimental tests, numerical simulation, 

and analytical modeling are implemented to quantify the evolution of the Poisson’s ratio and reveal 

the underlying mechanisms responsible for this unusual behavior. The auxetic behavior can be 

controlled by tailoring the geometric features of the ligaments. 

In Chapter 5, we combine 3D printing technique, numerical analysis, and experiments to design a 

new class of sandwich composites that exhibit various bending behaviors. These programmed 

sandwich structures contain 3D printed core materials with truss, conventional honeycomb and re-

entrant honeycomb topologies. Under bending deformation, sandwich composites with truss core 

materials provide highest flexural stiffness and strength that are desirable in structural components. 

The sandwich composites with re-entrant honeycomb core exhibit a sequential snap-through 

instability which significantly enhances the energy absorption abilities. The experimental and 
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numerical results indicate that architected core structures can be utilized to tailor the bending 

properties as well as failure mechanism. 

In Chapter 6, a class of high-performance composites in which auxetic lattice structures are used 

as the reinforcements and the nearly incompressible soft material is employed as the matrix. This 

coupled geometry and material design concept is enabled by the state-of-the-art additive 

manufacturing technique. Guide by experimental tests and finite element analyses, we 

systematically study the compressive behavior and the static and dynamic indentation behavior of 

the 3D printed auxetics reinforced composites and achieve a significant enhancement of their 

stiffness, energy absorption, indentation stiffness and impact resistance. These improved 

mechanical performance is first due to the negative Poisson’s ratio effect of the auxetic 

reinforcements, which makes the matrix in a state of biaxial compression under compression or 

indentation and hence provides additional support. Another mechanism for enhanced indentation 

behavior is due to the negative Poisson’s ratio effect of the overall auxetic composites, which 

makes the composites denser at the site of the impact and therefore more resistant to indentation. 

Combining experimental tests and numerical simulation, we conclude that auxetic structures can 

lead to design stiffer, harder and tougher composite materials. 

In Chapter 7, a class of Interpenetrating phase composite (IPC), also known as co-continuous 

composite are fabricated by 3D printing with rationally designed architectures which exhibit a 

fracture toughness 16 times that of conventionally structured composites. The toughening 

mechanisms arise from the plastic deformation and stretching of the hard phase that bridges the 

advancing crack, which is intrinsically controlled by the rationally designed interpenetrating 

architectures. The prominently enhanced fracture toughness in the architected IPCs can be tuned 

by tailoring the stiffness contrasts between the compositions.  
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Finally, main contributions, broad impacts, and future work will be briefly illustrated in Chapter 

8.  
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Chapter 2. Materials and Methods 

In this thesis, all specimens for architected materials used in the study have been printed by using 

an Objet Connex260 multi-material 3D printer (Stratasys) (Figure 2.1). Tango plus and Verowhite 

will be used as the constitutive materials for the samples. The chemistry of these materials is 

proprietary to Stratasys. This 3D printing system can fabricate multi-materials simultaneously. 

Figure 2.1 (b) shows the cellular structures with one constituent material and the composite 

specimens with multi-materials. This 3D printer can fabricate samples with high resolution of 16 

µm at relative low cost and short time. However, within the limitation of 3D printing technology, 

the layer orientation was found to influence the mechanical properties of the materials; therefore, 

all the specimens were printed along the same orientation on the printer build platform. The as-

fabricated specimens were kept at room temperature for 7 days to allow for the saturation of the 

curing. The detailed dimensions and topologies for 3D printed can be found in each chapter. 

2.1 Design and 3D printing technology 

 

Figure 2.1 3D Printing technology. (a) The Stratasys Objet series 3d printing system and (b) various 

architected materials fabricated using this 3d printing system.  
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Here four types of architected materials will be designed: 1) Lattice metamaterials. As will be 

shown in Chapter 3 and Chapter 4, we designed and fabricated a class of 2D and 3D lattice 

metamaterial with pre-curved ligaments, aiming at achieving novel mechanical performance such 

as large stretchability, tunable negative Poisson’s ratio (Figure 2.2 (a)). 2) Sandwich composites. 

As will be shown in Chapter 5, sandwich composites combining CFRP as face sheet and 3D printed 

cellular core exhibit tailorable bending performance. Especially, the sandwich composites with re-

entrant honeycomb cores structures show a sequential snap-through instability which significantly 

enhances the energy absorption abilities (Figure 2.2 (b)). 3) Auxetic composites. The first two 

architected materials are cellular materials, where their properties are most relying on their 

architected structures. In addition, in many applications, multi-material design such as composites 

will exhibit multi-functionalities, which is highly essential. In this regard, composite materials 

have great potential applications. Here a group of composites with auxetic structures as the 

reinforcement will be created (Figure 2.2 (c)). As will be shown in Chapter 6, auxetic composites 

exhibit enhanced stiffness, hardness, toughness and impact resistance compared to other lattice 

reinforced composites. 4) 3D co-continuous composites. As will be shown in Chapter 7, we 

proposed that the 3D co-continuous composites exhibit a fracture toughness 16 times that of 

conventionally structured composites. The toughening mechanisms arise from the plastic 

deformation and stretching of the hard phase that bridges the advancing crack, which is 

intrinsically controlled by the rationally designed interpenetrating architectures. The prominently 

enhanced fracture toughness in the architected IPCs can be tuned by tailoring the stiffness contrasts 

between the compositions (Figure 2.2 (d)).  
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Figure 2.2 Four types of architected materials and their 3D printed samples. (a) Lattice metamaterials, (b) 

sandwich composites, (c) auxetic composites, (d) 3D co-continuous composites.  

2.2 Mechanical testing 

To evaluate the mechanical properties of these architected materials, various mechanical testing 

will be performed. Here we conducted uniaxial tensile testing, uniaxial compressive testing, 

indentation testing, 3point bending testing and impact testing by using MTS, Instron, and Hopkins 

Bar mechanical testers. High speed cameras were used to capture the deformation figures of each 

samples. For some certain specimen, speckles were sprayed on the samples using a spray paint for 

digital image correlation (DIC) measurements. The deformation and local strain contours of the 

samples were tracked and processed by using DIC (Vic-2D, Correlated Solution) to acquire the 
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strains of the specimen surfaces. More details for specific experiments can be found in each 

chapter. 

 

Figure 2.3 Various mechanical testing set-ups for 3D printed architected materials.  

2.3 Numerical modeling  

The numerical simulations related to the mechanical response of these architected materials are 

conducted using commercial FE package ABAQUS/Standard (Simulia, Providence, RI). The 

detailed numerical modeling methods can be found in each chapter. 
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Chapter 3. 2D Lattice metamaterials with mechanical tunable Poisson’s ratio 

3.1 Introduction 

Metamaterials are rationally designed multiscale structural systems whose unusual equivalent 

physical properties are dictated by their architectures rather than compositions. Metamaterials have 

recently attracted significant interest within the research community because of the need to develop 

various classes of novel properties and broad ranges of potential applications.[10-15] For example, 

metamaterials with artificially designed architectures can exhibit a negative refractive index that 

is unattainable for conventional materials.[16-18] The metamaterial concept has been rapidly 

extended from photonic systems to acoustic[19-22] and mechanical systems.[23-26] Among them, 

mechanical metamaterials having a negative Poisson’s ratio (NPR) are of particular 

interest.[13,27-32] Most materials (both isotropic and anisotropic) exhibit positive Poisson’s 

ratios, however the existence of negative Poisson’s ratios is still permitted under the tenets of the 

classic theory of elasticity. Materials with a negative Poisson’s ratio that will contract (expand) 

transversally when they are axially compressed (stretched) are also called auxetics.[33-37] Auxetic 

behavior has been observed in a variety of natural systems, including cubic metals,[38] 

zeolites,[39,40] natural layered ceramics,[41] silicon dioxides,[42] single-layer graphene,[43,44] 

and 2D protein crystals.[45] Following the seminal work of Lakes,[36] a significant body of 

research work has been established to develop materials with a negative Poisson’s ratio. For 

example, the auxetic behavior of materials provides a wrapping effect around a penetrating object 

when subjected to indentation, a feature that may be useful in protective and blast engineering 

applications.[15,46] Several microstructure architectures and deformation mechanisms have been 

developed to obtain the auxetic behavior. Between the various architectures it is worth to note 

dimpled and perforated elastic sheets,[47] origami/Kirigami-based metamaterials,[27,48,49] 
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hierarchical metamaterials with fractal cuts,[50] and foams.[51-55] Auxetic materials and 

structures are intrinsically multifunctional because of the coupling originated between their 

unusual deformation mechanisms and their multiphysics behavior. For example, piezoresistive 

sensors with a NPR substrate demonstrate a 300% improvement in piezoresistive sensitivity, 

making them capable of multimodal sensing.[55]  

Most of the theoretical and experimental investigations related to NPR cellular materials are 

related to microstructure configurations with straight ligament topologies. Recent numerical and 

experimental studies indicate that thin film materials with serpentine microstructures can have 

improved stretchability, owing to the introduced microstructure and small intrinsic strain in the 

materials [56-59]. A non-straight (corrugated) rib configuration for open cell polyurethane foams 

has also recently been considered as a likely explanation for the existence of an unusual blocked 

shape memory effect in auxetic open cell polyurethane foams.[60] Although it has been 

theoretically shown that the auxetic behavior can also be attained in hierarchically architected 

lattice materials with triangular topology,[57] convincing experimental evidence of the auxetic 

behavior of these materials has not been reported. Moreover, no theoretical and numerical evidence 

exist about the performance of engineered auxetic metamaterial lattices with sinusoidally (non-

straight) ligaments in their microstructure, especially at hierarchical level. The goal of this work is 

to investigate the auxetic behavior and vibration control capability of one of these materials by 

combining computational modeling with 3D printing techniques and related experimental results. 
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3.2 Materials and methods  

3.2.1 Description of geometric model 

We begin by characterizing the geometric features of the proposed sinusoidally architected lattice 

material. A schematic of our 2D lattice microstructure with auxetic behavior is illustrated in 

Figures 3.1 (a) – (c). The shape of the sinusoidal beams can be mathematically described as 

( )sinny A n x l= , where nA  is the wave amplitude,  n is the number of half wavelength, and l is 

the length of regular beam. The length of sinusoidal beam is given by: 

( )
2

2
'

0 0
1 1 cos

l l
nA n n x

s y dx dx
l l

   
= + = +   

  
  ,                                                                     (1) 

Under the mass equivalence assumption, the width of the sinusoidal beams can be calculated as 

2

0
1 cos

l
nA n n x

w t l dx
l l

   
=  +   

  
 ,                                                                                        (2) 

Then, for a given nA n l , the width of the sinusoidal beam is the same for any n.  

The proposed lattice materials are fabricated using a 3D printer (Objet Connex260, Stratasys). To 

ensure the stretchability of the lattice materials, a rubber-like material, Shore 95, is taken as the 

constitutive (core) material for the sinusoidal beams. Details on the fabrication of the specimens 

and the mechanical behavior of the core material can be found in the Supporting Information. 

Figure 3.1 (d) shows the center area of the specimen, which consists of an array of 4×5 unit cells 

with 1 3nA n l =  and n=1 and a representative sequence of images taken at different tensile strains. 

By simple inspection it is evident that at a small initial strain the lattice material expands 

transversally, indicating therefore the presence of an auxetic behavior. However, when the 
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macroscopic tensile strain increases to 30%, the lattice material contracts along the x direction.  

These phenomena suggest that the fabricated 2D lattice materials exhibit auxetic behavior and a 

strain-dependent Poisson’s ratio.  

                          

Figure 3.1 Schematics and deformation behavior of the sinusoidally architected lattice material. (a) Regular 

square lattice with 2×2 unit cells. Here t and l are the width and length of regular beams. (b) 

Buckling modes of a single beam under compression. (c) Proposed architected lattice materials 

with 2×2 unit cells with n=1; (d) Deformation behavior of the center area consisting of 2×2 unit 

cells of the architected lattice material under uniaxial tension.  
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3.2.2 Mechanical testing 

The material properties of the Shore 95 rubber-like material were obtained by measuring the 

mechanical response of the 3D printed dogbone. The experimental setup is shown in Figure 3.2 

(a). Figure 3.2 (b) shows the measured stress-strain curves (true and engineering strain) under 

uniaxial tension. According to ASTM 412, the basic properties of Shore 95 are characterized by a 

Young’s modulus of E=5.5 MPa, Poisson’s ratio  =0.37, and density  =1157 kg/m3.  

 

Figure 3.2 Material properties of constituent 3D printed materials. (a) 3D printed dogbone specimen 

under uniaxial tension. (b) Measured stress-strain relation of the dogbone specimen. 

The experimental setup of the tensile testing is shown in Figure 3.3 (a). Uniaxial tensile testing 

was performed using a MTS mechanical tester (C43) with a 1 kN load cell. All experiments were 

conducted in a quasi-static regime with a constant strain rate of 0.001 s-1. The load-displacement 

curves measured from the uniaxial tensile tests were then transferred into nominal stress- strain 

behaviors based on the measured dimensions of the specimens. Images of the specimens at various 

loading conditions were taken at a rate of 1 FPS (VicSnap, Correlated Solution). For the dogbone 

specimen, speckles were sprayed on the samples using a spray paint for digital image correlation 

(DIC) measurements. The deformation and local strain contours of the samples were tracked by 
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using DIC (Vic-2D, Correlated Solution) to calibrate the nominal stress- strain curves and to obtain 

the Poisson’s ratio of the constitutive material. 

 

Figure 3.3 Experimental set-up for tension behavior of proposed 3D printed lattice material. (a) 

Experimental setup of the lattice specimen under uniaxial tension. (b) Calculation of Poisson’s 

ratio. 

To quantify the deformation taking place in the lattice materials during the experiments an image 

processing software (ImageJ) was used to determine the intersection points in the specimen. The 

deformation near the four edges of the specimen was strongly affected by boundary conditions. 

Therefore we focused on the behavior of nine unit cells in the central part of the specimens. The 

intersection points at the corners of the chosen unit cells were determined as ( ), ,,i j i jX Y  in the 

undeformed and ( ), ,,i j i jx y  in the deformed state, respectively. The row and the column indices 

vary between 1 4i   and 1 4j  . For each unit cell, the horizontal and vertical distances were 

calculated from the coordinates ( ), ,,i j i jx y , i.e., 
, , 1 ,i j i j i jx x x+ = −  and 

, 1, ,i j i j i jy y y+ = − . Prior to 

the application of the tensile loading we assessed the deformations in the undeformed state, i.e., 

, , 1 ,i j i j i jX X X+ = −  and 
, 1, ,i j i j i jY Y Y+ = − . A schematic diagram of the central region of the lattice 
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structure under consideration with the definitions of 
,i jx ,

,i jy , 
,i jX  and 

,i jY
 
is shown in 

Figure 3.3 (b). The local homogenized values of the engineering strain for each unit cell were 

determined as: 

, , , , 1xx i j i j i jx X =   −  and 
, , , , 1yy i j i j i jy Y =   − ,                                                                     (3.1) 

The local values of the engineering strain were then used to calculate local values of the Poisson’s 

ratio as: 

, ,

,

, ,

xx i j

i j

yy i j

v



= −  ,                                                                                                                              (3.2)                                                                                                                                        

Finally, the ensemble average Poisson’s ratio of the nine central unit cells under consideration 

was computed as
,yx i jv v= .  

3.2.3 Numerical modeling 

The numerical simulations related to the mechanical response of the lattice materials are conducted 

using commercial FE package COMSOL Multiphysics. FE models with finite number of unit cells 

are investigated in this study. After trade-off studies between CPU costs and edge effects provided 

by the finite number of unit cells, we have used models with 4×5 unit cells in all the simulations 

(Figure 3.4 (a)). To provide a more uniform tensile displacement distribution we have intentionally 

added a rectangular beam-like section with 5 mm width on the top and bottom of the finite-size 

models. Plane strain condition is assumed during the simulations. The models are meshed with 6-

node triangular elements and 6 elements are generated along the width of the beam after a test 

convergence. 
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During all of the simulations, the mechanical response of the constitutive material is modeled as 

nonlinear elastic. We did not specifically fit the experimentally measured data using hyperelastic 

models and did not discriminate between elastic and plastic behavior. Instead, the true stress-strain 

relation from the dogbone is directly exported to COMSOL Multiphysics and implemented as the 

constitutive equation for the core material. In addition, geometric nonlinearity is considered to 

represent the large deformation of the structure. During the simulations a uniaxial displacement 

loading is applied on the top of the beam, while the bottom is fixed along both the x and y directions 

(Figure 3.4 (a)). 

The postprocessing of the results was focused on the unit cell in the central region only to avoid 

finite size and BCs effects (Figure 3.4). The Poisson’s ratio can be calculated from the ratio of the 

nominal strain in the horizontal edge and vertical edge of the rectangular unit cell. Specifically, 

we first calculated the average displacement components of the four edges, from which the strain 

along horizontal and vertical directions can be calculated as:  

2

R L

x

u u

l


−
=  and 

2

T B

y

v v

l


−
= ,                                                                                                  (3.3) 

In (3.3) u  and v  indicate the averaged horizontal and vertical displacement components 

respectively; R, L, T, and B denote the right, left, top, and bottom edges of the unit cell, (Figure 

3.4 (b)). Finally, the Poisson’s ratio is calculated as:  

x
yx

y

v



= − .      
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Figure 3.4 FE model for mechanical response simulation. (a) FE model with 4×5 unit cells and (b) 

Rectangular unit cell in the central area of FE model for the calculation of Poisson’s ratio. 

3.3 Auxetic behavior of 2D lattice metamaterials 

Figure 3.5 (a) shows the nominal stress-strain relations for the three specimens under uniaxial 

tension. Good agreement can be observed between the numerical and experimental results. We 

found that these structures exhibit J-shaped stress-strain curves, which are very similar to the 

mechanical response of bioinspired soft network composite materials and other stretchable 

electronics.[56-59] The numerical and experimental estimates of the macroscopic Poisson’s ratios 

as a function of the tensile strain are presented in Figure 3.5 (b). For tensile strains below 0.20 the 

numerical predictions tend to slightly overestimate the experimental results for n=1 and 2 because 

at small strains unavoidable misalignments in the test setup tends to influence the measurement of 

the Poisson’s ratios. We also note that over this range of strain, the proposed square lattice 

materials exhibit a nearly constant negative Poisson’s ratio. With the increase of the stretching, the 

Poisson’s ratio gradually turns from negative to positive. To elucidate the mechanisms responsible 

for the transition of the Poisson’s ratio we present the mechanical response of a representative unit 
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cell taken from the central area of the specimen under different tensile strains (Figure 2 (c)). Here 

we only show the mechanical behavior of the lattice materials with n=1 and 3. Again, one can 

notice an excellent agreement between the numerical and the experimental deformations. At strains 

below ~0.20, the deformation response of the vertical beams is clearly bending-dominated due to 

the initial curvature of sinusoidal architecture. With the increase of macroscopic stretching, the 

sinusoidal architecture will be stretched to an approximate straight beam. As a result, the 

deformation behavior will become stretching-dominated and very similar to regular materials, 

which typically exhibit a positive or zero Poisson’s ratio. 
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Figure 3.5 Mechanical response of lattice metamaterials under uniaxial stretching. (a) Stress-strain 

relations of the architected lattice metamaterials. (b) Evolution of the Poisson’s ratios as a function 



 

26 

 

of the applied tensile strain. (c) Deformation behavior at different strains. The von Mises stresses 

are normalized with respect to the Young’s modulus of the constitutive materials. Here 

1 3nA n l = . 

3.4 Mechanical tunable Poisson’s ratios 

Having demonstrated that the sinusoidally architected lattice materials exhibit auxetic behavior 

under uniaxial tension, we now systematically investigate the effects of amplitude nA n l  and half 

wavelength n on the mechanical response and the Poisson’s ratios. Figure 3.6 (a) shows the stress-

strain relations of the lattice materials with different nA n l
 
and n. Each structure exhibits a J-

shaped stress-strain curve, which is similar to our previous experimental observation. For given 

amplitude a short wavelength (i.e., a large n) gives rise to a higher stress-strain curve, indicting the 

presence of a significantly stiffer mechanical response. For a given value of n a smaller wave 

amplitude (i.e., a smaller curvature but with a larger beam width) however leads to a higher stress-

strain curve within the small strains range. These mechanical responses are intrinsically controlled 

by the bending stiffness of the sinusoidal beams, which is defined as 
3S CE w= , where C is the 

geometric constant, E is the Young’s modulus of the beam,  is the curvature, and w is the width 

of the beam. The effective stiffness of the lattice materials as a function of nA n l
 
and n are 

summarized in Figure 3.7 (a). We further note that for a given wave amplitude a significant auxetic 

behavior can be observed for n=1, 2. Interestingly, the transition strain for the in-plane Poisson’s 

ratio is proportional to the wave amplitude because large macroscopic stretching is needed to make 

straight vertical beams with larger wave amplitudes. The minimum Poisson’s ratios as a function 

of nA n l
 
and n are summarized in Figure 3.7 (b). 
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Figure 3.6 Effects of geometric features of the ligament on the mechanical response. Effect of (a) 

amplitude, nA n l  and (b) number of half wavelength, n, on the stress-strain relation and Poisson’ 

ratio. 
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Figure 3.7 Effects of geometric features of the ligament on stiffness and Poisson’s ratio. Effect of 

amplitude, nA n l  and number of half wavelength, n, on the (a) effective stiffness and (b) Poisson’ 

ratio of the proposed lattice materials. 

Another geometric parameter with a significant impact on the mechanical response and in-plane 

Poisson’s ratios is slenderness ratio w l . To demonstrate this, we examine the mechanical 

response and the auxetic behavior of the lattice material with 1 3nA n l =  and n=1, 2. Highly 

nonlinear stress-strain curves arise in those cases for a small strain range (Figure 3.8(a)) because 

the mechanical response of the sinusoidal beam is bending-dominated, with the bending stiffness 

being proportional to 
3w . Therefore, large slenderness ratio will give rise to higher stiffness. At 

large strains the mechanical response of sinusoidal beam becomes stretching-dominated and a 

nearly linear response can be observed in the stress-strain curves. 

The bending-dominated and stretching-dominated behaviors at different strains have also a 

significant impact on the Poisson’s ratios. At strains below 0.20 the lattice materials with n=1 and 

2 have a nearly constant negative Poisson’s ratio of ~ -0.65 and ~ -0.45, respectively. This 

phenomenon indicates that the Poisson’s ratio is almost independent of the slenderness ratio when 

the sinusoidal beams are highly bending-dominated. By contrast, at large stretching strain, the 

Poisson’s ratio rapidly changes from negative to positive for both cases. The transition is much 

sharper for a smaller slenderness ratio, since the nearly straight beam is in this case more 

compliant.   
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Figure 3.8 Effect of slenderness on the stress-strain relation and Poisson’s ratios of the proposed lattice 

materials. Here 1 3nA n l = . 

3.5 Effect of the lattice topology 

Having shown that the mechanical response and the Poisson’s ratios can be dynamically tuned by 

tailoring the geometric features of the sinusoidal beams, we now proceed to examine the effect of 

the lattice topology on the auxetic behavior from a numerical and experimental standpoint. Four 

types of sinusoidally architected lattice materials with hexagonal, kagome, square, and triangular 

topology are fabricated using 3D printing (Figure 3.9 (a)). Here we use as geometry parameters 

1 3nA n l =
 
and n=2. Numerical simulations and mechanical testing are performed following the 

same procedure as outlined in Section 3.2. The specific lattice topology has a significant impact 
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on the overall mechanical response of the lattice materials under tension (Figure 3.9 (c)). The 

triangular lattice has (as expected) the largest stiffness, while the hexagonal tessellation is the more 

compliant.[61] Experimental and numerical results related to the Poisson’s ratios for the four types 

of topology are presented in Figure 3.9 (c), and they all show a good agreement In contrast to the 

negative Poisson’s ratio of square lattice materials, both hexagonal and kagome lattice 

configurations exhibit a positive Poisson’s ratio below 0.40 tensile strains. The evolution of the 

Poisson’s ratio of the triangular lattice is however strongly strain dependent and there is a switch 

between NPR and PPR at a critical strain of 24%.  

 

Figure 3.9 Effect of the topology on the stress-strain curves and Poisson’s ratio. (a) 3D printed specimens 

with hexagonal, kagome, square, and triangular topology. (b) Stress-strain relations and (c) 

Evolution of Poisson’s ratio as a function of the strain. The legend is the same as that in (b). Here 

1 3nA n l =
 
and n=2. Scale bar: 1cm. 
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3.6 Conclusions 

We have proposed a novel class of lattice metamaterials with sinusoidal architected beams and 

evaluated their mechanical response and wave propagation performances. Under uniaxial tension 

the proposed sinusoidal architecture in the lattice beams provides an intrinsic deformation 

mechanism to switch from bending-dominated to stretching-dominated behavior. This transition 

of deformation mechanisms allows obtaining tunable Poisson’s ratios over a large tensile strain 

range. Our experimental and numerical results show a very good agreement in terms of overall 

stress-strain relations, Poisson’s ratios, and deformation patterns exhibited by these lattices. The 

investigation into the interplay between the multiscale (ligament and cell) architecture and wave 

propagation shows that broad and multiple phononic band gaps can be achieved in these lattice 

materials. Quite importantly, this significant vibration mitigation capability can be dynamically 

tuned by an external mechanical stimulus, i.e., a uniaxial stretching. The deformation behavior of 

the proposed metamaterials, together with their vibration mitigation capability makes them 

particularly suitable for the design of programmable mechanical metamaterials. The findings 

presented here provide new insights into the development of architected metamaterials with 

unusual physical properties and a broad range of potential applications, such as tunable particle 

filters and adjustable acoustic metamaterials for vibration control. 
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Chapter 4. Harnessing out-of-plane deformation to design 3D architected lattice 

metamaterial with tunable Poisson’s ratios 

4.1 Introduction 

Cellular structures are widely spread in natural systems, such as wood, human bone, and beaks of 

birds [14,61]. They hold great promising applications, including aerospace, LED technologies, and 

automotive, due to their great specific mechanical properties. Recent studies show that by tailoring 

the architecture of the cellular structures, improved mechanical properties such as light weight 

[62,63], high energy absorption [64-67], vibration control [68] and enhanced thermal performance 

[69-71] can be simultaneously achieved. Along with these unusual properties and functionalities, 

recent advances in additive manufacturing techniques, for example, 3D printing, have enabled to 

fabricate cellular structures with well-defined topologies, thereby leveraging the possibilities to 

explore unprecedented properties in architected cellular structures. Here we use architected 

materials to emphasize that the unusual properties pertaining to the cellular structures strongly 

depend on the rationally designed architecture, rather than their compositions. 

Recently, extensive research efforts have been devoted to investigating the unusual physical 

properties in architected cellular structures. Among these properties, architected cellular structures 

with a negative Poisson’s ratio (NPR) are of particular interest. These structures exhibit a 

counterintuitive mechanical response, as they will shrink (expand) laterally under uniaxial 

compression (stretch). Indeed, auxetic behavior has been reported in many 2D and 3D structures 

of natural systems, including cubic metals [38], zeolites [72,73], natural layered ceramics [41], 

silicon dioxides [42], single-layer graphene [43,44], and 2D protein crystals [74]. Lakes has first 

designed and fabricated the first 3D polymeric foam with isotropic auxetic behavior [75]. 

Subsequently, a number of geometries have been proposed to achieve negative Poisson’s ratio. 
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Among various architectures, it is worth noting that 2D related structures are the majority, 

including honeycomb with inverted cells [76,77], planar chiral lattices [51,78,79], rigid rotating 

hexamers or squares [35,80-82], origami-kirigami based metamaterials [27,49,83-86] and 

hierarchical metamaterials with fractal cuts [50,87]. It should be pointed out that most of the 

auxetic effects in these 2D structures are due to the in-plane deformation, for example, the 

symmetric units with re-entrant angles [75,88-92] and asymmetric units [35,78,82,93-97] both 

rotate in the plane when deformed.  

Most of the theoretical and experimental investigations related to auxetic cellular materials are 

focused on the microstructures with straight ligament topologies. Recently, it has been 

theoretically shown that the auxetic behavior can be attained in hierarchically architected lattice 

consisting of horseshoe microstructures [32]. A nonstraight rib configuration for open-cell 

polyurethane foams has also recently been considered as a likely explanation for the existence of 

an unusual blocked-shape memory effect in auxetic open-cell polyurethane foams [98]. Moreover, 

our previous study reports a class of architected lattice metamaterials with sinusoidally shaped 

ligaments in the plane, which are highly stretchable with tunable negative Poisson’s ratios and 

vibration-mitigation capability [99]. Comparing with the comprehensive study of various 2D 

auxetic structures, fewer designs of synthetic 3D auxetic materials have been proposed. Among 

them, auxetic systems consisting of networks of buckliball [13], chiral-like structures [100], 

orthotropic laminated open-cell frameworks [101] have been fabricated via 3D printing and very 

recently, a metallic 3D auxetic cellular structure consisting of cubic chiral unit cells has been 

fabricated via selective electron beam melting [102]. In all of these systems, however, the auxetic 

behavior is exhibited only in the limit of small strains, and the design of 3D auxetic systems 

capable of obtaining these unusual properties at large strains still remains a challenge [12,103]. 
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Recent studies indicate that it is possible to harness out-of-plane deformation to achieve auxetic 

behavior. For instance, origami-based metamaterials [27,83], the dimpled plastic sheets [47], and 

smooth curve sheet [104] all exhibit negative Poisson’s ratio in a plane through out-of-plane 

deformation. Since these structures are all non-porous with heavy weight,  the solid structures will 

suppress the large deformation amplitude. Here we report a architected lattice material system that 

exhibits tunable negative Poisson’s ratio over a wide range of applied uniaxial stretch, which is 

intrinsically governed by the out-of-plane deformation in the curved ligaments. We will 

demonstrate our design concept through integrative numerical simulation, analytical modeling, 3D 

printing, and experimental tests. 

4.2 Materials and methods  

4.2.1 Description of geometric model 

The structure presented here is a lattice metamaterial and consists of curved beam components 

made of the same material. Figure 4.1 shows an overview of the proposed structure, which is 

fabricated by an additive manufacturing technique (3D printing). A Cartesian coordinate system 

is used for the in-plane x-y and out-of-plane x-z coordinates. Figure 4.1 (a) shows the top view of 

a unit cell of the structure which is 2D regular square lattice consists of the beams with the width, 

w and the length, L. We create the lattice system by replacing the regular straight beams with 

curved beams in the out-of-plane direction. The shape of the curved beams can be mathematically 

described as sin( / )z A x L= , where A is the wave amplitude and t is the thickness of the beam. 

Figure 4.1 (c) illustrates the 3D lattice microstructure in 2 × 2 unit cells. The geometry of the 

structure is characterized by three dimensionless parameters: the normalized wave amplitude ratio, 

/A L , the normalized width of the beam, /w L  and the normalized thickness of the beam, /t L . 

The proposed lattice metamaterials are fabricated using a multimaterial 3D printer (Objet 
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Connex260, Stratasys). To ensure the stretchability of the cellular configuration, a rubberlike 

material, FLX9795-DM, is used as the constitutive (core) material for the sinusoidally shaped 

beams. Figure 4.1 (d) shows a photograph of a real test specimen with 5 × 5 unit cells with 

/ 0.2A L = , / / 0.1w L t L= = . The dimensions of the structural units without side bars are 100 × 

100 × 40 mm. Both ends of the specimens, in the x-axial direction, are added a rectangular beam-

like section with 5 mm width to provide a more uniform tensile displacement distribution. 

 

Figure 4.1 Overview of the proposed 3D planar auxetic metamaterials. (a) top and (b) side view of a unit 

cell, (c) schematic of the proposed construction, (d) photograph of a structure fabricated by 3D 

printing, comprising 5 × 5 × 1 unit cells in x, y, z coordinates. Scale bar: 2 cm.  

4.2.2 Mechanical testing 

The material properties of the FLX9795-DM rubber-like material were obtained by measuring the 

mechanical response of the 3D printed dogbone specimens. The experimental setup is shown in 

Figure 4.2 (a). For the dogbone specimen, speckles were sprayed on the samples using a spray 

paint for digital image correlation (DIC) measurements. The deformation and local strain contours 

of the samples were tracked by using DIC (Vic-2D, Correlated Solution) to calibrate the nominal 
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stress-strain curves and to obtain the Poisson’s ratio of the constitutive material. Figure 4.2 (b) 

shows the measured stress-strain curves (true and engineering strain) under uniaxial tension. 

According to ASTM 412, the basic properties of FLX9795-DM are characterized by a Young’s 

modulus of 5.5E =  MPa, Poisson’s ratio 0.37 = ,  and density 1157 =  kg/m3. Here the 

Young’s modulus is obtained from the measured stress-strain curve of dogbone specimen. 

Poisson’s ratio of dogbone specimen is calculated by following the method in Section 4.2.2. The 

density is obtained by averaging the densities of five dogbone specimens. 

 

Figure 4.2 Material properties of constituent 3D printed materials. (a) 3D printed dogbone specimen 

under uniaxial tension. (b) Measured stress-strain relation of the dogbone specimen. 

To quantify the deformation taking place in the lattice materials during the experiments an image 

processing software (ImageJ 1.49 q) was used to determine the intersection points in the specimen. 

The deformation near the four edges of the specimen was strongly affected by boundary 

conditions. Therefore, we focused on the central 30% of the specimens to avoid Saint Venant 

effects from the edges, as shown in Figure 4.3 (b). The intersection points at the corners of the 
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chosen area were determined as ( ), ,,i j i jX Y  in the undeformed and ( ), ,,i j i jx y  in the deformed state, 

respectively. The row and the column indices vary between 1 4i   and 1 4j  . For each unit 

cell, the horizontal and vertical distances were calculated from the coordinates ( ), ,,i j i jx y , i.e., 

, , 1 ,i j i j i jx x x+ = −  and 
, 1, ,i j i j i jy y y+ = − . Prior to the application of the tensile loading, we 

assessed the deformations in the undeformed state, i.e., 
, , 1 ,i j i j i jX X X+ = −  and 

, 1, ,i j i j i jY Y Y+ = −

. A schematic diagram of the central region of the lattice structure under consideration with the 

definitions of 
,i jx ,

,i jy , 
,i jX  and 

,i jY
 
is shown in Figure 4.3 (b). The local homogenized 

values of the engineering strain for each unit cell were determined as: 

, , , , 1xx i j i j i jx X =   −  and 
, , , , 1yy i j i j i jy Y =   − .                                                                         (4.1) 

The local values of the engineering strain were then used to calculate local values of the Poisson’s 

ratio as: 

, ,

,

, ,

xx i j

i j

yy i j

v



= −  .                                                                                                                             (4.2)                                                                                                                                        

In our case, the loading is nonlinear, the incremental Poisson’s ratio, 
, ,in i jv , should be calculated 

as: 

,

, ,

, ,

i j

in i j

yy i j

v





=


.                                                                                                                                                 (4.3) 

Finally, the ensemble average Poisson’s ratio of the nine central unit cells under consideration was 

computed as
, ,yx in i jv v= . 
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Figure 4.3 Experimental set-up for tension behavior of proposed 3D printed lattice material. (a) 

Experimental setup of the lattice specimen under uniaxial tension. (b) Calculation of Poisson’s 

ratio. 

4.2.3 Numerical modeling 

The numerical simulations related to the mechanical response of the lattice metamaterials are 

conducted using commercial FE package ABAQUS/Standard (Simulia, Providence, RI). We have 

used models with 5 × 5 unit cells in all the simulations (Figure 4.4 (a) and (b)). All models are 

generated by beam elements (ABAQUS hybrid element type B22H) and meshed after a 

convergence test. In addition, geometric nonlinearity is considered to represent the large 

deformation of the structure.  

Here, in our simulation, we use two types of boundary conditions. To simulate the experimental 

conditions in the numerical analysis, a uniaxial displacement loading is applied on the top surface, 

while the bottom is fixed along both the x and y directions (Figure 4.4 (a)). Under this boundary 

condition, the simulated results agree very well with the experimental results, as seen in Figure 

4.5. To simulate the ideal conditions with avoiding Saint Venant effects from the edges, a uniaxial 

displacement loading is applied on the top surface, while the bottom surface is fixed along the y 

direction and the left surface is fixed along the x direction (Figure 4.4 (b)). Note that the periodic 
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boundary conditions derived above are validated by comparison with analytical expressions and 

they agree very well, as shown in Figure 4. Therefore, for parametric analysis, the periodic 

boundary conditions are applied. Material model is critical to achieve better agreement between 

numerical simulation, experiment, and analytical model. Here we use a linear elastic model with a 

Young’s modulus of  5.5E =  MPa, Poisson’s ratio 0.37 = .  

The postprocessing of the Poisson’s ratio was focused on the unit cell in the central region to avoid 

finite size and boundary conditions effects (Figure 4.4 (c)). The Poisson’s ratio can be calculated 

from the incremental ratio of the nominal strain in the horizontal edge and vertical edge of the 

rectangular unit cell. Specifically, we first calculated the average displacement component of the 

four edges, from which the strain along horizontal and vertical directions can be calculated as: 

2

R L

x

u u

l


−
=  and 

2

T B

y

v v

l


−
= .                                                                                                   (4.4) 

In equation (4.4) u  and v  indicate the average horizontal and vertical displacement components 

respectively; R, L, T, and B denote the right, left, top, and bottom edges of the unit cell, respectively 

(Figure 4.4 (c)). Finally, the incremental Poisson’s ratio is calculated as: 

x
yx

y







= −


.   
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Figure 4.4 FE model for mechanical response simulation. (a) FE model with boundary conditions for 

comparison with the experimental test. (b) FE model with periodic boundary conditions. 

4.3 Auxetic behavior of 3D planar lattice metamaterials 

The uniaxial tension testing results of the experiment and numerical analysis are summarized in 

Figure 4.5. Figure 4.5 (a) shows the stress-strain curve under tensile deformation up to the failure 

point. It can be noted that a good agreement between the experimental and numerical results. When 

the applied strain is higher than 0.32, some beams start to break, leading to the drop in the stress-

strain curves. These structures exhibit J-shaped stress-strain curves, which are very similar to the 

mechanical response of the lattice materials previously reported [99]. In Figure 4.5 (b) we present 

the relations between the horizontal strain and the vertical strain of the lattice material during 

uniaxial tension test. The experimental data points are shown in comparison with the numerically 

determined solid lines and it can be seen that there is close agreement between the sets of results. 

The horizontal strain first increases during the initial linear elastic response of the periodic 

structures before it reaches around 0.1, afterward, it becomes independent of the vertical strain. 

Apparently, this structure has an auxetic behavior. Since the response of the structure is non-linear 

as shown in the stress-strain plot in Figure 4.5 (a), the incremental Poisson’s ratio   is calculated 

using the relations of horizontal and vertical strain. The experimental and numerical estimates of 
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  are plotted as a function of nominal strain in Figure 4.5 (c). At small strain (<0.02), the 

numerically determined estimate of the Poisson’s ratio is approximately constant at 

0.875 0.052num = −  . The experimental result is smaller than the numerical result with a value of 

exp 0.950 0.110 = −  . It is true that there is a minor discrepancy between simulation and 

experiment. We emphasize that the unavoidable misalignments in the test setup tend to influence 

the measurement of the Poisson’s ratios since the lattice materials are very soft. It should be noted 

that when calculating the Poisson’s ratio using DIC, we found that the mark points are also critical. 

It is ideal that each mark point should be at the intersection of the beams, but due to the small size 

of the node, it is hard to accurately place the mark point. With the increase of the stretching, the 

Poisson’s ratio gradually turns from negative to marginally positive. Figure 4.5 (d) shows the 

specimen under deformation during the uniaxial tension test. It is clear that the lattice material 

expands transversally, indicating the presence of an auxetic behavior. The corresponding 

deformation images of numerical results are shown in Figure 4.5 (e). Again, similar lattice shapes 

between numerical and experiment deformations can be observed. Moreover, we find that the 

applied uniaxial stretch causes out-of-plane shrinking. (see side views in Figure 4.5 (d) and (e)). 

This is due to the mechanism of deformation of this lattice structure which will be discussed later.  
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Figure 4.5 Experimental and FEA results of 3D planar auxetic metamaterials under uniaxial tensile tests. (a) 

Nominal stress vs. nominal strain curve; (b) measured horizontal strain vs. vertical strain; (c) 

calculated incremental Poisson’s ratio curves as a function of nominal strain; (d) experimental and 

(e) simulation images at different levels of macroscopic strains: 0, 0.1, and 0.2. Scale bar: 5 cm. 
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4.4 Theoretical model of the 3D planar auxetic metamaterial 

To quantitatively understand the mechanisms responsible for the auxetic behavior in the proposed 

lattice system, we formulate an analytic model for the lattice system under uniaxial tension. The 

lattice materials with 5 × 5 unit cells under horizontal stretching are taken as an example to 

illustrate the model, as shown in Figure 4.6 (a). Due to the lattice periodicity, only a representative 

unit cell (in the red frame of Figure 4.6 (a)) is analyzed, as shown in Figure 4.6 (b). The unit cell 

consists of four corner structures, while each connected structure undergoes anti-symmetric 

deformations with respect to the central point of the unit cell. Only one corner structure is selected 

for the force analysis as shown in Figure 4.6 (c). The inner axial forces, shear force, and the 

moment at the ends are denoted by iN , iQ  and iM , respectively. The static equilibrium of the unit 

cell gives the relations among the inner forces and the external loading (normal stress   along 

horizontal direction): 

2 0N =  and 1N Lt= .                                                                                                                    (4.5)   

The deformation compatibility requires that the joints of deformed beams should satisfy the 

following geometric relations: 

1 2h h=  and 1 2Q Q Q= =                                                                                                                  (4.6)         

where h  is the height of the curved beam in an out-of-plane direction. 

 Since the geometry is symmetric with regard to the central point, we consider a curved beam (

sin( / )z A x L= , 0 0.5x L  ) subject to inner forces 0N , 0Q  and a moment, 0M  at one end on 

the x-z plane, as shown in Figure 4.6 (d). Based on the classic Elastic theory [32,105-107], if the 

effect of membrane deformation is neglected, we can introduce a model for small strain but finite 
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rotation, which accounts for both bending and membrane deformation, to analyze the deformation 

and maximum strain in the microstructure. By solving this model numerically, we can obtain the 

coordinates of the right end for the curved beam ( , )end endx z  as: 

1 0 0( , )endx f N Q=  and 2 0 0( , )endz f N Q= ,                                                                                         (4.7) 

where endh z= . Using Eqs. (4.6) and (4.7), Eq. (1) the becomes 

2 2( , ) (0, )f Lt Q f Q = .                                                                                                                    (4.8)  

Therefore, for a given normal stress  , the shear force Q  can be solved directly. The deformation 

horizontal and vertical strain of this structure are: 

1(0, ) /h f Q L =  and 1( , ) /v f Lt Q L = . 

 

Figure 4.6 Schematics of the theoretical model of the 3D planar auxetic metamaterial subject to a uniform 

tensile stress along horizontal stretching. (a) The lattice materials with 5× 5 unit cells under horizontal 

stretching is taken as an example to illustrate the model; (b) a representative unit cell is under 
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horizontal stretching and due to the anti-symmetric one corner structure is analyzed; (c) free body 

diagrams of the corner structure; (d) a curved beam subject to axial forces, shear forces and a 

moment at the right end. 

 
Figure 4.7 Schematics of the curved beam on a 2-D reference configuration. (a) A curved beam subject 

to axial forces, shear forces and a moment at the right end; (b) deformation of a unit length element; 

(c) sign conventions of forces and moment. 

To describe the curved beam on a 2-D reference configuration, the undeformed length element 

dS after deformation becomes the deformed length element ds . The coordinate of the end point 

( , )X Y  in the un-deformed state deforms to ( , )x y  shown as Figure 4.7 (b). At the un-deformed 

state, the tangent slope angle at ( , )X Y  is denoted by  . At the deformed state, the tangent slope 

at ( , )x y  is denoted by  . The deformation at ( , )X Y  is denoted by ( , )u v  where u  is the 

horizontal displacement, and v is the vertical displacement. Hence 

 x X u= + , y Y v= + .                                                                                                                         (4.9)                         

The rotation angle   can be found by  

  = − .                                                                                                                                          (4.10) 
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Since the strain at the centroid axis is defined by ( ) /ds dS dS = − , or 

(1 )ds dS= + .                                                                                                                                   (4.11) 

As in the case of in-extensional curved beam, 0 = . For any length element dS , there is a 

corresponding radius of curvature R , such that 

dS Rd= .                                                                                                                                       (4.12) 

Here the radius of curvature R does not have to be a constant.  

For the deformed length element ds , the corresponding radius of curvature is denoted by r , i.e. 

ds rd= .                                                                                                                                          (4.13) 

For a linear elastic material with the Young’s modulus SE , integration of the above equation then 

gives the axial force N , shear force Q  and bending moment M  (per unit thickness, Figure 4.5 

(d)) in the beam as 

sN E A=  and (1 )s

d
M E I

ds


= + .                                                                                     (4.14a, b) 

The equilibrium equations are  

0
dM

Q
ds

− = , 0
dQ d

N
ds ds


− = , and 0

dN d
Q

ds ds


+ = .                                                       (4.15a, b, c) 

For the loading condition shown in Figure 4.4 (a-b), the axial and shear forces are  
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0 0cos sinN N Q = +  and 0 0sin cosQ N Q = − ,                                                                  (4.16) 

which satisfy Eqs. (4.15b) and (4.15c). Its substitution into Eq. (4.15a), together with Eq. (4.14), 

gives 

2

0 0 0 0

2

cos sin sin cos
(1 )( )

s s

N Q N Qd

d S E A E I

    + −
= + .                                                                        (4.17) 

In our case, the shape of the sinusoidal beams can be mathematically described as

sin( / ) sin( )Z A X L A BX= = , where A  is the wave amplitude and /B L= . The length of 

sinusoidal beam is given by 

/2 /2
2 2

0 0
1 ( ') 1 ( cos( ))

L L

S Z dX AB BX dX= + = +  ,                                                                    (4.18) 

which gives that  

21 ( cos( ))dS AB BX dX= + .                                                                                                      (4.19) 

And for the sinusoidal curve, the radius of curvature R  is given by 

arctan( ') arctan( cos( )) ( )Z AB BX f X = = = .                                                                              (4.20) 

From Eq. (4.14), the derivation /d dS  could be denoted as 

2

1
( )

1 ( cos( ))

d d dX d d
n X

dS dX dS dX dXAB BX

   
= = =

+
                                                               (4.21) 

Similarly, the derivation 
2 2/d dS could be denoted as 

2 2
2

2 2
( ) '( ) ( )

d d d
n X n X n X

dS dX dX

  
= + ,                                                                                             (4.22) 
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Substitute Eq. (4.20) to Eq. (4.10) and derivation gives the expression of d dX and 
22d dX  as 

'( )
d d d d

f X
dX dX dX dX

   
= − = − ,                                                                                                        (4.23a) 

2 2

2 2
''( )

d d
f X

dX dX

 
= − .                                                                                                                     (4.23b) 

Substitute Eq. (4.23a, b) into Eq. (4.22), it becomes  

2 2
2 2

2 2
( ) '( ) ( ) ( '( ) ( ) '( ) ( ) ''( ))

d d d
n X n X n X n X n X f X n X f X

dS dX dX

  
= + + − − .                            (4.24) 

Then substitute Eq. (4.24) to Eq. (4.17) and simply gives 

2

2
( ) ( ) ( ) ( )

d d
h X g X m X H

dX dX

 
+ + = ,                                                                                         (4.25a) 

where ( )h X , ( )g X , ( )m X  and ( )H  are defined as  

2 1( ) (1 ( cos( )) )h X AB BX −= + ,                                                                                                         (4.25b) 

2 3 2( ) sin( )cos( )( ( ))g X A B BX BX h X= ,                                                                                             (4.25c) 

3 2 2 2 3( ) cos( )( 1 2 ( ) cos(2 )) ( ))m X AB BX A B AB BX h X= − − − + ,                                                 (4.25d) 

0 0 0 0cos sin sin cos
( ) (1 )( )

s s

N Q N Q
H

E A E I

   


+ −
= + .                                                              (4.25e) 

For the deform mode as shown in Figure 4.4 (a), the vanishing bending moment at the left end can 

be written as 0d d  = , which gives the first boundary condition as 
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0 0X

d

dX


= =                                                                                                                                    (4.26) 

And at the right end, the tangent slope angle keeps unchanged (because of the symmetric 

geometry), which can be evaluated as 

/2 0X L = =                                                                                                                                     (4.27)  

And at the right end, the deformed coordinates are endx x=  and endz z=  (because of the anti-

symmetric geometry), which can be evaluated by integrating cosdx ds=  and sindz ds=  from 

the left end to the right end, i.e., 

 
/2

1/20 0

0

cos sin
cos (1 ) ( )

l

end

S

N Q
x h X dX

E A

 
 −+

= + ,                                                                   (4.28a) 

/2
1/20 0

0

cos sin
sin (1 ) ( )

l

end

S

N Q
z h X dX

E A

 
 −+

= + .                                                                   (4.28b) 

By solving Eqs. (4.26) and (4.27), both the deformed angles and coordinates at the two ends, i.e., 

end , endx  and endz , can be. We numerically solve this problem in Matlab by using Runge-Kutta 

method and several search methods. In other words, the following constitutive relation can be 

obtained: 

1 0 0( , )endx f N Q=  and 2 0 0( , )endz f N Q= .                                                                                  (4.29) 

In order to compare theoretical and simulated results, the mechanical response of the lattice 

materials under uniaxial stretching along vertical directions is presented in Figure 4.8. All 

theoretical results agree reasonably well with the FEA calculations. Here we use two specimens 

consist of a representative unit cell with / / 0.1w L t L= = and /A L = 0.2 or 0.6, respectively. It is 
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clearly that the specimen with / 0.2A L =  have a higher stress-strain curve within the small strains 

range compared with the specimen with / 0.6A L = , as shown in Figure 4.8 (a). The nominal 

stress-strain curve increases slowly at a low strain in a bending-dominated deformation mode, and 

increases rapidly after a critical strain, cr  due to a transition into stretching-dominated 

deformation mode. This critical strain is well presented by  

2

0
( 1 cos ) / 1

L

cr

A x
dx L

L L

 


  
= + −  

  
 ,                                                                                        (4.30)                 

denoting the strain to fully extend the curved beam with sin wave, as marked by the dashed line in 

Figure 4.8 (a)-(c). Fig. 4 (b) shows that the relation of horizontal strain and vertical strain increases 

linearly at a low strain, but after a vertical critical strain, it approaches to a plateau which is the 

horizontal critical strain. It can be noticed that the vertical critical strain and horizontal critical 

strain are equal, which can be estimated as Eqn. 5. The calculated incremental Poisson’s ratios 

show negative values as -0.856 and -0.925 for the specimen with / 0.2A L =  and 0.6 respectively 

in Figure 4.8 (c). With the deformation mechanisms switching from bending to stretching at the 

critical strain, the Poisson’s ratio increases dramatically from negative to almost zero. The 

deformed configurations of the representative unit cell based on the theoretical prediction show 

very good accordance with the FEA results under different strain levels as shown in Figure 4.8 (d). 

It can be noted that the negative Poisson effect originates mainly from the dilatation of the lattice-

shaped unit cell. Here, the beams deform from curved to straight in both directions which indicate 

a full expansion along the horizontal direction during vertical stretching. Therefore, our analytical 

model explains the reason for the auxetic behavior of this lattice structure and demonstrates a clear 
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transition of deformation mode from bending-dominated to stretching-dominated behaviors in the 

uniaxial stretching. 

 

Figure 4.8 Theoretical and FEA results of 3D planar auxetic metamaterials under uniaxial tensile tests. (a) 

Nominal stress vs. nominal strain curve; (b) measured horizontal strain vs. vertical strain; (c) 

calculated incremental Poisson’s ratio curves as a function of nominal strain; (d) Theoretical and 

(e) simulation images for the specimen with / 0.6A L =  at different levels of macroscopic strain: 
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0, 0.35, and 0.7. Here the dash lines present the critical strain which is the strain to fully extend 

the curved beam with sin wave. 

4.5 Effect of the geometric parameters 

Having demonstrated that the lattice metamaterials exhibit auxetic behavior under uniaxial tension 

at specific strain ranges, we now systematically investigate the effects of geometry parameters on 

the evolution of Poisson’s ratios,  . Because the Poisson’s ratio is highly strain-dependent, we 

select the values at very small strains ( 0.02 ) for each specimen. In Figure 4.9 (a), we report the 

evolution of   as a function of /A L for different values of /w L (0.01-0.20), while /t L is kept 

constant of 0.1. First, the results indicate that, as /A L  increases,   initially drops, reaches a 

minimum value and then increases. Moreover, we find that the macroscopic Poisson’s ratio slightly 

decreases as the normalized width of the beam increases. In Figure 4.9 (b), we present the evolution 

of   as a function of /A L  for different values of /t L (0.01-0.30), while /w L is kept constant 

of 0.1. Similarly, as /A L  increases,   initially drop except the specimen with /t L =0.01, 

reaches a minimum value and then keep almost constant. Furthermore, the macroscopic Poisson’s 

ratio increases as the normalized thickness of the beam increases. These mechanical responses are 

intrinsically controlled by the bending stiffness of the beams, 31/12SE I wt= , where SE  is the 

Young’s modulus of the material and I  is the moment of inertia. In Figure 4.9 (c), we report the 

evolution of   as a function of nominal strain for different values of /A L  (0.1-0.8), while /t L  

and /w L are both kept constant of 0.1. Interestingly, the transition strain for the Poisson’s ratio 

from negative to zero is proportional to the wave amplitude ratio. This is because large 

macroscopic stretching is needed to make the vertical beams with larger wave amplitude ratio 

straight. Moreover, the wave amplitude direction in our lattice materials is out-of-plane, which 

indicates that we can design lattice structures to achieve tunable Poisson’s ratio at extreme large 
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stretching strains. Furthermore, we find that the responses of the system are affected by the 

wavelength number, n. In the previous lattice materials, the curved beam can be described as: 

sin( / )z A n x L=  with 1n = . It is noted that the auxetic behavior cannot be observed for 2n =  

and 3, as seen in Figure 4.9 (d).  Finally, these results suggest ability reliable and versatile route to 

tailor the geometric features of lattice material with curved beams to achieve tunable mechanical 

properties especially negative Poisson’s ratio for specific mechanical applications. 
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Figure 4.9 Effect of A/L, w/L, t/L, and n on the macroscopic Poisson’s ratio of the 3D planar metamaterials, 

νyx. Evolution of νyx as a function of A/L. It is shown in (a) for five different values of w/L (assuming 

t/L = 0.1), in (b) for five different values of t/L (assuming w/L = 0.1). Evolution of νyx as a function 

of nominal strain is shown in (c) for five different values of A/L (assuming t/L = 0.1 and w/L = 

0.1), and in (d) for three different values of n (assuming A/L = 0.2, t/L = 0.1 and w/L = 0.1). 
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4.6 Design concept extension from 1D to 3D lattice metamaterials 

Compared with conventional 2D lattice auxetics, the proposed 3D architected lattice system 

exhibits an auxetic behavior over a large range of applied strain. Theoretically, there is no 

limitation for the applied stretch strain, since there is enough space to incorporate the curved 

ligaments in the out-of-plane direction. Moreover, the proposed architected lattice system is highly 

structural efficient in terms of its lightweight design, as compared with dimpled plastic sheets [47] 

and origami based auxetics [27,83].  

Indeed, the design concept of replacing the straight beam with a curved beam could be applied to 

form 1D, 2D, or 3D metamaterials (Figure 4.10). Figure 4.10 (a) present the 1D corrugated 

laminates exhibiting the geometrically non-linear stiffness response which is crucial for 

applications with large deformation [108]. Figure 4.10 (b) shows the 2D lattice metamaterials. Our 

previous report [99] indicates that this systematic lattice metamaterial exhibit extreme Poisson’s 

ratio variations between -0.7 and 0.5 under large tensile deformations and remarkable broadband 

vibration-mitigation capability of the lattice metamaterials. Figure 4.10 (c) presents the 3D planar 

metamaterials which have been studied in this paper. Comparing with 2D lattice metamaterials, 

our 3D planar metamaterials could perform larger tensile deformation because of the structure 

extension in the 3rd dimension. Moreover, we can use the structures of 3D planar metamaterials as 

a template to design a 3D lattice metamaterials, as shown in Figure 4.10 (d). This 3D cubic lattice 

structure consists of 2D chiral-like structures in the lateral surface and 3D planar metamaterials 

structures in the middle. Therefore, they exhibit tunable negative Poisson’s ratio not only under 

uniaxial compression but also uniaxial tension in x, y and z directions, as shown in Figure 4.10 (e). 

Furthermore, this material design strategy could be extended to 3D periodic lattice metamaterials, 

thus opening up the possibility of designing and analyzing novel materials with auxetic behavior. 
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Figure 4.10 The system of lattice metamaterials with curved beams. (a) 1D corrugated beam; (b) 2D 

lattice metamaterial; (c) 3D planar metamaterial; (d) 3D lattice metamaterial. (e) The Poisson’s 

ratio as a function of nominal strain for the 3D lattice metamaterials under uniaxial compression 

and tension by FEM analysis. Because of the symmetry of the structures in x and y directions, we 

only show the results of loading in y and z directions. Scale bar: 1 cm. 

4.7 Conclusion 

In summary, we have demonstrated a fundamental new approach to generate 3D planar 

metamaterials with negative Poisson’s ratio by replacing the straight beams with curved beams in 

the out-of-plane direction. Through a combination of numerical analysis and experiments, we have 

shown that the Poisson’s ratio of the system can be tuned and altered by designing the geometry 

of the curved beam structures. In particular, we present a theoretical study of nonlinear mechanical 

behavior in a class of lattice metamaterial with curved beams (sinusoidal shapes). This model can 
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predict precisely the nonlinear stress-strain curve and Poisson ratio, as well as the deformed 

configurations under uniaxial stretching. Importantly, this material design strategy can be applied 

from 1D, 2D to 3D metamaterials, providing insights into the development of classes of architected 

metamaterials with potential applications including energy absorption, tunable acoustics, vibration 

control, responsive devices, soft robotics, and stretchable electronics. 
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Chapter 5. The design of sandwich composites with cellular cores  

5.1 Introduction 

Sandwich composite structures are widely used in aerospace, naval, sporting and automotive 

applications due to their high stiffness/weight ratio, high strength/weight ratio, and energy 

absorption capacity [109]. Typical sandwich structures consist of two thin, stiff and strong face 

sheets separated by a lightweight core that is usually made of polymeric foam, honeycomb or 

corrugated core etc. The core material keeps the face sheets in their relative positions in the 

sandwich with little increase in weight, to increase bending and buckling resistance [61,110], as 

well as shear stiffness and energy absorption ability [111]. The mechanical behavior of a sandwich 

composite depends on the material used for construction, geometry of face sheets and especially 

the core topology design. Among all sandwich core materials, foams core has been firstly studied 

[112] while they exhibit poor scaling due to their bending-dominated architecture [113].  

Compared with the random porous structures of foams, various ordered cellular architectures with 

improved mechanical properties are applied to sandwich core configurations. The most widely 

studied and used one is conventional honeycomb cellular core [114-117]. Many analytical, 

numerical, and experimental investigations have suggested that sandwich structures with 

conventional honeycomb cellular core are stiff, strong, light and absorb much energy when crushed 

especially in out-of-plane direction [61,118-121]. Another attractive sandwich core is lattice truss 

materials [122-124]. Recent researchers have proposed that the textile truss cores are superior to 

regular honeycomb because of their superior buckling resistance at low relative density [125-129], 

and these open-celled counterparts would not trap moisture and possess multifunctional 

capabilities [122]. 
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More recently, auxetic structures have received considerable attention because they exhibit 

unusual properties of becoming thicker when stretched; that is, they have negative Poisson's ratios. 

Due to the auxetic effects, auxetic cellular materials have many engineering advantages, such as 

increased indentation resistance [130], shear resistance [131], plane strain fracture toughness 

[34,132,133], and energy absorption [134-137]. Furthermore, auxetic structures exhibit synclastic 

bending [33,138-141], and have better acoustic properties compared to their conventional 

counterparts [142]. Based on the classical continuum theory, the auxeticity of materials can 

enhance certain mechanical properties, such as less deflection during bending [134] and increased 

shear modulus [131], making the structures ideal for use as sandwich core topology. Among 

various auxetic materials and structures discovered, re-entrant honeycomb has been investigated 

frequently by many researchers. The analytical studies on the re-entrant honeycomb have been 

reported on their mechanical properties under small deformation [61,143-147] and large 

deformation [148,149]. Moreover, it has been theoretically shown that the re-entrant honeycomb 

has enhanced shear properties compared to conventional materials [150,151]. Hou et al. [49,152] 

have studied the bending and failure of sandwich structures with auxetic gradient honeycomb 

cores. Imbalzano et al. [153,154] have numerically studied the performance of impact resistance 

for the sandwich panels with auxetic lattice cores. Yang et al. [155] have designed a sandwich 

structure with a 3D re-entrant auxetic core fabricated using electron beam melting and selective 

laser sintering and bending behavior on these materials has been studied. However, systematical 

studies on bending behavior of sandwich structures with auxetic core topology in comparison with 

non-auxetic core topology have not been largely explored. Conventionally, auxetic structures have 

been fabricated through multiple steps where the control of the specific geometry is quite difficult. 

Recently 3D printing, also known as additive manufacturing, has been developed rapidly, which 



 

60 

 

enables the fabrication of auxetic cellular materials with precise and complex cellular geometries 

directly from the CAD models [156].  

5.2 Design and fabrication of sandwich composites 

5.2.1 Structural design 

The geometric features of the proposed sandwich core design of truss, conventional honeycomb, 

and re-entrant honeycomb are discussed here. Figure 5.1 illustrates the schematic of three lattice 

microstructures. The relative density for each configuration can be calculated as  

For truss                                       
sin cosS

t

L



  



=  ,                                                                  (5.1)                  

For conventional and re-entrant honeycombs 
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Here the relative densities as 0.2, 0.3 and 0.4 are considered. Therefore, the thickness of cell walls 

can be calculated from the Equations (5.1) and (5.2), respectively. Three types of cellular structures 

are fixed to have the same dimension of the unit cell, as 9 mm × 9 mm. Details of the parameters 

for each design are listed in Table 5.1. Under small deformation, the in-plane Poisson’s ratio can 

be evaluated [61] as  
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For re-entrant honeycomb,   is negative, then the Poisson’s ratio of the cell becomes negative in 

values. Therefore, according the Equations (5.3) and (5.4), the Poisson’s ratio of truss, 

conventional honeycomb, and re-entrant honeycomb in current design are evaluated as 1, 1.732 

and -1.732, respectively. Here, the re-entrant honeycombs are orthotropic and they also have a 

Poisson’s ratio, 21v . However, we specifically focus on the Poisson’s ratios, 12v ,  in this work due 

to the compressive deformation induced by bending of the sandwich composites and the tensile 

deformation all in the direction 1. 

 

Figure 5.1 Design of unit cell of the truss, conventional honeycomb, and re-entrant honeycomb structure. 

Here, L  is the length of the inclined cell walls of truss structures; t  is the thickness of the cell 

walls; and   is the angle between the inclined cell walls. The shapes of regular and re-entrant 

honeycomb structures are described as the length of the vertical cell walls, H ; the length of the 
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inclined cell walls, L ; the thickness of the cell walls, t , and the angle between the vertical and 

inclined cell walls,  . 

Table 5.1 Design parameters of truss, conventional honeycomb, and re-entrant honeycomb (Unit: 

mm).  

 Truss Conventional Honeycomb Re-entrant Honeycomb 

* /C S   L t θ L H t θ L H t θ 

0.2 6.37 0.67 45° 5.2 1.9 0.71 30° 5.2 7.1 0.50 -30° 

0.3 6.37 1.04 45° 5.2 1.9 1.11 30° 5.2 7.1 0.76 -30° 

0.4 6.37 1.44 45° 5.2 1.9 1.56 30° 5.2 7.1 1.04 -30° 

 

The sandwich beams are designed to have overall dimensions of 108 mm × 21 mm × 10 mm and 

be composed by 12 × 2 unit cells. Two thin layers are also added to the top and bottom of the core 

structures to improve the connection alignment with the sandwich face sheets. Figure 5.2 (a) shows 

a sandwich beam for bend test. The geometric parameters are listed in Table 5.2. 

Table 5.2 Design geometric parameters of sandwich composite structures for bending test (Unit: 

mm). 

Core Sandwich panel 

VeroWhite  VeroWhite  W-CFRP U-CFRP 

a b c tf d tf d tf d 

108 10 19 1 20 2.3 21.3 1.5 20.5 
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Figure 5.2 Three-point bending test set-up and the sandwich samples. (a) Sandwich structures for bending 

test. The subscript ‘ f ’ refers to the face sheets. Here, a  is the length of the beam; b  is the width; 

c  is the core thickness; ft  is the face sheet thickness; d is the distance between centroids of faces. 

(b) Set-up of the three-point bending test. 

5.2.2 Sample preparation 

The proposed sandwich core materials are fabricated using a 3D printer (Objet Connex260, 

Stratasys) and VeroWhite (VW, an acrylic-based photopolymer) is taken as the constitutive 

material for the core structures. Considering the anisotropic nature of 3D printing technology due 

to layer-by-layer fabrication process, the layer orientation is found to influence the mechanical 

properties of the material; therefore, all the specimens are printed along the same orientation. The 

as-fabricated specimens are kept at room temperature for 7 days to allow for the saturation of the 

curing.   
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Three types of sandwich specimens with VeroWhite, woven carbon fiber reinforced polymer and 

unidirectional carbon fiber reinforced polymer as the face sheets are made respectively. U-CFRP 

is directly ordered from Graphtek LLC. W-CFRP is fabricated in our lab, which is a 16 layers of 

carbon fiber ordered in (0°/90°)4sym, reinforced in Vinylester matrix. The fabrication process 

includes the cold-bonded of CFRP in vacuum.  The material properties of VW, W-CFRP and U-

CFRP are obtained by uniaxial tensile testing of each material following the ASTM D638 standard, 

as shown in Table 5.3. After all the core material and face sheets are completely manufactured, 

two face sheets are adhered to one core structure together by epoxy adhesive (E-00NS). All 

specimens are kept by attachment for one day to make sure they are bonded adhesively then dried 

for 7 days to allow coherent between the core and skins. After that, the surfaces of the sandwich 

skins are cleaned to avoid the effect of remaining glue on the bending test. 

Table 5.3 Material properties. 

 VeroWhite  W-CFRP U-CFRP 

Young’s modulus (GPa) 1.6 26  94 (longitudinal) 

Yield Strength (MPa) 66  390  1400 (longitudinal) 

5.2.3 Mechanical testing 

The compression test and three-point bending test are performed using a MTS mechanical tester 

(C43 frame) with a 10 kN load cell. The quasi-static compression is carried out at a constant strain 

rate of 0.005 s-1. Three-point bending test is carried out at a loading rate of 0.008 mm/s and the 

span length is 72 mm (Figure 5.2 (b)). Images of the specimens at various loading conditions are 

taken at a rate of 1 FPS (VicSnap, Correlated Solution). 
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5.2.4 Numerical simulation 

The finite element analysis is conducted using commercial software ABAQUS (Dassault Systemes 

Simulia Corp., Providence, RI). Plane stress condition is assumed during the simulations. The 

models are meshed with 6-node triangular elements and 6 elements are generated along the width 

of the cell walls after a convergence test. The true stress-strain relation of VeroWhite observed 

from uniaxial tension is directly exported to ABAQUS and implemented as the constitutive 

equation for the core material. W-CFRP and U-CFRP are modeled as elastic-perfectly plastic 

materials. In addition, geometric nonlinearity is considered to represent the large deformation of 

the structure. 

5.3 Poisson’s ratio of core design  

Figure 5.3 shows the mechanical response of re-entrant honeycomb, conventional 

honeycomb, and truss cellular specimens under uniaxial compression, respectively. The nominal 

stress-strain curves indicate these structures exhibit linear stress-strain relations up to 8% 

macroscopic strain. The Poisson’s ratio for each specimen is determined in this linear-elastic 

deformation region.  Figure 5.3 (c-e) shows the images of re-entrant honeycomb, conventional 

honeycomb and truss specimens under compression at 0 = , -0.04, and -0.08, respectively. It is 

seen that the lateral boundaries of the re-entrant honeycomb sample shrink continuously under 

compression, indicating a negative Poisson’s ratio of this material. While the conventional 

honeycomb and truss specimens exhibit lateral expansion during the uniaxial compression, which 

shows a positive Poisson’s ratio. To quantify the deformation in the specimens during the 

experiments, an image processing software (ImageJ) is used to determine the position of 

intersection points in the specimens. Because the deformation near the four edges of the specimen 

is affected by boundary conditions, we focus on the behavior of unit cells in the central region of 
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the specimens. The relations between the average horizontal strain and the avarage vertical strain 

of the unit cells are plotted in Fig. 5.3 (b). The local values of Poisson's ratio can be calculated by 

estimating the slope of the horizontal strain and vertical strain curves. Over the linear elastic 

deformation region, the experimental determined Poisson’s ratio is approximately a constant at 

12 1.070v =  for truss, 12 1.730v =  for conventional honeycomb and 12 1.732v = − for re-entrant 

honeycomb, respectively, which shows an excellent agreement with the analytical estimates 1.000, 

1.732 and -1.732, respectively. Here, for the purpose of ensuring a fair comparison, we design that 

the conventional honeycomb and the re-entrant honeycomb have the same absolute value of 

Poisson’s ratio, 12v .  
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Figure 5.3 Three cellular core materials under uniaxial compression test (the volume fraction is 20%). Re-

entrant honeycomb (Specimen 1), conventional honeycomb (Specimen 2), and truss (Specimen 3), 

respectively. (a) Nominal stress-strain curves; (b) The horizontal strain as a function of the vertical 
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strain, where Poisson's ratio is calculated; (c-e) each specimen under compression at strains of 

0 = , 0.04 = − , and 0.08 = − . 

5.4 Static 3point bending behavior of sandwich composites 

Having demonstrated that the re-entrant honeycomb lattice material exhibit auxetic behavior and 

conventional honeycomb and truss lattice material exhibit non-auxetic behavior under uniaxial 

compression, we now systematically investigate the bending behavior of the sandwich composite 

specimens with different cores and face sheets. 

5.4.1 Effect of face sheets 

Figure 5.4 (a) shows the load-deflection relations of the sandwich composite specimens with 

different face sheets: VW, W-CFRP, and U-CFRP. Here the core of sandwich specimens is a re-

entrant honeycomb with a relative density of 0.2. It is clear that the face sheet material will affect 

the bending behavior significantly. As expected, the load-deflection relation of the sandwich 

specimen with VW face sheets shows the lowest force level because VW is softer and weaker than 

a CFRP. While for the sandwich specimen with W-CFRP face sheets, load significantly increases 

to the yield point ~190 N at 4 mm and maintains a plateau up to 20 mm before a complete failure. 

For the sandwich specimen with U-CFRP face sheets, the load-deflection curve exhibits the 

highest force level to a maximum of 500 N and two enhanced load stages are observed. Therefore, 

compared to W-CFRP, U-CFRP will significantly enhance the energy absorption behavior of the 

sandwich composite structures. These different mechanical responses are intrinsically controlled 

by the stiffness and strength of the face sheets, which is shown in Table 3. Another phenomenon 

could be noticed that for specimens with U-CFRP face sheets, the load-deflection curve indicates 

negative bending stiffness behavior due to the snap-through instabilities of the re-entrant core 

under loading and the details will be discussed later. The images of three sandwich specimens at a 
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deflection of 15 mm are shown in Figure 5.4 (b). At the final stage of bending the sandwich 

specimen with VW face sheets shows less deformation in core ligaments while the sandwich 

specimen with U-CFRP face sheets exhibit the largest deformation in core ligaments. Therefore, 

the deformation mechanism of these sandwich composite structures with the same core material is 

strongly dominated by the mechanical properties of sandwich face sheets that are carrying loads 

by mainly tension/compression during sandwich beam bending. 

 

Figure 5.4 Bending characteristic of sandwich composite specimens with face sheets of different materials. 

The core is re-entrant honeycomb with an effective density of 0.2. (a) Load-deflection curves; (b) 

the images of deformed configuration of each sandwich specimen at a deflection of 15 mm. 

5.4.2 Effect of core topology 

The effect of the core topology on the bending behavior are examined experimentally and 

numerically. Here we use U-CFRP as the face sheets and the relative density of sandwich cores is 

0.2 for each core topology. Figure 5.5 (a) shows that the specific core topology has a significant 

impact on the load-deflection curves. The truss core sandwich composite structure has the largest 
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flexural stiffness and maximum loading forces, while the re-entrant honeycomb core sandwich 

composite structure has the lowest flexural stiffness and largest bending deflection. It can be easily 

understood as the re-entrant honeycomb has much lower Young’s modulus and stress lever at the 

same deformation lever, as seen in Figure 5.3 (a), as compared to the other two core structures, 

leading to weaker mechanical response of the re-entrant honeycomb sandwich composite structure. 

Fig. 5(b) shows the images of three sandwich specimens at a deflection of 8mm. Core fractures 

occur in the truss and the conventional honeycomb sandwich composite structures, as also evident 

from the drops in the load-deflection curves, which indicates that these sandwich structures will 

fail locally. It is noticed that the shear of the core materials causes the failure of the truss and the 

conventional honeycomb sandwich composite structures. The shear resistance or shear strength of 

the core materials plays an important role during the bending of sandwich structures. Based on 

Gibson’s model [61], we estimate the shear strength of the conventional honeycomb as : 
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, is listed in Table 5.4. We could notice 

that the truss structures exhibit higher shear strength than that of the conventional honeycomb, 

which is consistent with the experiment results. Moreover, using the scaling law
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= , we could calculate that the scaling exponent equals to 2.267 for the 

conventional honeycomb and 1.103 for the truss structure, which indicates that the deformation 

mechanism is bending-dominated for the conventional honeycomb and stretching-dominated for 
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the truss structure. Interestingly, no fractures are observed in the re-entrant honeycomb sandwich 

composite structure up to a large deflection (16 mm in this case). Instead, buckling of ligaments is 

seen in each layer. The buckling phenomenon does not result in the catastrophic failure but the 

periodic re-entrant honeycomb structures contain the buckling deformation and enable the 

sandwich composite structure to provide energy absorption to a larger deformation. Therefore, 

global failure mode controls the re-entrant honeycomb sandwich composite structures. 

Furthermore, the core deformation in truss and conventional honeycomb sandwich specimens are 

irreversible after unloading due to fractures of ligaments. On the contrary, at the same level of 

global deformation for the re-entrant honeycomb sandwich specimen with low density (20%), the 

deformation of core structures is mostly buckling of ligaments instead of fractures, which provides 

the possibility for these types of sandwich composite structures with strong potentials of reusable 

abilities. Moreover, the 3D-printed material for fabricating the core structures is a glassy polymer 

with shape memory effect. It is possible to use the temperature for the shape recovery after the 

plastic deformation, which may lower the repair costs. For the re-entrant honeycomb sandwich 

specimen with core density higher than 0.2, it exhibits fractures of ligaments instead of the 

buckling due to the low slenderness ratio of the ligaments.  
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Figure 5.5 Bending characteristic of sandwich composite specimens with different core structures and U-

CFRP face sheets. The effective density of core material is 0.2 for all specimens. (a) Load-deflection 

curves; (b) the images of deformed configuration of each sandwich specimen at a deflection of 

8mm. 

Table 5.4 The normalized shear strength of truss and conventional honeycomb with various 

relative densities. 

Relative density 0.2 0.3 0.4 

Truss 0.0131 0.0204 0.0282 

Conventional honeycomb 0.00197  0.0048  0.0095 

 

Figure 5.6 shows the comparison of the experiments and FEA prediction, indicating good 

agreement between the numerical and experimental results. Excellent agreement can be observed 

in the force displacement curves between the numerical and experimental results at displacement 

up to the yield of the sandwich specimens, as shown in Figure 5.6 (a). As larger displacement, the 
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experiments show failures of ligaments, leading to significant drops in the force displacement 

curves, which is not captured by the FEA simulation since no fracture criteria is taken into 

consideration in the simulations.  Figure 5.6 (b) shows the deformed specimens in the experiments 

and Figure 5.6 (c) exhibits the corresponding specimens in the simulations. For re-entrant 

honeycomb sandwich composite structure, simulation confirms the buckling of vertical ligaments 

observed in the experimental test. Moreover, the simulated von Mises stresses show that re-entrant 

honeycomb sandwich composite structure exhibits relatively homogeneous stress distribution in 

both face sheets and core material. Especially the stress level in the ligaments is lower than those 

in the truss and conventional honeycomb cores. Therefore, local failure does not occur due to the 

less localized stress concentration. For conventional honeycomb and truss sandwich structures, it 

is apparent that the stress distribution is largely concentrated in the area near loading point and 

some certain struts where local failure would be expected. The results of the FEA simulation and 

the average experimental measurement calculated from Figure 5.6 (a) are listed in Table 5.5. 

Again, one can notice an excellent agreement on the flexural strength between the simulation and 

the experiment. The simulated flexural stiffness is slightly higher than the experimentally observed 

value, which is attributed to the base material constitutive behavior. Specifically, we use a stress-

strain relation measured from uniaxial tension experiment of VW. However, during bending tests, 

the ligaments could be subjected to tension, compression, or bending. This complex stress state is 

not well captured in a simple elastic-plastic material model. Moreover, the fidelity of the 3D 

printed process will also affect the materials properties.  Although Objet 260 has a stated resolution 

of ~16μm, the accuracy can still affect the volume fraction and distribution of printed materials. 

Anisotropy, porosity, and imperfections introduced during 3D printing also play a role. These 

specific aspects are not taken into consideration in our model. Compared to conventional 
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honeycomb and truss core, the re-entrant honeycomb sandwich composites exhibit relative low 

flexural strength and stiffness, therefore, a larger bending deflection could be expected. These 

results suggest good ability to tailor the core topology to achieve different bending behaviors for 

certain mechanical applications. 

 

Figure 5.6 Comparison of the experiments and FEA predications for mechanical response of sandwich 

composites under bending deformation. (a) The force-displacement curves. (b) The experimentally 

deformed specimens and (c) the corresponding simulated FEA results of the three sandwich 

composite structures with truss composite at a deflection of 1.5mm, conventional honeycomb 

composite at a deflection of 2.5 mm, and re-entrant honeycomb composite at a deflection of 3.8 

mm. 

Table 5.5 Comparison of FEA and experimental results of the sandwich composite specimens 

with W-CFRP face sheets.  
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Core design Measured 

Strength (MPa) 

FEA simulated 

Strength (MPa) 

Measured 

Modulus (GPa) 

(GPa) 

FEA simulated 

Modulus (GPa) 

 Re-entrant honeycomb 3.76 3.98 35.74 35.61 

Conventional honeycomb 8.39 8.31 109.65 136.48 

Truss 12.72 12.94 292.98 343.39 

 

Figure 5.7 shows the load-deflection curves and the corresponding images of deformed re-entrant 

honeycomb sandwich specimens at different level of deflections. Interestingly, the deformation 

process of the sandwich beams with re-entrant honeycomb core exhibit a snap-through instability 

during three-point bending tests. Three re-entrant honeycomb sandwich specimens with core 

relative density of 0.2 are tested and show good repeatability (Figure 5.7 (a)). The load-deflection 

response is characterized by three peaks and drops; the first and second drops correspond to the 

sequential buckling of ligament layers and the third drop corresponds to the catastrophic failure of 

the whole structure, as shown in Figure 5.7 (b). During the bending, the vertical ligaments in the 

mid row of core structures will buckle first due to the core shear concentration during bending. 

The instability leads to a drop in the load-deflection curve, which makes the slope become 

negative, where negative incremental bending stiffness is observed. After the buckled vertical 

ligaments become in contact with the inclined ligaments in the middle row, the load increases 

again. The instability occurs through row-by-row, with simultaneously increasing the load level 

until the whole specimen is fully deflected. Furthermore, at larger deformation, the plasticity 

affects the behavior of instability for the re-entrant honeycomb sandwich structures [157]. The 

composite sandwich structure can absorb energy through bending plastic hinges which connect to 

two inclined ligaments and one vertical ligament. Because of the core shear, the vertical ligaments 



 

76 

 

first are buckled and then inclined to one side with the rotation of neighboring plastic hinges 

leading to the resistance of these plastic hinges to the external force. With increasing bending 

deformation, the rotation of plastic hinges will induce the contact of vertical ligaments and the 

inclined ligaments, which will ensure the structure to continue to carry more load.  

   The relative density of re-entrant honeycomb core is found to significantly affect the snap-

through instability. For the core with relative density above 0.3, the instability behavior vanishes. 

With the increase of the relative density, the slenderness ratio of ligaments will increase, which 

will make the core structure more brittle. Therefore, continuous loading will lead to the local 

catastrophic failure instead of buckling and the resulting load-deflection curves drop dramatically. 

Also, the material of face sheets will affect this phenomenon which could be seen in Figure 5.4. 

The stiffer and stronger face sheets will be more beneficial to the instability behaviors. For the 

sandwich beams with conventional honeycomb core and truss core, the instability phenomenon 

could not be observed during three-point bending tests. Recently, the snap-through instabilities 

have been employed for material design in bi-stable periodic structures under compression [158-

160] and tension [161]. The nonlinear mechanical response of these new classes of architected 

materials will significantly enhance the energy absorption ability whether via low rate quasi-static 

loading or via impact tests. Our sandwich structures with re-entrant honeycomb cores also exhibit 

the snap-through instability especially during the bending deformation. Note that, due to this 

deformation mechanism, the specific energy absorption of current sandwich structures is not as 

large as several recently developed architectured materials, such as hollow microtruss structures 

[162], bicontinuous structures[163], buckyball [164] and honeytube structures [165], which are 

shown to exhibit significantly enhanced specific energy absorption. The combination of nonlinear 
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deformation mechanism, the open-cell nature, as well as the tunability of the sandwich structures 

can provide better opportunities to integrate with new functionalities. 

  

Figure 5.7 Bending characteristic of sandwich composite specimens with re-entrant honeycomb core design 

and U-CFRP face sheets. Three specimens are used showing repeatability. The relative density of 

core material for each specimen is 0.2. (a) Load-deflection curves; (b) the images of deformed 

configuration of sandwich specimen 3 at different deflections. 

5.4.3 Effect of relative density 

Figure 5.8 depicts the experimental results of the maximum force, maximum deflection, flexural 

stiffness, and maximum energy absorption (which we compute as the work before catastrophic 

failure occurs) of sandwich composite structures with three core designs and relative density from 

0.2 to 0.4. With increasing the relative density, the maximum force and flexural stiffness will 

increase significantly and the maximum deflection will decrease. This is as expected since 
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sandwich composite structures with higher relative density of cores will become stiffer, stronger 

but brittle. At any given relative density of cores, the truss and conventional honeycomb sandwich 

composite structures provide a larger maximum force and a larger flexural stiffness than the re-

entrant honeycomb sandwich composites. The re-entrant honeycomb sandwich composite 

structures possess a larger deflection and slightly smaller energy absorption. For many energy 

absorption applications, it is required that the structure exhibit a response force just below the 

injury criterion and a limited densification deflection [109]. Comparing the bending properties of 

three composite structures, we find that the re-entrant sandwich composites exhibit significant 

advantages over the truss or conventional honeycomb sandwich composites. The re-entrant 

honeycomb sandwich has the same level of energy absorption ability but with smaller response 

forces and much larger densification deflections compared to the truss and conventional 

honeycomb sandwiches. For example, for the sandwich composites with W-CFRP face sheets and 

relative density of 0.4, at the force level of 400N, the re-entrant sandwich composites absorb about 

100% energy (about 6J) the same as the other two sandwich composites. While at the same energy 

absorption level, the conventional honeycomb and truss sandwich composite structures have a 

response force level around 800 N and 1300 N, respectively, which is significantly higher than 

those in the re-entrant honeycomb sandwich composite structure. Moreover, the failure mechanism 

of re-entrant honeycomb sandwich is global dominant, which provides less local deformation and 

failure. While the non-auxetic sandwiches’ deformation are irreversible after failure because of the 

local fractures of cores. Therefore, the re-entrant honeycomb sandwich composites are better 

potential candidates for energy absorption applications. Meanwhile the truss sandwich composites 

and conventional honeycomb sandwich composites are ideal candidates for the applications where 

high specific stiffness and strength are required. These results suggest we could combine numerical 
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calculation and 3D printing technique to tailor the microstructures of sandwich composites to 

achieve different bending properties for certain mechanical applications. 

 

Figure 5.8 Bending properties of the sandwich structures. (a-d) Maximum force, maximum deflection, 

flexural stiffness and maximum energy dissipation. 

We have shown that the flexural stiffness and flexural strength increase as the relative density of 

core material increases for the sandwich beams. Generally, for the cellular materials, such as metal 

foams and lattice structures, the relation between the effective elastic modulus E and the relative 
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density * /C S   can be described by a power law E = C ( * /C S  )n  [61,166,167]. Therefore, these 

scaling laws could be used to describe the relation between the flexural stiffness and flexural 

strength and the relative density of cores for the sandwich composite structures. The flexural 

stiffness of sandwich composite structures [61,111] is calculated from the equivalent flexural 

rigidity, ( )eqEI , and the equivalent shear rigidity, ( )eqAG , of the beam. Found from the parallel 

axis theorem, the equivalent flexural rigidity of the rectangular beam, as shown in Fig. 2(a), gives  

3 23
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EI = + + .                                                                                                (5.5)  

These three terms describe the bending stiffness of the faces, the bending stiffness of the faces and 

of the core about the centroid, and the bending stiffness of the faces about the centroid of the beam 

itself, respectively. In optimal sandwich design, the first two terms are small compared to the third 

term. As an approximation, 
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The equivalent shear rigidity is  
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Here the shear modulus of the core, *

CG , can be described as a function of solid polymer modulus, 

SE , and the relative density of the core structure, * /C S   , via 
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where 1C  and n  can be obtained by fits to experimental data.  

When the load, P , is applied, the deflection   of the sandwich beam is the sum of the bending 

and shear components: 

3
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  = + = + .                                                                                                (5.9) 

Using Eqns. (6-9), the flexural stiffness of the sandwich beam is  
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Furthermore, the failure modes of a sandwich beam include face yielding, face wrinkling, core 

failure, failure of the adhesive bond and core indentation. However, we notice the dominant failure 

mechanism of our sandwich specimens is the core shear. In this study, the face thickness to span 

ratio, t/l, are 0.014 for U-CFRP and 0.032 for W-CFRP. Our experimental results indicate that the 

face sheets do not fail, instead the core shears. If decreasing the thickness of the face sheets, the 

failure mode may transform from core shear to face yield, which will affect the deformation mode 

of the composite sandwich structures. In this way, the fractures of core materials will not happen 

and the total energy absorption of the re-entrant honeycomb will more rely on the strength of the 

face sheets. Moreover, the snap-through instability may disappear and the advantage of re-entrant 

honeycomb sandwich compared with the truss and conventional honeycomb sandwiches may not 

exist. On the other hand, while increasing the thickness of the face sheets, the strength and stiffness 

will increase which will keep the failure mode as core shear. In this case, the deformation mode 

and the capability of energy absorption of the re-entrant honeycomb sandwich structures will be 
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well maintained. Moreover, the shear stresses in the composite material change rapidly between 

the core and the skin, the adhesive layer also takes some degree of shear force. For our sandwich 

composites, the adhesive bond between the two layers is strong so that no delamination or de-

bonding is observed. The failure load [61], which is the maximum force during the three-point 

bending test, can be described as a function of the yield stress of solid polymer, 
ys and the relative 

density of the core structure, / S  , via 

max 22 ( )mC
ys

S

P C bc







=                                                                                                               (5.11) 

where 2C  and m  can be obtained by fits to experimental data.  

For sandwich composite beams with truss, conventional honeycomb, and re-entrant honeycomb 

cores, these parameters are given in Table 5.6. The scaling exponent n  equal to 1 indicates stretch-

dominated deformation behavior of the ligaments whereas an exponent of 2 typically indicates 

bending-dominated deformation. For the flexural stiffness, the power indexes n  for the re-entrant 

honeycomb sandwich and the truss sandwich are around 1, so that the bending deformation for 

these two types of sandwich structures are almost stretch-dominated. In contrast, the power indexes 

n  for the conventional honeycomb sandwich structures are around 2, indicating the contribution 

from the bending of the interconnected ligaments. Furthermore, for the flexural strength, the power 

indexes m are 1.98 and 1.80 for the conventional honeycomb sandwich and 1.13 and 1.08 for the 

truss sandwich. Compared with the scaling law of shear strength for the honeycomb and truss 

structures in Table 5.4, the power index from the model is 2.267 for honeycomb and 1.103 for 

truss, respectively, which shows a good agreement with experiment results. Moreover, the power 

indexes m  for the re-entrant honeycomb sandwich are 1.23 and 1.46 which are larger than the n  
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fitted from flexural stiffness. This is because the snap-through instability behavior appears in the 

sandwich structures with low relative density cores. For the conventional honeycomb and the truss 

honeycomb sandwich structures, the power indexes of the flexural stiffness and flexural strength 

are almost identical for each structure which means the flexural stiffness and flexural strength are 

mostly determined by the deformation mechanism resulting from the topology of sandwich cores.  

 

Table 5.6 The relations of the flexure stiffness and strength to the relative density of core designs 

for the sandwich composite structures.  

Sandwich structures 

 

Flexural stiffness 

FEA Strength 

Flexural strength 

FEA Modulus 

 

Core Face sheets C1 n C2 m 

Re-entrant 

Honeycomb 

W-CFRP 0.0126 1.17 0.0547 1.23 

U-CFRP 0.0128 1.08 0.1019 1.46 

Conventional 

Honeycomb 

W-CFRP 0.1209 2.00 0.1076 1.98 

U-CFRP 0.1526 1.93 0.1443 1.80 

Truss W-CFRP 0.0609 1.00 0.1491 1.13 

U-CFRP 0.0672 0.92 0.2231 1.08 

 

5.4.4 Discussion 

In practical applications, the sandwich composites are increasingly considered to be used in 

aircrafts, marine structures, portable structures, special vehicles, and some sport equipment. For 

example, there is a wide range of naval structures being developed using fiber reinforced polymer 

composites, including patrol boats built completely of composites, super structures, decks, and 
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masts in frigates and destroyer and even internal equipment and fittings[168]. These sandwich 

composites are usually exposed to severe static and dynamic loads which are related to the 

penetrating/impact loading. Therefore, we investigate the mechanical behaviors under three-point 

bending test instead of four-point bending test with consideration of penetration resistance. 

Recently, 3D porous architectures composed of a continuous surface including the triply periodic 

minimal surfaces [169-171] exhibit enhanced strength and stiffness at relative low density and they 

can also serve as potential core materials for sandwich composites with better mechanical 

performance. Interestingly, additional fillers, such as sand, polymer foam, liquid, and silicon 

rubber [172-175] in the cellular structures can decrease the stress concentration and enhance the 

stiffness, strength and energy absorption of the cellular structures in the sandwich structures. 

Future work will explore more geometrical and topological structures to combine the deformation 

of co-continuous phases to achieve higher mechanical performance.  

5.5 Conclusions 

We have manufactured a novel class of sandwich composite structures with 3D-printed core 

materials and CFRP face sheets. Truss, conventional honeycomb, and re-entrant honeycomb are 

designed as the core material topologies. Under uniaxial compression, the truss and conventional 

honeycomb structures provide a non-auxetic behavior while the re-entrant honeycomb structure 

provides an auxetic behavior as expected. The evaluated Poisson’s ratio for each structure consists 

well with the theoretical prediction. Three-point bending tests are conducted and the flexural 

stiffness, flexural strength, and energy absorption are evaluated on these sandwich composite 

structures. Our experimental and numerical results show a very good agreement in terms of the 

deformation pattern, flexural stiffness, and flexural strength. Under bending, the re-entrant 

honeycomb sandwich structures show an interesting global failure mode because of the relatively 
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homogeneous stress distribution. Moreover, the re-entrant honeycomb sandwich structures exhibit 

sequential snap-through instabilities which significantly increases the energy absorption capacity. 

In contrast, the truss and conventional honeycomb sandwich structures show catastrophic failure 

earlier due to the localized stress concentration. The findings presented here provide new insights 

into the development of sandwich composite structures with unique mechanical properties for a 

wide range of mechanical and structural applications. 
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Chapter 6. Enhanced mechanical performances of auxetic composites 

6.1 Introduction 

Materials exhibiting a negative Poisson’s ratio, also called auxetic materials [134], are a new type 

of mechanical metamaterials which will contract (expand) transversally when they are axially 

compressed (stretched). Since the 1980s, auxetic behavior has been reported in many two-

dimensional (2D) and three-dimensional (3D) structures of natural systems, including cubic metals 

[176], zeolites [40,177], natural layered ceramics [41], silicon dioxides [178], single-layer 

graphene [43,44], and 2D protein crystals [179]. Since the auxetic behavior potentially equips 

materials with improved properties, including shear modulus [75], indentation resistance [180], 

fracture toughness [34,132,181], and energy absorption ability [67,134,137,182-184], there are 

significant interests in the development of negative Poisson’s ratio materials because of their 

potential applications, such as textile [185-188], automotive [189], military [190,191], biomedical 

[192,193], and aerospace engineering [194]. Research in this area began in earnest from the 

computational works of Wojciechowski [195] as well as the development of 3D polymeric foams 

with isotropic auxetic behavior by Lakes [75]. Subsequently, several geometries and mechanisms 

have been proposed to achieve a negative Poisson’s ratio and a significant body of man-made 

auxetic materials and structures has been fabricated and synthesized from the macroscopic down 

to molecular levels. Among them, there are in planar foams [196], honeycombs with inverted cells 

[76,77,197], 2D and 3D chiral lattices [51,78,156,198-200], rigid rotating hexamers or squares 

[80-82,201], origami/kirigami based metamaterials, [27,48,49,84-86] and hierarchical 

metamaterials with fractal cuts [50,87,202]. Recently, theoretical models indicate the possibility 

to achieve auxeticity in some colloidal crystals [203]. A detailed analysis of the deformation 

mechanisms of 2D and 3D auxetics can be found in Ref [204]. Due to the bending or rotation 
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deformation nature of the ligaments/elements in these auxetic materials, however, they usually 

have relatively low stiffness, limiting their applications where lightweight, high stiffness, strength, 

and energy absorption are simultaneously desired.  

Composite materials with rationally designed structures and compositions could overcome this 

limitation. In a two-phase composite, each constituent phase can contributes its own properties in 

a quite independent manner to the overall performance of the composites synergistically. For 

example, composite materials where auxetic lattice structures are used as the reinforcements and 

the nearly incompressible soft material is employed as a matrix have great potential in achieving 

a design to combine these prominent mechanical properties. Conceptually, by harnessing the 

negative Poisson’s ratio effect of the auxetic reinforcement, the soft matrix will be in a state of 

biaxial or triaxial compression, resulting in a synergistic improvement in the mechanical response. 

Indeed, composites materials with auxetic reinforcements have been designed and fabricated in 

the past few decades. The auxetic fibers embedded in the composite as the reinforcement would 

expand when stretched and prevent the occurring of fiber pullout, therefore, the load required to 

cause structural failure will significantly increase [205-207]. In addition, composites using 3D 

auxetic textile structures as the reinforcement have been fabricated and exhibited strong auxetic 

behavior [208]; however, relatively poor mechanical properties are observed as compared with 

non-auxetic composites [209]. Composites with elliptic inclusions exhibit auxetic effect with 

relative lower Young’s modulus compared with the non-auxetic composites as evidenced by the 

finite element analysis [210]. It should be pointed out that these undesired mechanical properties 

of composite materials with auxetic reinforcements are partially due to the limitation of 

conventional manufacturing techniques. In this regard, additive manufacturing techniques have 

shown unparalleled advantages, as they enable us to fabricate complex topologies with fine 
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features quickly, cheaply, and at a large scale, and offer a multitude of materials with varying 

mechanical properties [14,211]. For example, auxetic structures fabricated using selective laser 

sintering and filled with strain rate sensitive material exhibit slightly increased energy absorption 

ability during impact tests [212]. Despite considerable efforts have been devoted to designing and 

synthesizing composites with auxetic reinforcements, the quantitative understanding of the 

interplay between the auxetic behavior and the other mechanical properties such as stiffness, 

strength, and toughness is still elusive. For example, systematic studies on mechanical properties 

of the composites with auxetic reinforcements in comparison with non-auxetic reinforcements 

have not been largely explored [182,206,213]. Furthermore, the effect of negative Poisson’s ratio 

on the mechanical properties such as stiffness, strength, and energy absorption of the auxetic 

composites is still not clear. 

In this work, we design a group of composite materials consisting of two types of auxetic 

reinforcements and a nearly incompressible soft elastomer as the filled matrix. The coupled 

geometry and material design concept is realized by an advanced 3D printing technique, which 

enables the fabrication of bimaterial composites with various geometries and material selections. 

Uniaxial compression tests are conducted to investigate the mechanical properties of these 

composite materials with auxetic reinforcements. Finite element simulations are performed to 

provide additional insights into the underlying mechanisms responsible for the observed unusual 

mechanical performance. Moreover, parametric analyses are conducted to quantitatively 

understand the effects of Poisson’s ratio and volume fraction of the auxetic reinforcements on the 

mechanical properties of the auxetic reinforced composites.  



 

89 

 

6.2 Design and fabrication of auxetic composites 

6.2.1 Design of auxetic lattice reinforced composites 

The model system of the auxetic reinforced composites studied here is based on microstructures 

which combine the lattice structures and their inverse domains. Here two types of auxetic lattice 

structures are considered including a re-entrant honeycomb and a chiral truss, as shown in Figure 

1(a). For the purpose of comparisons, two types of regular lattice structures exhibiting a non-

negative Poisson’s ratio are also designed (Figure 6.1 (a)). By filling the inverse domains of each 

lattice structure with another material as the matrix, we can design the lattice structure reinforced 

composites. The symmetry and volume distribution in these structures can be precisely controlled 

by tailoring the thickness of ligaments in each lattice structure. Figure 6.1 (b) displays the proposed 

re-entrant honeycomb reinforced composites, chiral truss reinforced composites, regular 

honeycomb reinforced composites, and truss reinforced composites, where the volume fractions 

of the reinforcing phase are all set to 20%. In our designs, the phase of lattice structures is set as 

the reinforced domain, which is fabricated with a glassy polymer (VeroWhite), and the inversed 

phase is set as the matrix domain, which is fabricated with a rubber-like material (TangoPlus). 

6.2.2 Sample fabrication 

The specimens were fabricated using an Objet Connex260 multi-material 3D printer (Stratasys, 

Ltd), which allows simultaneous printing of two different materials. The specimens for 

compression tests consist of 4 × 4 unit cells, resulting in prototype dimensions of 40 mm × 40 mm, 

which are shown in Figure 6.1 (c). Focusing on the 2D in-plane mechanical behavior of these 

structures, we, therefore, design the thickness of the specimens as 20 mm to avoid the out-of-plane 

deformation. The minimum geometric size of the lattice reinforcement in the composites is around 

200 μm, which is at least one order of magnitude greater than the minimum resolution (16 μm) 
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provided by the 3D printer. Considering the anisotropic nature of the 3D printing, all the specimens 

were printed along the same orientation to avoid the influence of the layer orientation on the 

mechanical properties of the material. The as-fabricated specimens were kept at room temperature 

for 7 days to allow for the saturation of the curing. 

 

Figure 6.1 Schematics of lattice structures, lattice reinforced composite structures and 3D-printed lattice 

reinforced composite specimens. Schematics of (a) lattice structures, (b) lattice reinforced composite 

structures and (c) 3D-printed lattice reinforced composite specimens consisting of 4 × 4 unit cells 

with re-entrant honeycomb, chiral truss, honeycomb, and truss structures.  
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6.2.3 Mechanical testing 

To capture the mechanical response of the 3D printed constituent materials (VeroWhite and 

TangoPlus), the uniaxial compression tests of cylinder samples were performed based on ASTM 

D695 standard. The uniaxial compression tests for cylinder samples and the cubic composite 

samples were performed using a MTS mechanical tester (C43) with a 10 kN load cell. All the 

experiments were conducted in a quasi-static regime with a constant strain rate of 0.001 s-1. The 

load-displacement curves measured from the uniaxial compression tests were then transferred into 

nominal stress-strain behaviors based on the measured dimensions of the specimens. Young’s 

modulus was calculated from the initial linear region of the nominal stress-strain curves. The 

energy absorption was computed as the work under the nominal stress-strain curve before 25% 

uniaxial compressive strain for each composite sample. Images of the specimens at various loading 

conditions were taken at a rate of 1 FPS (Vic Snap, Correlated Solution). The deformation and 

displacement contours of the samples were tracked by using DIC (Vic-2D, Correlated Solution). 

The image processing software (ImageJ 1.49 q) was used to determine the displacement of the 

center area of the specimens in order to calculate the Poisson’s ratio at each level of applied 

compression. 

6.2.4 Finite element analysis 

The numerical simulations related to the mechanical response of the lattice reinforced composites 

under uniaxial compression were conducted using the commercial FE package ABAQUS/Standard 

(Simulia, Providence, RI). Models with 4 × 4 unit cells are used in all of the simulations. All 

models are generated by plane strain elements CPE4R and meshed after a convergence test. In 

addition, geometric and material nonlinearities are taken into consideration to enable the large 

deformation of the structure. Due to the layer by layer manufacture process of 3D printing, the 
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mechanical properties of the printed samples strongly depend on the printing directions [214]. 

While in our numerical simulations, an isotropic material model is adopted. The constituent phases 

are taken to be a glassy polymer and an elastomer material. The stress-strain behavior of the glassy 

polymer is captured using an elastic-viscoplastic model which is exported from the true stress-

strain relation of VeroWhite as shown in Figure 6.2. The elastomeric stress-strain behavior of 

TangoPlus is modeled as a hyperelastic material based on the Arruda-Boyce hyperelastic model 

[215] with an initial shear modulus of 0.213 MPa and locking stretch of 1.90. To simulate the 

experimental conditions in the numerical analysis, a uniaxial displacement loading is applied on 

the top surface, while the bottom is fixed along the vertical direction.  

6.3 Compression behavior of auxetic composites 

3D printed constitutive materials are first mechanically tested under uniaxial compression by 

following the ASTM D695 standard. Figure 6.2 shows the compressive stress-strain responses of 

the two constitutive materials and the mechanical properties extracted from these stress-strain 

curves are presented in Table 6.1. For the 3D printing material VeroWhite, the stress-strain 

behavior exhibits initial linear elasticity, yielding, post-yield, strain softening, and subsequent 

strain hardening at larger strains (see Figure 6.2 (a)).  While for 3D printing material TangoPlus, 

the stress-strain curve is J-shape indicating a hyperelastic behavior.  These measured mechanical 

responses and extracted data will be implemented in the commercial finite element software. 
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Figure 6.2 The stress-strain response of 3D printed constituent materials. The stress-strain response of the 

(a) VeroWhite (reinforcement phase) and (b) TangoPlus (matrix phase) materials used in this 

study. 

Table 6.1 Mechanical properties of the 3D-printed constitutive materials. 

Material Young’s 

Modulus 

(MPa) 

Compressive 

Yield Strength 

(MPa) 

Ultimate 

compressive 

strength (MPa)  

Toughness 

(J/m3) 

 

Energy absorption 

(strain=0.25) 

(J/m3) 

VeroWhite 1513 50.5 187.5 42.3 11.0 

TangoPlus 0.77 - ~2.1 0.38 0.02 
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6.3.1 Mechanical response of auxetic lattice reinforced composites 

We first examine the compressive behavior of the auxetic lattice reinforced composites from an 

experimental standpoint. Four types of architected lattice reinforced composites with re-entrant 

honeycomb, chiral lattice, regular honeycomb, truss lattice topology are fabricated using 3D 

printing (Figure 6.3 (a)). Here, we use the same volume fraction of reinforcement phase of 20%. 

The stress-strain curves show good repeatability for each composite as can be seen in Figure 6.3 

(b). The re-entrant honeycomb reinforced composites demonstrate clear superiority over the other 

three composites. A sudden drop in the stress-strain response of the re-entrant honeycomb 

reinforced composites is observed after the stress reaches its maximum. This is because of the 

instability of the re-entrant honeycomb structures during compressive deformation which will 

locally maximize the stress, resulting in a catastrophic failure. While the curves of the chiral lattice, 

regular honeycomb, and truss honeycomb reinforced composites exhibit smooth curved transition 

up to a strain of 0.3, which is due to the stability of the structures. Figure 6.3 (c) quantitatively 

shows that the Young’s modulus of the re-entrant honeycomb reinforced composites are four times 

larger than that of the chiral truss and regular honeycomb reinforced composites, and five times 

larger than that of the truss reinforced composites. Moreover, the energy absorption at a strain of 

25% of the re-entrant honeycomb reinforced composites is three times larger than that of other 

three types of composites. Because re-entrant honeycomb lattice [216] and chiral lattice [78] are 

two typical auxetic structures with negative Poisson’s ratio effect (see in Figure 6.4 (e)), these 

results clearly show the advantage of employing auxetic lattice geometries especially re-entrant 

honeycomb structure in enhancing the mechanical properties of lattice reinforced composites. 
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Figure 6.3 Mechanical response of the 3D-printed lattice reinforced composites during uniaxial compression 

tests. (a) The 3D-printed composites with a re-entrant honeycomb reinforced, chiral truss 

reinforced, regular honeycomb reinforced, and truss reinforced designs. (b) Nominal stress and 

strain curves for various designs. For each design, three specimens are tested to validate the 

repeatability. (c) Calculated Young’s modulus from the initial linear region of the nominal stress-

strain curves and computed energy absorption as the work under the nominal stress-strain curve 

before 25% uniaxial compressive strain for each composite sample. 

Figure 6.4 shows a series of images that exhibit the deformation behavior of these four lattice 

reinforced composites at different strain levels. It is clear that at a small compressive strain (<0.05), 

the re-entrant honeycomb reinforced composites exhibit a lateral shrinkage in average, which 
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indicates that the auxetic lattice reinforced composite still has auxetic behavior at small 

deformation, as shown in Figure 6.4 (a). However, the instability of re-entrant honeycomb 

reinforced composite can be observed starting from the strain of 0.1, resulting in a peak stress in 

the stress-strain curve as seen in Figure 6.3 (b). Moreover, the instability of the structures under 

continuous compressive loading causes a local stress concentration, leading to the failure of the 

re-entrant honeycomb reinforced composite at a strain of around 0.3. Although the chiral lattice is 

also an auxetic structure, the chiral lattice reinforced composites do not exhibit obvious auxetic 

behavior at small deformation, as shown in Figure 6.4 (b). This is because the matrix elastomer as 

the inverse phase inhibits the rotation of the chiral reinforcement phase, resulting in a reduced 

lateral shrinkage. In contrast to the auxetic lattice reinforced composites, both the regular 

honeycomb and the truss reinforced composites exhibit a clear lateral expansion during the 

deformation in Figure 6.4 (c)-(d).  Figure 6.4 (e) shows the experimental and numerical study of 

the Poisson’s ratios for all four lattice reinforced composites and their corresponding cellular 

counterparts under uniaxial compression tests. To quantify the deformation taking place in the 

composites during the experiments, we calculate the deformation change by identifying four points 

in the center avoiding the deformation near the four edges of the specimen under the influence of 

boundary conditions, see in Figure 6.4 (f). Here, the rectangular frames represent the original edges 

of the specimens before the compressive deformation. One can notice the lateral shrinkage of the 

re-entrant honeycomb reinforced composites, slightly lateral shrinkage combined with the rotation 

of the chiral lattice reinforced composites and the lateral expansion of the honey comb and truss 

reinforced composites at a macroscopic compressive strain of 0.05.  Experimental and numerical 

results related to the Poisson’s ratios are in excellent agreement for the four types of composites. 

Note that, for non-auxetic structures (truss and regular honeycomb), the Poisson’s ratios of the 
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composites and the corresponding cellular counterparts are almost identical, indicating no change 

in terms of deformation mechanism. However, for the chiral lattice, the Poisson’s ratios of the 

composite are negative and much larger than that of the cellular counterpart. This is because the 

matrix phase obstructs the rotation of the chiral lattice, which decreases the auxetic behavior of 

structures. Moreover, for re-entrant honeycomb, the Poisson’s ratio of the composite is slightly 

larger than that of the cellular counterpart, indicating that the matrix phase has minor effects on 

the shrinkage of re-entrant honeycomb lattice. Therefore, the re-entrant honeycomb reinforced 

composites also have as strong auxetic behavior as the re-entrant honeycomb cellular counterpart. 

This auxetic behavior of the composites contributes the enhancement of mechanical properties of 

the auxetic lattice reinforced composites.  
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Figure 6.4 Experimental images of deformation and the calculated Poisson’s ratios for each composite 

design. Experimental images of (a) re-entrant honeycomb reinforced composites, (b) chiral truss 



 

99 

 

reinforced composites, (c) regular honeycomb reinforced composites, and (d) truss reinforced 

composites at different levels of macroscopic strain: 0, 0.05, 0.1, 0.15 and 0.2 during uniaxial 

compression tests. (e) Experimental and numerical results of the Poisson’s ratios for lattice 

reinforced composites and the corresponding cellular counterparts under uniaxial compression 

tests. (f) Experimental images at a macroscopic strain of 0.05 for each composite. The rectangular 

represent the original edges of the specimens before the compressive deformation. 

To further understand the compressive behavior of these lattice reinforced composites and explain 

the superior mechanical properties of re-entrant honeycomb reinforced composites, we use Digital 

Image Correlation (DIC) (VIC-2D, Correlated Solutions) to analyze the experimental 

displacement contours. The images in Figure 6.5 exhibit the horizontal displacement contours of 

four lattice reinforced composites at a vertical compressive strain of 0.05. We notice that the re-

entrant honeycomb reinforcement phase exhibit shrinkage in the horizontal direction which 

increases the load transfer between the glassy polymer and the elastomer in Figure 6.5 (a). The 

chiral lattice reinforced composite has the asymmetry displacement contours on the surface, as 

shown in Figure 6.5 (b), due to the rotation mechanism when deformed. Compared with auxetic 

reinforced composites, the regular honeycomb, and the truss reinforced composite exhibit clear 

homogeneous horizontal expansion both in reinforcement phase and matrix phase, as shown in 

Figure 6.5 (c)-(d). It is clear that in non-auxetic reinforced composites the elastomer matrix phase 

is only compressed in the vertical direction. By contrast, the elastomer matrix phase of the auxetic 

reinforced composites, especially the re-entrant honeycomb reinforced composite, is squeezed in 

both vertical and horizontal directions, indicating a state of biaxial compression. Therefore, the 

auxetic reinforced composite exhibit significantly enhanced mechanical properties during uniaxial 

compressive deformation.  
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Figure 6.5 Experimental displacement contours for each composite design. Experimental displacement 

contours of (a) the re-entrant honeycomb reinforced composites, (b) the chiral truss reinforced 

composites, (c) the regular honeycomb reinforced composites, and (d) the truss reinforced 

composites using digital image correlation at a macroscopic strain of 0.05 during uniaxial 

compression tests. 

6.3.2 Comparisons between auxetic lattice and auxetic lattice reinforced composites 

It is known that typical cellular microstructures are used to achieve a negative Poisson’s ratio, so 

that as expected the stiffness if not that high [193,217] And based on different deformation 

mechanisms, existing auxetic cellular solids can be roughly classified into two categories: 

symmetric units with re-entrant angles, and asymmetric units that rotate when deformed. The 

deformation mechanism for them is mostly rotation induced bending-dominated. However, some 
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cellular structures such as honeycomb, octet, Kagome, etc., have stretching dominated deformation 

mechanism, therefore, exhibiting higher effective stiffness. We have shown that by exploiting the 

negative Poisson’s ratio lattices into the composite design, improved mechanical properties such 

as stiffness, toughness can be achieved. To further show the superiority of the auxetic lattice 

reinforced composites, we compare the mechanical properties of lattice reinforced composites and 

their lattice cellular counterparts under uniaxial compression tests (Figure 6.6). The stress-strain 

curves combined with the deformation images of the composites and their counterpart cellular 

structures at the compressive strain of 0.25 are also shown in Figure 6.6 (a)-(d). For the re-entrant 

honeycomb and chiral cellular, the local instability occurs layer by layer with increasing strain, 

which makes the stress level keep on a plateau. For the regular honeycomb and truss cellular, 

buckling of some local ligaments also makes the stress level on a plateau.  By contrast, these 

composites exhibit a strain hardening effect under the uniaxial compression. This is because the 

elastomeric matrix phase provides the additional support of this structures, which increases the 

stress level. Moreover, combining the lattice phase of glassy polymer with the matrix phase of 

rubber-like polymer enables the deformation mechanism from the local deformation to the global 

mechanism. This is because the matrix phase spreads the plastic deformation and decreases both 

the stress concentration and the local deformation. Therefore, the mutual constraints between two 

phases of the composites change the local instability to a global instability (auxetic lattice) or local 

buckling to a global non-catastrophic dissipative event (non-auxetic lattice). The calculated 

Young’s modulus and energy absorption are presented for each composite and its cellular 

counterpart in Figure 6.6 (e)-(h). As expected, the typical auxetic cellular structures including re-

entrant honeycomb and chiral lattice both exhibit lower stiffness and lower energy absorption 

comparing to regular honeycomb and truss, as seen in Figure 6.6 (e) and (g). Because the negative 
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Poisson’s ratio of the auxetic cellular structure is obtained through bending and/or rotation inside 

the microstructure, this also reduces their stiffness as compared to the case of non-auxetic cellular 

structure with stretching-dominated ligaments. Interestingly, when we use the auxetic lattice 

structure as a reinforcement phase in a composite, the auxetic behavior will enforce both the 

stiffness and energy absorption of the composites. For re-entrant honeycomb reinforced 

composites, the enhancements of stiffness and energy absorption are 9 and 18 times larger than 

that of the re-entrant honeycomb cellular structures, respectively. However, little enhancement of 

stiffness is observed in the non-auxetic reinforced composites comparing to their cellular 

counterparts (see Figure 6.6 (f)).  

 

Figure 6.6 The comparison of mechanical properties for the lattice reinforced composites and the lattice 

counterpart structures are shown. The uniaxial compressive stress-strain curves for (a) the re-entrant 

honeycomb, (b) the chiral truss, (c) the regular honeycomb and (d) the truss lattices for reinforced 

composites and the corresponding cellular structures, respectively. For each structure, the 

deformation images of the composite and its counterpart cellular at the compressive strain of 0.25 

are shown. (e) Calculated Young’s modulus and (g) the estimated energy absorption for each 
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specimen. The relative enhancement of (f) Young’s modulus and (h) energy absorption of the 

reinforced composites to their cellular lattice counterparts.    

To further understand this, finite element simulations are performed on the four types of lattice 

reinforced composites and the corresponding lattice cellular structures, as shown in Figure 6.7. It 

is clearly noticed that the elastomer phase in the auxetic reinforced composites contributes more 

significantly to the stress response (and hence enhance the stiffness) than that of the non-auxetic 

reinforced composites (Figure 6.7 (a)). The stress level in the elastomer phase in the non-auxetic 

reinforced composites is much lower, indicating the little contribution of the matrix phase in the 

load resistance. However, in auxetic reinforced composites, elastomer phase can suppress the 

bending and rotation of the glassy polymer ligaments, making them more difficult to deform. 

Furthermore, when comparing the stress contour of lattice structures in the composites and the 

cellular, we clearly find the difference between the auxetic structures and the non-auxetic 

structures (see Figure 6.7 (b) and 6.7 (c)). In auxetic composites, the ligaments exhibit larger stress 

comparing with those in auxetic cellular, indicating the contribution of them to resist compression 

loading. In non-auxetic composites, the ligaments show almost the same stress level as those in 

their counterpart cellular, indicating the deformation mechanism for non-auxetic lattice is almost 

the same both in the composites and cellular. Therefore, the mutual constraints between two phases 

of the auxetic lattice reinforced composites enable enhanced stress contours by additional support 

of the matrix phase and the enhanced resistance of the lattice phase. These results suggest the 

possibility to tailor the auxetic lattices as reinforcement phase in a composite to achieve enhanced 

mechanical properties. 
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Figure 6.7 The von Mises stress distribution in the lattice reinforced composites and the corresponding 

cellular structures at a nominal compressive strain of 0.05. (a) The von Mises stress distribution in 

elastomer phase and (b) the reinforcing phase of glassy polymer in reinforced composites. (c) The 

von Mises stress distribution in the cellular counterparts of a glassy polymer. 

6.3.3 Effect of negative Poisson’s ratio 

We have demonstrated that the auxetic lattice reinforced composites exhibit enhanced mechanical 

properties such as stiffness and energy absorption capability compared with non-auxetic lattice 

reinforced composites. These improved mechanical properties are attributed to the rational 

structural design of lattice reinforcement combined with the material selections for the 

reinforcement and matrix phases. In particular, the negative Poisson’s ratio in the auxetic 

reinforcements is crucial to the unusual combination of mechanical performance. To quantitatively 
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understand the effect of Poisson’s ratio on the other mechanical properties such as the stiffness 

and toughness of the lattice reinforced composites, we experimentally explore the response upon 

compressive tests of the composites reinforced by honeycombs with different Poisson’s ratios 

achieved by varying lattice structure designs. Here we use the same unit cell size as h = l =10 mm, 

as shown in Figure 6.8 (a). By assuming the value of Poisson’s ratio of each cellular structure as 

yxv , we calculate that arctan( / )yxl h = , ( tan ) / 2H h l = −  and / 2cosL l = , based on 

Gibson’s model [61,216]. Here, the volume fraction of honeycomb reinforcement phase is 20% 

for each design for a fair comparison. The results reported in Figure 6.8 (b) indicate that the 

enhanced mechanical properties are achieved in the presence of the honeycomb designs with the 

negative Poisson’s ratios. Figure 6.8 (c) shows the corresponding design of honeycomb reinforced 

composites with Poisson’s ratio from -0.9 to 1. Note that when the Poisson’s ratio of the 

composites is zero or positive, the nominal stress-strain curves show a rubber-like hyperelastic 

behavior; when the Poisson’s ratio of the composites is negative, a peak force is observed in the 

nominal stress-strain curves because the instability occurs in the composites with negative 

Poisson’s ratios. Moreover, the calculated Young’s modulus for each composite shows that the 

honeycomb reinforced composites with lower Poisson’s ratios exhibit higher Young’s modulus, 

as shown in Figure 6.8 (d). For example, the Young’s modulus of the composite with a Poisson’s 

ratio of -0.9 is 10 times larger than that of the composite with a Poisson’s ratio of 1. Furthermore, 

the energy absorption at a strain of 0.25 for each composite shows that the honeycomb reinforced 

composites with negative Poisson’s ratios have better energy absorption than the honeycomb 

reinforced composites with positive Poisson’s ratios (Figure 6.8 (e)). Differently, the composite 

with a Poisson’s ratio of -0.2 exhibits the largest energy absorption capability. This is because the 

composites with Poisson’s ratios smaller than -0.2 have instabilities in earlier strain region and it 
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results in smaller peak stress, leading to lower energy absorption capability. Finally, it is clear that 

the composites with auxetic reinforcement phase exhibit enhanced mechanical properties 

comparing to the composites with non-auxetic reinforcement phase. These results offer a complete 

picture of the effect of Poisson’s ratio on the mechanical response of the lattice reinforced 

composites. 
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Figure 6.8 Effect of Poisson’s ratio on the mechanical properties of various honeycomb reinforced 

composites during the uniaxial compression test. (a) The unit cell geometry and the coordinate system 

used for regular honeycomb and re-entrant honeycomb. Here, h and l are the unit cell lengths; H 

is the length of the vertical cell wall and L is the length of the inclined cell wall; t is the thickness 
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of the cell walls; θ is the angle and for re-entrant honeycomb, the value is negative.  (b) The 

nominal stress-strain curves. (c) The geometry design for honeycomb reinforced composites with 

different Poisson’s ratio of the reinforcement honeycombs. (d) Calculated Young’s modulus and 

(e) the estimated energy absorption as a function of the Poisson’s ratio of the reinforcement 

honeycombs. 

6.3.4 Effect of volume fraction 

While the results reported in Figs. 6.3-6.8 are all for composites with the volume fraction of the 

reinforcement phase as 20%, further tunability can be achieved by altering the volume fraction of 

the reinforcement phase. Figure 6.9 presents the experimental results on the stress-strain response 

of the four lattice reinforced composites at five different volume fractions from 10% to 50%. The 

stress-strain curves show an increase in the overall mechanical properties as the volume fraction 

increases. The results indicate that the auxetic reinforced composites, including the re-entrant 

honeycomb and the chiral lattice reinforced composites, show clear higher stress level over the 

non-auxetic reinforced composites from low to high volume fraction of the reinforcement phase. 

Moreover, when the volume fraction of the reinforcement phase is increased, all the stress-strain 

curves have a transition from a rubber-like hyperelastic behavior to a highly nonlinear behavior 

followed by brittle fracture of the reinforced composites. This is because the slenderness ratio of 

ligaments increases with the increase of the volume fraction of the reinforcement phase, making 

the reinforcement lattices more brittle. Therefore, continuous loading leads to the local 

catastrophic failure, resulting in a dramatic drop in the stress-strain curves.  
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Figure 6.9 The stress-strain responses of four types of composites at different volume fractions of the 

reinforcing phase. (a) Re-entrant honeycomb reinforced composites, (b) chiral truss reinforced 

composites, (c) regular honeycomb reinforced composites, and (d) truss reinforced composites. 

The Young’s modulus and energy absorption at a strain of 0.25 calculated from the stress-strain 

responses are plotted versus the volume fraction of the reinforcement phase in Figure 6.10. The 

re-entrant honeycomb reinforced composite has the highest Young’s modulus and energy 

absorption capability comparing to the other three composites, especially at low volume fraction 

(below 40%) of the reinforcement phase. The chiral lattice reinforced composite is the second best 
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performing composites in general for overall mechanical properties. The non-auxetic lattice 

reinforced composites exhibit relative weak mechanical properties comparing to auxetic lattice 

reinforced composites. Generally, the Young’s modulus of the cellular materials, such as metal 

foams and lattice structures, can be described by a scaling law between the mechanical property 

and the relative density [61,218]. Since the mechanical property of lattice reinforced composites 

is dominated by the reinforcement phase, we use a scaling law to describe the response of these 

composites in this study. For the Young’s modulus, cE  of the composite can be described as a 

function of the modulus of material for reinforcement phase, rE  and the volume fraction of the 

reinforcement phase, /r cV V , via 
1 ( / )n

c r r cE C E V V=  where 1C  and n  can be obtained by fitting 

the experimental data. Similar relation for energy absorption, cU is 
2 ( / )m

c r r cU C U V V=  where 

rU is the energy absorption of the bulk material of the reinforcement phase at the same strain level, 

presented in Table 6.1; 2C  and m  can be obtained by fitting the experimental data. The parameters

1C , 2C , n  and m are listed in Table 6.2. The scaling exponent close to 1 indicates a stretch-

dominated deformation behavior whereas an exponent of 2 typically indicates bending-dominated 

deformation. It is also established that structures governed by a stretching-dominated deformation 

offer higher stiffness and strength per unit weight than those governed by bending-dominated 

deformation. In our lattice reinforced composites, the scaling exponent for re-entrant honeycomb 

reinforced composites are found to be 1.369n =  and 1.174m = . While for the other composites, 

the scaling exponents are larger or close to 2. These results indicate that the re-entrant honeycomb 

reinforced composites are close to stretch-dominated deformation in overall while the other 

composites are close to bending-dominated during uniaxial compressive loading. Moreover, this 

trend can be noticed in the local analyses of the composites (Figure 6.7). We can notice that in 
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honeycomb and truss composites, the matrix has neglectable effects on the deformation 

mechanism of lattice structures. We believe that the deformation mechanisms of non-auxetic 

composites and cellular are more bending-dominated. However, in re-entrant and chiral truss 

composites, the matrix provides additional support and suppresses the bending and rotation of the 

ligaments of lattice structures, making them more difficult to deform, changing the deformation 

mechanism to more stretching-dominated. As a result, the deformation mechanism significantly 

affects the mechanical response of the lattice reinforced composites. This nearly linear scaling 

relation of the re-entrant honeycomb reinforced composites indicates that we can design light 

weight yet stronger composites. These results suggest great potentials to tailor the geometric 

features of the lattice reinforced composites to achieve tunable mechanical properties.  
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Figure 6.10 Comparison of mechanical properties of the lattice reinforced composites as a function of the 

volume fraction of reinforcement phase: (a) Young’s modulus, (b) energy absorption.  

Table 6.2 The relations of the Young’s modulus and energy absorption at a strain of 0.25 to the 

volume fraction of the reinforcement phase for the lattice reinforced composites. 

Lattice reinforced composites 

 

Young’s modulus 

FEA Strength 

Energy absorption 

FEA Modulus 

 

 C1 n C2 m 

Re-entrant composite 0.100 1.369 0.186 1.174 
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Chiral composite 0.204 2.340 0.349 1.817 

Honeycomb composite 0.075 1.877 0.138 1.303 

Truss composite 0.206 2.630 0.186 1.676 

 

6.3.5 Discussion 

In the previous sections, we focus on the 2D lattice structures and demonstrate that 2D 

auxetic lattice reinforced composites exhibit enhanced mechanical properties. Recently, 3D 

auxetic systems consisting of networks of buckliball [13], chiral-like structures [100], orthotropic 

laminated open-cell frameworks [219], and lattice metamaterials with curved beams [99,102,220] 

have been designed. Indeed, most of these 3D auxetic structures are porous thus are very suitable 

to serve as reinforcements in composites. Conceptually, under uniaxial compression, the soft 

matrix will be in a state of triaxial compression, thereby leveraging the overall mechanical 

performance of the composites [174,221,222].   

In this study, we focus on demonstrating the effect of geometric features of auxetic 

reinforcements on the mechanical behaviors of the designed composites, however, the selection of 

materials for each phase of composites is still an important issue. Due to the limitation of our 3D 

printer, we use the glassy polymer as the reinforcement phase and a rubber-like material as the 

matrix. Recently, additive manufacturing enables the fabrication of not only polymeric but also 

metallic and ceramic materials with intricate cellular architectures [14]. Cellular materials, such as 

lattice structures, can easily be fabricated by metal powder bed fusion [223,224]. Although given 

the high melting point of ceramics, a few 3D printing systems could print ceramics either by 

selective curing of a photosensitive resin that contains ceramic particles, by binder jetting or by 

selective fusion of a powder bed with a laser [225,226]. Moreover, post-pyrolysis of 3D printed 



 

114 

 

polymer precursors can fabricate carbon [64,227] or ceramic materials [228] with architected 

structures. Therefore, as new methods are emerging and maturing, fabrication of more and more 

complex cellular architectures especially auxetic structures will be enabled. Such development 

will facilitate fabricating auxetic reinforced composites with various materials as the reinforcement 

phase for a wide range of applications and further creating multifunctional materials. 

Finally, the dynamic response of the auxetic reinforced composites will be of great interest despite 

we have studied the quasi-static compressive behaviors here. For example, improved impact 

resistance has been recently observed in 3D-printed bioinspired composites with hierarchical 

conch shell structures using the same material systems as ours [229]. Indeed, the dynamic effects 

including the micro-inertial effect, shock wave effect and strain rate effect of the materials have 

very significantly influences to the mechanical behaviors of the 3D-printed composites. Especially 

for the glassy polymer VeroWhite, its yield strength significantly increases as strain rate increases. 

In the future work, the dynamic behaviors of the auxetic reinforced composites under different 

levels of strain rates will be systematically investigated. 

6.4 Conclusion 

In summary, we have investigated the macroscopic mechanical responses of the auxetic lattice 

reinforced composites through a combination of 3D printing, experiments, and numerical analyses. 

We have shown that auxetic lattice reinforced composites have enhanced mechanical performance, 

achieving a unique combination of stiffness and energy absorption, compared with the non-auxetic 

lattice reinforced composites. In particular, by harnessing the negative Poisson’s ratio effect in the 

lattice reinforcements, we find that the mutual constraints between the auxetic reinforcement and 

matrix enable enhanced mechanical properties by gaining additional support from the matrix 

phase. We further quantify the effect of Poisson’s ratio on the other mechanical properties of 
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various honeycomb reinforced composites, indicating that the degree of auxetic behavior could be 

used to tune the stiffness and energy absorption of the lattice reinforced composites. Finally, we 

use scaling law to evaluate the effect of volume fraction of the reinforcement phase in the 

composites, showing that the re-entrant honeycomb reinforced composite exhibit nearly linear 

scaling. These results provide guidelines for engineering and developing a new class of auxetic 

reinforced composites with enhanced mechanical performance for a wide range of applications 

and further creating multifunctional materials.  
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Chapter 7. The fracture behavior of Interpenetration Phase Composites 

7.1 Introduction 

Structural systems in the defense, aerospace, automotive, energy, and semiconductor industries are 

often under complex loading conditions, such as multi-axial loading, vibration, shock, and, high-

velocity impact. This triggers the demands for the development of innovative structural materials, 

possessing a compelling combination of mechanical robustness, lightweight, affordability, and 

versatility.  Composite materials consisting of multiple compositions can have improved overall 

performance due to the synergistical contribution of each composition in the composites. Among 

these composites, interpenetrating phase composite (IPC, also known as co-continuous 

composite), in which each constituent phase forms a completely interconnected three-dimensional 

(3D) network, has attracted a lot of research interests. [230-233] Indeed, the interpenetrating 

microstructures are widely spread in biological structural materials, such as sea urchin skeleton, 

[234] human bone, [235] microvascular networks, [236] and botanical systems. [237] These 

natural IPCs exhibit rich multifunctionalities including thermal, mechanical, and other transport 

properties. Intrinsically, these prominent properties are controlled by their inherent architectures. 

Each constituent phase completely interpenetrates through the composite microstructure in all 

three dimensions and contributes the maximum of its most desirable properties to the overall 

properties of the composite, thereby endowing the composite with a more attractive combination 

of properties and functionalities. 

To understand the multifunctionalities observed in the natural IPCs systems, considerable efforts 

have been recently devoted to developing analytical models and computational frameworks to 

evaluate the effective thermal and mechanical performance of synthesized IPCs. For example, 

analytical methods based mainly on Voigt and Reuss models can accurately predict the effective 
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thermal and mechanical properties of the IPC. [237-240] Numerical methods such as finite element 

modeling have been extensively employed to capture the elastic, thermal, dynamic, and fracture 

properties of IPCs. [22,64,175,221,241-247] It should be pointed out that most of these IPCs are 

fabricated using conventional methods, such as squeeze casting process and pressureless melt 

infiltration, [248,249] where each phase is randomly distributed. Though the volume fraction can 

be precisely controlled, the inherent architecture is still ill-defined. For example, the dimensions 

of the ligaments have a nonuniform feature and each composition is randomly dispersed, which 

poses a great challenge to fabricate IPCs with fewer defects and accurately predict their effective 

properties.  

Recently, studies show that materials with well-defined architectures could be exploited to explore 

new properties and novel functionalities. [14,160,250-255] Along with this, advanced additive 

manufacturing techniques, such as 3D printing, have gained much attention due to its capability of 

creating complex topologies with fine features composed of a multitude of materials with varying 

mechanical properties quickly, cheaply, and at a large scale. [211,255-262] For example, improved 

impact resistance has been observed in 3D printed bioinspired composites with hierarchical conch 

shell structures, indicating a crack-arresting mechanism embedded in the natural architecture. 

[263] As reported in our previous work, the 3D periodic IPCs based on the triply periodic minimal 

surfaces (TPMS) of glassy polymer/rubbery polymer materials at micrometer resolutions can be 

readily fabricated through 3D printing. [241] A combination of high stiffness, strength, energy 

absorption, and damage tolerance have been achieved in the 3D printed IPCs with different lattice 

symmetries. More recently, more TPMS topologies are used to design IPCs and their compressive 

properties and electrical conductivities [264] are experimentally tested [261,262,265] and 

numerically analyzed [266,267]. However, a quantitative understanding of the fracture behavior 
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of architected IPCs is still lacking and especially the measurement of the fracture toughness of 

such complex materials is less well defined.  

In this paper, we investigate the fracture toughness of a group of 3D printed IPCs with different 

lattice symmetries. Three-point bending tests are performed on the singled edge notch bend 

(SENB) samples to quantify the fracture properties. The results are compared with conventional 

composites with particle reinforced, fiber reinforced, and laminates topologies. Furthermore, we 

demonstrate that the fracture toughness of the proposed IPCs can be tuned through controlling the 

stiffness contrast of the compositions and printing directions. 

7.2 Design and fabrication of Interpenetration Phase Composites 

The specimens are fabricated using an Objet Connex260 multi-material 3D printer (Stratasys) 

which allows the simultaneous printing of two different materials. The specimens for compression 

tests consist of 4 × 4 × 4 unit cells, resulting in prototype dimensions of 10 mm × 10 mm × 10 mm. 

The specimens for the fracture toughness measurement are shown in Figure 7.1 (d), which consist 

of 54 × 12 × 6 unit cells resulting in a dimension of 135 mm × 30 mm × 15 mm. The unit cell 

dimensions of the specimens for compression tests and 3-point bending tests are both 2.5 mm × 

2.5 mm × 2.5 mm. The dogbone specimens for glassy polymer (material A, B4, B5) and the 

dogbone specimens for rubber-like polymer (material B1, B2, B3 and B) are fabricated according 

to the ASTM D638 and the ASTM 412, respectively. The minimum geometric size of inner 

structures in the crystalline composites is around 200 μm, which is at least one order of magnitude 

greater than the minimum resolution (16 μm) provided by the 3D printer.  Considering the 

anisotropic nature of 3D printing, the layer orientation is found to influence the mechanical 

properties of the material; therefore, all the specimens are printed along the same orientation. The 
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as-fabricated specimens are kept at room temperature for 7 days to allow for the saturation of the 

curing. 

The model system of IPCs studied here is based on microstructures which combine the rod-

connected lattices and their inverse counterparts. Here three lattice symmetries are considered 

including simple-cubic (SC), body-centered-cubic (BCC), and face-centered-cubic (FCC) lattices.  

Figure 7.1 (a-c) displays the proposed 3D periodic SC, BCC, and FCC IPCs where the volume 

fraction of each phase is set to 50%. In our design, the phase of rod-connected lattices is set as the 

hard domain and the inversed phase is set as the soft domain. Compared to previous IPCs with 

triply periodic minimal surfaces, [241] these IPCs with rod-connected counterparts are easier for 

design with simple geometric parameters and unit cells. The symmetry and volume distribution in 

these structures can be precisely controlled by tailoring the radius of rod ligaments. The relations 

between the volume fraction of rod-connected lattices’ domain,   and the radius/periodicity ratio, 

r/l are given by: 

2 3

13 ( ) ( )
r r

C
l l

 = −  for SC,                                                                                                                              (7.1) 

2 3

24 3 ( ) ( )
r r

C
l l

 = −  for BCC,                                                                                                                     (7.2) 

2 3

312 2 ( ) ( )
r r

C
l l

 = −  for FCC,                                                                                                                    (7.3)  

where  the radius of the rod ligaments is r  and the length of the unit cell is l . The cubic correction 

coefficients 1 11.318C = , 2 39.201C =  and 3 154.518C =  have been identified from fitting Eqs. 

(7.1)- (7.3) to CAD calculations. [268]  
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Figure 7.1 Schematics of 3D IPCs with different lattice symmetries. (a) 3D periodic interpenetrating 

phase composites (IPCs) consisting of 2×2×2 representative volume elements with simple cubic, 

body-centered-cubic l, and face-centered-cubic lattice symmetries. (b) The corresponding phase 

of rod-connected counterpart in each IPC . (c) The corresponding inverse phase in each IPC. 

Experimental setup for the 3-point bending test. (d) Single edge notched bend (SENB) specimen 

and test configuration. The dimensions of the specimen are defined as the width W, the length L 

and the thickness B. The load P is applied in the mid of specimens and the span length is S. The 

initial length of the notch is defined as a0. (e) The crack starter notch, where the width of the notch 

is defined as w and the angle of the initial crack tip is 30°. (f) The experiment setup of 3-point 

bending test of SENB specimen. 

In addition to the IPCs, the particle-reinforced composites (PCs), the fiber-reinforced composites 

(FCs) and the laminal-reinforced composites (LCs) are also designed and fabricated with the same 

amount of compositions to compare the fracture toughness. 
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The specimens for uniaxial compression and three-point bending tests are fabricated using a multi-

material 3D printer (Objet Connex260, Stratasys) and multiple photocurable prepolymers are used 

to form the hard and soft components (See Experimental section for more details). In this work, 

VeroWhitePlus, a glassy polymer, is used for the hard domains (labeled “A”) and TangoPlus, 

which is highly rubbery, is used for the soft domains (labeled “B”). The stiffness contrast between 

these two phases can be tailored by mixing VeroWhitePlus and TangoPlus via a digital material 

mode in the printer. The mixed materials are used for the hard component (labeled as “B1”, “B2”, 

“B3”, “B4” and “B5”). 

7.3 Experiment section  

In order to evaluate the mechanical properties of the constitutive materials, the uniaxial tensile 

tests are performed using the same MTS mechanical tester with a 10 kN load cell. All the 

experiments are conducted in a quasi-static regime with a constant strain rate of 0.001 s-1. Each 

tensile test is repeated for three replicates. The tensile specimens are tested under displacement 

controlled until failure. Using the data from uniaxial tension tests, the stiffness of each constituent 

materials under tension can be calculated. The uniaxial compression tests for IPC cubic specimens 

are performed using a MTS mechanical tester (C43 frame) with a 10 kN load cell. All the 

experiments are conducted in a quasi-static regime with a constant strain rate of 0.001 s-1. The 

load-displacement curves measured from the uniaxial compression tests are then transferred into 

nominal stress-strain behaviors based on the measured dimensions of the specimens. Young’s 

modulus XXE  and yield stress XX  for each specimen are calculated from the nominal stress-

strain curves. For each data point, three specimens have been tested and the average value is 

reported. Images of the specimens at various loading conditions are taken at a rate of 1 FPS 

(VicSnap, Correlated Solution). For fracture toughness measurement, three-point bending tests are 
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performed with the same mechanical tester at a constant displacement rate of 0.5 mm/min. Images 

of the specimens at various loading conditions are taken at a rate of 0.08 FPS. The J-approach was 

employed to capture inelastic contributions to the fracture resistance using the elastic compliance 

method in ASTM E1820. Compliance measurements from the unloading curves were made at 

intervals Δv = 0.25, 1 and 1 mm for the SC, BCC and FCC IPC samples, respectively. Calculation 

of the current crack length used the compliance along the loading line, and the J-approach was 

calculated using the measured applied load and crack mouth opening displacement, δ. The fracture 

toughness, 
( )J iK , is related to the J-approach by 1/2

( ) ( )( ')J i iK J E= , where   is the plain strain 

Young’s modulus, 2' / (1 )SE E = −  and   is the Poisson’s ratio. Since the samples were 

composites and not homogeneous solid materials, this study used the measured compressive 

moduli along the span length, 
XXE , which are tabulated in Table 7.1 

The J-integral approach outlined in ASTM E1820, 2013 is employed to evaluate the fracture 

toughness. At a point corresponding to v and P on the specimen force versus displacement record, 

the J-integral is calculated at the onset of every unloading cycle (given by the index i) performed 

in the loading regime. The value of J at an instant (i) in the loading regime is then given by the 

summation of an elastic component, Jel, and a plastic component, Jpl, as follows: 

                                                
( ) ( ) ( )i el i pl iJ J J= +                                                                           (7.4) 

The elastic component elJ  follows from 

                                                2

( ) ( ) /el i i XXJ K E=                                                                           (7.5) 
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where the XXE  is the measured value of Young’s modulus in the X direction. The value of 
( )iK at 

each unloading event is given as 

                                                            ( ) 3/2
( / )i

i i

PS
K f a W

BW

 
=  

 
                                                         (7.6)   

where the geometrical parameters S, B, and W are defined in Figure 7.1 (d). The calibration factor 

( / )if a W is given by  

                        

2

1/2

3/2

[1.99 1 (2.15 3.93 2.7 ]

( / ) 3

2(1 2 )(1 )

i i i i

i
i

i i

a a a a

a W W W W
f a W

a aW

W W

    
− − − +    

      =  
  + −

                (7.7) 

where 
( )ia is the current crack length. This crack length is estimated using the relation 

               2 3 4 5

( ) (0.999748 3.9504 2.9821 3.21408 51.51564 113.031 )ia W u u u u u= − + − + −        (7.8) 

where the factor u is related to the compliance via 

                                                     
( ) 1/21/ [( ) 1]

/ 4

XX iBWE C
u

S


= +                                                       (7.9) 

where  
( ) ( )( )i i

d
C

dP



=  is the compliance estimated from the crack mouth opening displacement at 

the onset of unloading.  

The plastic component of J is estimated using the deformation J definition via 

                               
( ) ( 1) ( ) ( 1)

( ) ( 1)

( 1) ( 1)

1 (
pl pl i pl i i i

pl i pl i pl

i i

A A a a
J J

b B b




− −

−

− −

    − − 
= + −      

       

                     (7.10) 
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where 1.9pl = , 0.9pl =  based on the Eq. A1.8 in ASTM E1820, 
( 1)ib −

 is the length of the 

uncracked ligament at the previous unloading event via 
( 1) ( 1)i ib B a− −= − . 

( )pl iA  is the area under 

the plastic load versus load-line displacement measurement. We estimate 
( )pl iA using 

                                            
( ) ( 1) ( ) ( 1) ( ) ( 1)( )( ) / 2pl i pl i i i pl i pl iA A P P v v− − −= + + −                                         (7.11) 

where ( )( ) ( ) ( ) ( )pl i i i v iv v P C= −  is the plastic part of the load-line displacement and ( )

( )

v i

i

dv
C

dP

 
=  

 
is 

the experimental compliance corresponding to the current crack length, 
( )ia . 

The fracture toughness at the unloading instant ( )i , 
( )J iK , is then calculated from the J-integral 

using the relation 1/2

( ) ( )( )J i i XXK J E= . 

7.4 Compression behavior of Interpenetration Phase Composites 

Indeed, the IPC structures have been previously studied numerically for their compressive 

mechanical properties. [269] The meshfree radial point interpolation method and unit cell-based 

finite element (FE) models are used to evaluate the elastic properties of 3D printed IPCs Here, we 

experimentally studied the compressive behavior including elastic, plastic deformation and failure 

mechanism. Figure 7.2 presents the comparison of mechanical response between IPCs and PCs 

under uniaxial compression. The stress-strain curves for IPCs exhibit initial linear elasticity, 

followed by yield and post-yield strain hardening (Figure 7.2 (a)). However, the stress-strain 

curves for PCs exhibit initial linear elasticity and maximum stress followed by failure (Figure 7.2 

(b)). Noticeably, IPCs exhibit higher stress level compared to those of PCs. We could envision that 

in IPCs, more volume of hard material is utilized to contribute to the stress level of stress-strain 

curves. As shown in our previous work, [64,221,241] this is because the continuous interfaces are 
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beneficial to the load transfer between the glassy polymer and the rubbery polymer. It is clearly 

noticed that the stress-strain relations of our IPCs consisting of glassy polymer and elastomer are 

different from the J-shape stress-strain relations of the IPCs with two elastomer. [246] While these 

soft crystals IPCs also revealed that the topological connectivity of dissimilar domains is of critical 

importance for tailoring the macroscopic mechanical properties and the mechanical anisotropy. 

Images of compressive deformation for FCC lattice IPC and FCC lattice of PC are shown in Figure 

7.2 (c) and (d), respectively. Cracking is observed in the interior of glassy polymer domain rather 

than at an interface between the phases in FCC lattice IPCs. The co-continuity of the structure 

constrains the cracking and enables these composites to provide energy absorption to larger strains 

before catastrophic failure. By contrast, the catastrophic failure could be observed in the matrix 

phase of the FCC lattice PC. These structures exhibit failure at small strain with relatively low 

stress because of the discontinuous phase of glassy polymer which limits the load capacity and 

generates the stress concentration on the matrix phases. 

Table 7.1 The measured in-plane Young’s modulus, XXE , in-plane compressive yield stress, 
XX  

Sample Design V.F. (A) Material 
XXE (MPa) XX  (MPa) 

1 IPC-SC 50% A/B 369.34 20.61 

2 IPC-BCC 50% A/B 137.09 10.03 

3 IPC-FCC 50% A/B 190.00 10.70 

4 IPC-FCC 40% A/B 65.88 4.04 

5 IPC-FCC 30% A/B 44.15 2.48 

6 IPC-FCC 20% A/B 19.23 0.98 

7 IPC-FCC 50% A/B1 305.27 N/A 

8 IPC-FCC 50% A/B2 349.90 N/A 
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9 IPC-FCC 50% A/B3 430.22 N/A 

10 IPC-FCC 50% A/B4 567.14 N/A 

11 IPC-FCC 50% A/B5 644.64 N/A 

12 PC-SC 50% A/B 42.21 8.16 

13 PC-BCC 50% A/B 4.94 7.02 

14 PC-FCC 50% A/B 5.03 10.30 

15 FC-0° 50% A/B 78.22 2.80 

16 FC-90° 50% A/B 15.30 2.85 

17 LC-0° 50% A/B 14.55 5.95 

18 LC-90° 50% A/B 35.76 5.39 
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Figure 7.2 Mechanical response of 3D printed composites during uniaxial compression tests. (a) Nominal 

stress and strain curves for (a) IPCs with SC, BCC and FCC lattice structures and (b) PCs with 

SC, BCC, and FCC lattice symmetries under uniaxial compress tests. Experimental images of (c) 

IPC with FCC lattice symmetry and (d) PC with FCC lattice symmetry. Scale bar: 1 cm. 
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7.5 Fracture toughness measurements 

7.5.1 Fracture behavior and mechanisms of IPCs 

The fracture toughness is determined using a singled edge notch bend (SENB) sample following 

the procedure outlined in ASTM standard E1820 (ASTM E1820, 2013), as shown in Figure 7.1 

(d)-(f). The overall dimensions of the samples defined by ASTM standard E1820 are 135 mm × 

30 mm × 15 mm (S×L×B) unless specified elsewhere (Figure 7.1 (d)). It comprises of 45 

representative volume elements (RVEs) repeated along the X direction and 12 RVEs repeated 

along the Y direction. The two outer steel rollers defined the span, S, which is adjusted to be four 

times the sample width, W, as specified in standard E1820. The third roller is located at the mid-

span, opposite the sample notch. The combination of starter notch and fatigue precrack shall 

conform to the ASTM standard requirements shown in Figure 7.1 (e). A very sharp notch tip with 

the angle of 30° is designed to promote early crack initiation.  Figure 7.1 (f) shows the overall 

experimental setup of three-point bending test of SENB specimen. The fracture toughness at the 

failure strain, JK , could be evaluated from the load-displacement curves measured from the three-

point bending tests using the J-integral approach outlined in ASTM E1820, 2013. More details can 

be found in the Experiment Section. 



 

129 

 

 

Figure 7.3 3-point bending tests of the SENB specimens. (a) Load-displacement curves of material A 

and material B. (b) Load-displacement curves of IPCs with SC, BCC and FCC lattice symmetries. 

(c)-(e) Images of test specimens at various loading displacements which are marked in the load-

displacement curves. Scale bar: 1 cm. 
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Before systematically examining the fracture behaviors of proposed IPCs, we first investigate the 

fracture response of the two base materials used for printing the composite geometries, material A 

and material B (Figure 7.3 (a)). The load-displacement curves obtained from the three-point 

bending test of SENB samples clearly show significant distinction between the constitutive 

behavior of these two materials. From the compression tests we have performed on the 3D printed 

materials, the results show that the stiffness of material A is three orders of magnitude higher than 

the stiffness of material B, by a factor of  1350. Therefore, the more compliant base material B 

failed at an order of magnitude higher displacement than its less compliant counterpart A. 

Moreover, both samples fail in a brittle manner immediately upon crack propagation. 

We now proceed to study the deformation and fracture mechanisms of the designed IPCs. Figure 

7.3 (b) plots the load, P, as a function of load-line displacement, v, for three lattices, SC, BCC, and 

FCC IPCs. The load-displacement curves for IPCs exhibit initial linear elasticity, non-linear 

plasticity before the maximum load and the drops in load which are related to the failure of 

structures. Compared with the fracture behavior of each composition, the IPCs samples show a 

highly nonlinear behavior. The continuous soft material phase distributes stress and strain 

effectively throughout the sample, inducing an additional support to generate more plastic 

deformation instead of the brittleness of the hard material. Therefore, the extrinsic and intrinsic 

toughening mechanisms of 3D periodic IPCs from inhibiting damage mechanisms include 

stretching of the hard polymer that bridges the advancing crack and is also associated with 

plasticity. As a result, it is effective against the initiation and propagation of cracks.  Figure 7.3 

(c)-(e) presents the in-situ images of the deformed configuration of each IPC at different 

displacements. Before the first peak load, the large deformation of the material around the precrack 

tip is visible on the surface of each IPC. After the first peak load, the fracture propagation could 
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be observed. The drops in load after the maximum peak are not continuous but have several steps. 

This is because the inherent architectures of IPCs play a significant role in preventing the 

propagation of cracks continuously. Based on the energy principles, the crack will choose the path 

of least resistance such as in the soft material. However, the structures of 3D periodic IPCs contain 

continuous hard and soft materials with multiple constrains which will inhibit the crack 

propagation in only one phase.  Furthermore, FCC IPC exhibits smaller load dropping steps due 

to the more complexity of microstructures compared with SC and BCC IPCs. For the SC IPC, the 

images clearly portray that the crack path eccentrically is upon the initial crack tip. Similarly, in 

the BCC and FCC IPCs, evidently the fracture path is the zigzag shape and the lateral surfaces of 

the crack are very rough. This phenomenon can be explained based on the energy principle that 

the crack path will result in a trade-off between the minimum crack deflection angle and the path 

of least stiffness. Moreover, we also observe that the interfacial adhesion of the 3D printed 

constituent materials is so strong that the composites do not fail at the interfaces. The proposed 

IPCs exhibit impressive mechanical characteristics activated by the rationally designed 

interpenetrating architecture. 
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Figure 7.4 3-point bending tests of the SENB specimens of IPC-BCC and IPC-FCC. (a) load-displacement 

curve. Experimental strain contours of (b) IPC-BCC and (c) IPC-FCC using digital image 

correlation at various loading displacements which are marked in the load-displacement curves. 

Scale bars are both 1 cm. 

To further understand the fracture behavior of the proposed IPCs, we use Digital Image Correlation 

(DIC) measurement system to quantitatively understand the deformation and crack propagation of 

these specimens. Figure 7.4 (a) shows the measured force-displacement relation of three-point 

bending test and the images in Figure 7.4 (b) and 7.4 (c) exhibit the horizontal strain contours 

related to the main deformation of the IPC-BCC and IPC-FCC respectively which also reflect the 

stress distributions during the whole loading process. We notice that in the elastic loading stage, 

the strain distributes mostly behind the crack tip (b1 and c1). Prior to tip failure, as shown in b2, 

c2, and c3, the strain concentrates ahead of the crack tip to inhibit damage mechanisms, such as 

cracking which will toughen the IPCs. After tip failure, we clearly observe that the fracture appears 

in several positions where the strain distributes around as shown in b3-b6. A similar phenomenon 

could be visualized in c4-c6. With crack propagating, the strain concentration delocalizes to 

different directions and form longer crack path as shown in b7-b8 and c7-c8, which will extend 

the load-displacement curves in Figure 7.4 (a). Therefore, these images clearly portray that the 3D 

printed IPCs exhibits impressive mechanical characteristics in terms of fracture propagation. The 

periodic IPC structures toughen the composites with improving the plasticity of the hard material. 

Moreover, the soft material delocalizes the stress concentration, enabling the crack propagates in 

a stable fashion through the system and allowing the sample to sustain increased deformation and 

significant loading throughout large portions of the fracture process. Furthermore, the periodic 
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interpenetrating phases diverge and extend the crack path which will improve the fracture 

toughness of the IPCs. 

 

Figure 7.5 Representative responses of IPC SENB samples with SC, BCC and FCC lattice symmetries 

showing the load as a function of (a) the load line displacement, and (b) the crack mouth opening 

displacement, δ. The crack-growth (c) J-integral, JIC and (d) and fracture toughness, KJIC are plotted as a 
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function of crack extension, Δa, for IPC SENB samples, respectively. Lines through the data were added 

to aid the reader. 

 

We have demonstrated that both intrinsic toughening mechanism (enlarging of plastic deformation 

of hard polymer) and extrinsic toughening mechanism (crack deflection and bridging controlled 

by hard polymer) are synergistically responsible for the enhanced fracture behavior of the proposed 

IPC composites. Typically, extrinsic toughness mechanism is effective in resisting crack 

propagation and is strongly dependent on the crack size. As a result, instead of a constant fracture 

toughness, the crack-propagation resistance curve (R-curve) exhibits a gradually increasing 

behavior as the crack advances. To further understand these two different mechanisms, we 

measured the materials R-curves for the proposed IPC composites. As shown in Figure 7.5, all of 

the IPCs composites with SC, BCC, and FCC lattice symmetries exhibit an increased J-integral as 

the cracks propagate. The absolute value of J-integral in FCC composite is the largest while the 

SC composite shows the lowest J-integral. Noticeably, when converting the J-integral into 

equivalent fracture toughness, SC composite exhibits the largest fracture toughness while FCC 

composite exhibit an intermediate absolute value. Yet, a gradually increasing toughness still 

persists in the all of these composites as the cracks propagate. These quantitative analyses indicate 

that extrinsic toughening mechanism induced by crack deflection and bridging of the hard polymer 

is dominant. Though it has been extensively demonstrated that natural structural materials such as 

hierarchical nacreous composites exhibit both intrinsic and extrinsic toughening mechanisms 

[270,271], similar toughening mechanism are achievable in rationally designed and 3D printed 

architected composites. 
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7.5.2 Comparison between fracture behavior of IPC, PC, FC, and LC 

We have shown that the proposed IPCs exhibit impressive fracture behavior due to the inherent 

microstructures. To further support our finding, we now compare the fracture response of IPCs 

with several conventional composites, including particle-reinforced, fiber-reinforced, laminal-

reinforced topologies. Here, we use the volume fraction of hard material 50% for each design for 

the purposes of fair comparison. For IPCs and PCs, we select three lattice topologies as SC, BCC, 

and FCC. For FCs and LCs, we select two topologies with fiber or laminal as 0° and 90°. The 

specific composite topology has a significant impact on the overall mechanical response of the 

SENB samples under three-point bending test. From the load-displacement curves (Figure 7.6 (a)), 

the conventional PCs, FCs and LCs exhibit relative poor mechanical behaviors compared with 

IPCs. This is because, in conventional composites, the matrix is soft material while the phase of 

the hard material is not continuous. During the fracture propagating, the crack will choose the path 

of least resistance which is the continuous compliant matrix. In Figure 7.6 (b), we observe that the 

crack propagates along the soft material in conventional composites, By contrast, the structures of 

3D periodic IPCs contain continuous hard and soft materials with multiple constrains which will 

inhibit the crack propagation in only one phase. The fracture toughness, JK  at zero crack 

extension of each composite, is plotted in Figure 7.6 (b). As expected the IPCs achieve a higher 

fracture toughness than that of conventional PC, FC, LC composites. For example, the fracture 

toughness of FCC IPC is about 16 times that of FCC PC. Therefore, combining additive 

manufacturing methods such as 3D printing technique, we provide a new insight to design periodic 

IPCs with complex 3D structures to achieve enhanced fracture behaviors.  
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Figure 7.6 3-point bending tests of the SENB specimens of IPCs, PCs, FCs and LCs. (a) Load-

displacement curves. (b) The calculated fracture toughness, JK  at zero crack extension of each 

IPC, PC, and LC. Images of specimens at failure strain showing the path of crack propagation for 

the SC IPC, SC PC, FC90, and LC90. Scale bar: 1 cm. 

7.6 Tailored fracture toughness 

7.6.1 Effect of material properties 

3D printing technique not only enables the fabrication of complex structures in a timely and 

cheaply manner but also allows for manufacturing composites with various combination of 

compositions. It has been shown that the contrasts of the compositions have a significant impact 

on the mechanical response and fracture toughness. [272-274] Here we investigate the effect of 

stiffness ratio of two materials, EB/EA, on the evolution of fracture toughness. The material 

properties of the individual constituent materials are found by tensile testing of dogbone specimens 

comply with the ones prescribed by the ASTM D412 and ASTM D638 (See Experimental section 

for more details). Figure 7.7 (a) presents the stress-strain relations of six different constitutive 

materials. It is clearly noted that material A, B4, and B5 behave relative stiff and brittle like glassy 
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polymers while material B, B1, B2, and B3 are complaint ductile which are rubber-like polymers. 

The calculated tension modulus varies from around 1 MPa to 1 GPa, result in the stiffness ratios 

from 0.001 to 1 as shown in Figure 7.7 (a). However, material B1-B5 are constructed from a mix 

of material A and B and the mixing ratios are preprogrammed in the 3D printer and cannot be 

changed in the current setup. Therefore, the limited selection of materials available in Objet 

printing system constrains the value of stiffness ratio could not reach from 0.02 to 0.8. In Figure 

7.7 (b), we display the load-displacement response of SENB samples with a variety of constituent 

materials. The load-displacement curves indicate a wide variation of composite behavior as the 

constitutive behavior of the matrix (B) is tuned. It is clearly noticed that the composites transition 

in behavior from very stiff and brittle to a complaint ductile response. Moreover, the Ashby plots 

(Figure 7.7 (c)-(d)) showing the relationship between the fracture toughness at zero crack 

extension, KIJC, the normalized toughness, T/TA and the stiffness ratio, EB/EA, the normalized 

stiffness of composites EXX/EA, respectively. First, we note that the fracture toughness at zero crack 

extension increases with increasing the stiffness ratio. The reason for this is that here the initial 

fracture toughness based on ASTM E1820 is largely affected by the maximum loading force 

during bending tests of SENB specimens and the stiffness of the composites. Therefore, the 

composites with stiffer and stronger matrix materials have larger fracture toughness at zero crack 

extension. Nonetheless, the displayed Ashby plots exhibit different trends for the normalized 

toughness which is a performance of engineered composites during the whole crack propagation 

process before cartographical failure. We find that more compliant matrix phase is capable of 

creating tougher composites. This phenomenon is due to the fact that the weaker phase shifts the 

nature of load transfer in the composite to a more advantageous one. [272] Indeed, this mechanism 

has been observed in many biological materials. [275] These findings indicate that it is indeed 
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possible to tune the interactions of the composite constituent phases through controlling the 

stiffness ratio to fundamentally alter the fracture mechanical properties of the composites. 

 

Figure 7.7 The effect of stiffness ratio, EB/EA, on the mechanical response of FCC IPCs. (a) The calculated 

stiffness ratio of 3D printed constitutive materials from tension tests. (b) Load-displacement curves 

of IPC FCC SENB specimens with a variety of constituent materials. (c) Ashby plot indicating the 

correlation between calculated initial fracture toughness, KJIC, normalized toughness T/TA and the 

stiffness ratio, EB/EA.  (d) Ashby plot indicating the correlation between calculated initial fracture 
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toughness, KJIC, normalized toughness T/TA and the normalized stiffness ratio of each composite, 

EXX/EA.  Here the volume fraction of material A is 50% for each composite. 

7.6.2 Effect of volume fraction 

It has been demonstrated the inherent architectures of IPC are of great importance to their fracture 

behavior. [244,248,249] Here we quantify the effect of volume fraction on the evolution of fracture 

toughness (Figure 7.8 (a)). With the increase of volume fraction of the hard material, FCC IPCs 

exhibit a higher fracture toughness. This is because the load is mainly carried by the glassy polymer 

phase so that the composites with a higher content of material A show higher stiffness and strength.  

For cellular materials, such as metal foams and lattice structure, the relation between the effective 

elastic properties such as the elastic modulus E  and the relative density   can be described by a 

power law 
nE  . [61] Here we use the scaling law to quantify the relation between the fracture 

toughness and the volume fraction of material A as n

JICK C= .  For FCC IPCs, the scaling 

exponent n  fitting from the experimental results equal to 1.32. This nearly linear scaling relation 

indicates that we can design lightweight yet toughen composites. These results suggest good ability 

to tailor the geometric features of architected IPCs to achieve tunable mechanical properties and 

fracture toughness for purposeful mechanical applications. 
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Figure 7.8 The effect of the volume fraction of material A on the mechanical response of FCC IPCs. (a) The 

calculated fracture toughness, JK  at zero crack extension of the FCC IPC with different volume 

fractions. The effect of the 3D printing direction on the mechanical response of FCC IPCs. (b) The 

calculated fracture toughness, JK  at zero crack extension of IPCs. The inset schematically 

illustrates the printing direction. The dashed line is the fitting curve. 

7.6.3 Effect of 3D printing orientation 

We investigate the effect of the 3D printing direction on the mechanical response and fracture 

toughness of SENB samples as shown in Figure 7.8 (b). It can be seen that the direction of 3D-

printing clearly influenced the fracture toughness. Note that the fracture toughness for composites 

printed in 0° and 90° directions are almost the same, whereas the weakest direction is depicted in 

45° directions. This is because 3D printing induces anisotropy. [276] The 3D printed 

photopolymers exhibit that the elastic behavior, yield behavior, and plastic deformation all depend 

on the printing direction. Moreover, the material strength is highly anisotropic, which is usually 

much weaker along the printing direction. Considering the anisotropy effect inherited from the 
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layer-wise processing feature, all the 3D printed samples except these three samples are fabricated 

along 0° directions.  This finding suggests that fracture properties of IPC can be tailored by 

controlling the printing directions, thereby offering opportunities to design tough composites 

subjected to prescribed loading directions. 

7.7 Conclusion 

Through integrative rational design, 3D printing, and mechanical testing, we have quantitatively 

demonstrated that architected IPCs show improved fracture toughness compared with other 

conventional composite structures. The toughening mechanism is due to the plastic deformation 

and stretching of the hard polymer that bridges the advancing crack, which is intrinsically 

controlled by the rationally designed interpenetrating architectures. A moderate increase in 

fracture resistance with crack growth was seen for IPCs. Though similar toughening mechanism 

has been reported in our previous work and other related works, the proposed IPCs with the rod-

connected counterparts and their inverse domains can be designed and tailored readily compared 

with other IPCs. Moreover, with the advance of 3D printing, the architected IPCs proposed here 

exhibit tunable fracture toughness, which enables the proposed architected IPC to subject various 

loading conditions. Specifically, we found that the interaction between a stiff and soft phase in an 

IPC could be tuned to create material systems that would exhibit significant stiffness combined 

with superior toughness. We can envision that with the advance of additive manufacturing, it is 

possible to manufacture the proposed IPCs with different types of compositions at various length 

scales, enabling us to further explore other material properties and functionalities, such as 

transport, thermal, phononic, and photonic to name a few. The findings presented here open 

avenues to explore advanced architected composites with multifunctionalities and tailorable 
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properties through integrating rational architecture design and the state-of-the-art manufacturing 

techniques. 
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Chapter 8. Conclusions 

8.1 Main contributions 

The research work presented from Chapter 2 to 7 are focused on designing, modeling, 3D printing, 

and mechanical testing of architected materials. The objective is to establish the relationships 

between the internal structure of a material and its mechanical properties and discovering existing 

and potential new materials, especially those with improved and even tailorable properties for 

potential mechanical applications. The key scientific contributions are summarized as follows: 

(1) Developed a new group of 2D and 3D stretchable lattice metamaterials with 

mechanically tunable negative Poisson’s ratio. Conventionally, the lattice materials are with 

straight ligaments which exhibit the positive or zero Poisson’s ratio. However, in Chapter 3, we 

developed a new architected lattice material by replacing regular straight beams with sinusoidally 

shaped ones in plane direction. Improved stretchability is numerically and experimentally 

demonstrated due to the pre-curved shape. Interestingly, these proposed lattice metamaterials also 

exhibit a negative Poisson’s ratio, indicating that the metamaterials will expand under uniaxial 

stretch. In Chapter 4, this design strategy can be applied in out-of-plane direction to achieve 3D 

planar even 3D lattice metamaterials. Because of the structure extended to the third dimension, 

these 3D planar lattice metamaterial can exhibit negative Poisson’s ratio at any extremely large 

stretching deformation. Quite importantly, this significant Poisson’s ratio can be tailored by tuning 

the parameters of ligaments and optimizing the lattice topologies. Intrinsically, these novel 

mechanical behaviors are attributed to the deformation pattern switching from bending-dominated 

to stretching-dominated behavior. These finding presented here provide new insights into 

development of architected metamaterials with unusual physical properties and potential 
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applications including energy absorption, tunable acoustics, vibration control, responsive devices, 

soft robotics, and stretchable electronics.  

(2) Created a new class of sandwich composites with 3D printed tunable core topologies 

for bending behavior. In aerospace, naval, sporting and automotive industry, sandwich composite 

structures are widely used due to their high stiffness/weight ratio, high strength/weight ratio, and 

energy absorption capacity. The mechanical performance of a sandwich composite depends on the 

material used for construction, geometry of face sheets and especially the core topology design. 

Typical sandwich composite used conventional honeycomb cellular core or various truss core. In 

Chapter 5, we designed a new class of programmed sandwich composites contain CFRP face 

sheets and 3D printed core materials with truss, conventional honeycomb and re-entrant 

honeycomb topologies. We performed three-point bending tests to investigate the effect of face 

sheet materials, core topologies and core volume fraction on the bending behavior of these 

sandwich composites. We found that the sandwich composites with truss core materials provide 

highest flexural stiffness and strength that are desirable in structural components. Interesting, the 

sandwich composites with re-entrant honeycomb core exhibit a sequential snap-through instability 

which significantly enhances the energy absorption abilities. Our experimental and numerical 

results indicate that architected core structures can be utilized to tailor the bending properties as 

well as failure mechanisms. These findings offer new insights into the study of nonlinear 

mechanical response of sandwich structures, which can benefit a wide range of industries and 

applications. 

(3) Applied auxetic structures to design a new system of stiffer, harder and tougher 

composites. Auxetic materials are a group of materials with negative Poisson’s ratio. The proposed 

architected lattice metamaterials in Chapter 3, Chapter 4 and the re-entrant honeycomb core 
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structures in Chapter 5 are all auxetic materials. It is noticed that most auxetic materials are cellular 

structures and most of them are bending or rotation dominated mechanism. Therefore, these 

auxetic materials or structures exhibit poorer stiffness or strength compared with conventional 

non-auxetic materials or structures which limited the application of auxetic materials and 

structures. Here, we designed a class of high-performance composites in which auxetic lattice 

structures are used as the reinforcements and the nearly incompressible soft material is employed 

as the matrix. We found that these proposed composites exhibit the auxetic behavior and enhanced 

stiffness, hardness and toughness compared with those composites with conventional lattice 

reinforcement. This improved mechanical performance is due to the negative Poisson’s ratio effect 

of the auxetic reinforcements, which makes the matrix in a state of biaxial (2D) even triaxial (3D) 

compression and hence provides additional support. Moreover, we first experimentally 

investigated the enhanced indentation stiffness of auxetic composites due to the negative Poisson’s 

ratio effect of the overall auxetic composites, which makes the composites denser at the site of the 

impact and therefore more resistant to indentation. Combining experimental tests and numerical 

simulation, we conclude that auxetic structures can lead to design stiffer, harder and tougher 

composite materials. These findings broaden the study field of auxetic materials and pave the way 

for developing a new class of auxetic composites for potential applications for energy absorption, 

impact resistant materials even multi-functional materials such as piezoelectric materials. 

(4) Discovered the improved fracture toughness behavior in 3D co-continuous 

composites. In our previous research, 3D co-continuous composites have excellent mechanical 

properties, such as enhanced strength, stiffness, energy absorption, and crack resistance under 

compression testing. In Chapter 7, we first experimentally measured the fracture toughness of a 

class of co-continuous composite fabricated by 3D printing with rationally designed architectures 
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which is 16 times that of conventionally structured composites. The toughening mechanisms arise 

from the plastic deformation and stretching of the hard phase that bridges the advancing crack, 

which is intrinsically controlled by the rationally designed interpenetrating architectures. The 

prominently enhanced fracture toughness in the architected IPCs can be tuned by tailoring the 

stiffness contrasts between the compositions, the volume fraction of each phase. The 3D co-

continuous composites reported here will be particular useful in mechanically challenging 

environments where mechanical robustness and reliability are simultaneously pursued. The 

findings presented here open avenues to explore advanced architected composites with 

multifunctionalities and tailorable properties through integrating rational architecture design and 

the state-of-the-art manufacturing techniques.  

8.2 Future works 

Architected material design concept is a powerful tool to explore novel and unusual physical 

properties. The designed architected materials therefore have a wide range of promising 

applications, especially when design is combined with the modern manufacturing technologies 

like 3D printing. Some future works could be toward, but are not limited to, the following 

directions. 

(1) Soft active material for tunable mechanical properties: I created a series of architected 

lattice materials with bi-material ligaments by harnessing the residual stress in the 3D printing 

process. Under environmental stimuli, such as temperature, these lattice materials deformed to the 

shapes with curved ligaments which are very similar to our previous designed pre-curved lattice 

metamaterials. And the actuated structures exhibit different mechanical properties with 

undeformed ones, such as NPR effect, wave propagation control, etc. Now the problem is that the 

heating actuated process is one way actuated and not unrecoverable. I hope in the future, it can 
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become a two-way actuated process. Moreover, with advanced additive manufacturing and new 

3D printing materials, the environmental stimuli can be temperature, light, electric field, magnetic 

field, moisture, PH, etc.  Therefore, I will continue working on these projects and combining the 

concept of 4D printing and the architected materials to create environmental stimuli mechanical 

metamaterials. 

(2) Reusable 3D printed materials: Shape memory polymers (SMPs) are smart polymeric 

materials that have the ability to return from a deformed state to their initial shape induced by an 

external stimulus such as temperature. The objective of this project is using SMPs to design 

reusable 3D printed architected materials for structural applications. The first problem is how to 

design architectures to bear the maximum load by using the plastic deformation, not the failure. 

For example, the auxetic sandwich has less localized stress concentration resulting in no failures 

under bending deformation. By contrast, the hierarchical honeycomb exhibits extreme large 

deformation at some certain position which causes the breaks of ligaments. Therefore, the 

recovered auxetic sandwich keeps better structure integrity than hierarchical honeycombs which 

provides the potential for reuse. The second problem is how to heal the cracks occurred in the 

deformed SMPs. One example is the compression deformation and recovery of IPCs. At small 

deformation, the shape memory effect enables full recovery of mechanical property because of no 

local cracks. While at large deformation, the cracks appear in the SMPs. Although the elastomer 

phase provides great mechanical enhancement and additional recovery force to the composites, the 

cracks still exist and affect the mechanical properties for reuse. My preliminary experiments show 

that these cracks can be healed by using some healing agent which has strong bonding, low 

viscosity and long working time. The healing enables more recovery of mechanical property of 

these composites. For the future work in this project, I plan to combine various designed 
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architectures with new 3D printed materials with novel properties such as self-healing to create 

potentially reusable materials for mechanical applications. 

(3) Fracture behavior of 3D printed materials with novel architectures: Composites play 

an important role as structural materials in a range of engineering fields due to their potential to 

combine the best mechanical properties of their constituents. Most of the previous research 

indicate that the bio-inspired composites from bone, nacre with “bricks-and-mortar” structures 

exhibit superior fracture mechanical properties. With multi-material 3D printing at micrometer 

resolution, more composites with complex structures can be fabricated to achieve enhanced 

mechanical properties. Compared with the usual nacre-like composites, I designed a class of 

interlocked bio-inspired composites which exhibit enhanced stiffness, strength, toughness and 

fracture toughness and this project is under working. Three-dimensional composites with co-

continuous phases have shown great mechanical properties. Here, I have designed a class of 3D 

auxetic composites and also another series of co-continuous composites with triple periodic 

minimal surfaces interfaces. I plan to study the fracture behavior including the fracture toughness, 

fracture toughen mechanisms of these 3D printed composites by combined experimental 

investigation and numerical analyses.      

(4) Other future planes: 

1) Experimental investigation of the fundamental mechanics and physic of frigid temperature, 

UV radiation, and moisture on the mechanics of marine composites (CFRP) under static 

and dynamic loading conditions. 

2) Lattice metamaterials with tunable negative thermal expansion. 

3) Using 3D printing and SMPs to design environmental actuated fluid channels. 
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4) The mechanical properties of materials with aperiodic structures including the effects of 

defects, the topology optimized structures, functionally graded structures and random 

structures. 

5) Architected materials with multi-functionalities focus on the thermoelectric materials, 

piezoelectric materials, shape memory alloy/polymer and programmable materials. 
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