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Abstract of the Dissertation

Variational Principles in Statistical Mechanics
and their application in biology and evolution

by
Luca Agozzino

Doctor of Philosophy

in

Physics
(Concentration - Biophysics)
Stony Brook University
2020

The Maximum Entropy Principle (Max Ent) was introduced by E.T. Jaynes
in 1957 as a method to infer the most likely probability distribution given
some known partial information about data. Such principle found theoretical
grounds in the work of Shore and Johnson in 1980, who showed that its accu-
racy is due to self-consistency conditions on the laws of probability themselves.
This showed how the concept of entropy and its maximization is not limited to
equilibrium thermal systems, but it can be extended to non-thermal systems at
equilibrium as well as dynamical ones. After a brief overview of the principle
itself, and its dynamical form (known as Maximum Caliber principle, or Max
Cal) I will discuss some applications of it to systems of physical and biological
relevance. In the first part of the dissertation I will show how it is possible
to apply Max Ent to the protein’s sequence space, in order to determine the
features of the time scales of protein evolution, adaptation to different environ-
ment and the action of other protein machinery known as chaperones. Making
use of the largely accepted idea that proteins physical features are what deter-
mines the fitness of a cell, I will show how it is possible to relate the speed of
adaptation and evolution to features like a proteins stability and its tendency
to aggregate, as well as the concentration of chaperones. In the second part, I
will show an application of Max Cal to non-equilibrium, steady state systems,
which is of pivotal importance since it represents a class of systems which is
among the most studied in the field of non-equilibrium statistical mechanics.
I will show how the proper set of constraints resolves some doubts regarding
the application of Max Cal to systems which exhibit specific symmetries under
space reflection and time reversal. I will conclude the dissertation by showing
that Max Cal can be used in a more systematic fashion when some conserva-
tion law applies to dynamical quantities, like linear and angular momentum,;
in such cases the choice of constraints is less arbitrary than in others.
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Introduction



The role of entropy in statistical

mechanics and beyond

Among the traditional fields of study of Physics, Statistical Mechanics (SM)
can be considered somewhat atypical; while disciplines like Quantum Mechan-
ics or Electrodynamics address very specific problems that are confined within
specific regimes (spatial scales, type of interaction, energy scales etc.), Sta-
tistical Mechanics is rather a set of tools and methods which can be broadly
applied within any other field, whenever it is necessary to describe a system
using probabilities instead of dynamical states. This makes such discipline of
particular interest not only for the predictions that it allows to make, but also
for the fundamental mathematical principles that govern it.

Historically, the methods of SM have been applied to the study of classi-
cal microscopical systems of many (= 10%3) particles, and the first successful
result was the reproduction of the laws of thermodynamics, leading often to
the limiting definition of Statistical Mechanics as a sort of “Microscopic Ther-
modynamics”. This is understandable because Thermodynamics has arguably
been the most successful phenomenological theory, being able to describe sys-
tems with astronomical numbers of degrees of freedom in terms of average, and
hence macroscopical, quantities, therefore, it is appealing to see SM merely
as its first-principled theoretical counterpart. However, Statistical Mechanics
goes well beyond the explanation of the laws of gases of particles at equilib-
rium; in fact, its set of tools and its mathematical power can be extended not
only to the physics of equilibrium systems, but to non-equilibrium dynamics,
as well as to problems which don’t necessarily have a physical correspondent,



like traffic patterns, social behavior, or otherwise called non-thermal systems.

1.1 A statistical ensemble

In Gibbs derivation of equilibrium statistical mechanics [1], an ensemble is
defined as a collection of microstates, hence states of the system which can be
microscopically distinguished but with the same identical macroscopic prop-
erties, so that any global variable would be the same irrespective of the mi-
croscopic configuration. In equilibrium statistical mechanics there are three
major ensembles which are taken as examples: microcanonical, canonical and
grand canonical ensembles. The difference between each of these examples is
the physical conditions that apply to the system: a microcanonical ensemble
describes a system which is completely isolated from the external environment,
so its energy is conserved; the canonical ensemble describes a system which can
exchange energy with a larger system, called reservoir, so its energy fluctuates
around an average value, but the number of particle is conserved; the grand
canonical ensemble describes a system which can exchange both energy and
particles with a larger reservoir, the number of particle can fluctuate around
an average value, as well.

Each ensemble is characterized by a very well known probability distri-
bution, or the probability to find the system in a particular microstate. For
instance, in the case of a microcanonical ensemble, the probability distribution
is flat, because each microstate is equally probable; for the canonical ensemble,
it is the famous Boltzmann distribution p} oc e /*57 where Ej is the energy
of the microstate i, kg the Boltzmann constant and 7" the temperature.

1.2 Entropy and the Boltzmann distribution

In this section we will discuss the general method to infer probability distribu-
tions called Maximum Entropy Principle (Max Ent), which can be used, among
the other things, to derive Boltzmann probability distribution for canonical
ensembles through a variational approach.

The original concept of Entropy was introduced around 1850 by Clausius
in the context of the second law of thermodynamics, defined correctly only for
reversible processes, hence for any process which involves an infinite succession
of equilibrium states, as a differential form Scausivs = f dQyey/T. About 20
years later Boltzmann gave a statistical interpretation to this concept. His
famous expression Sgoltzmann = kpInW was an assertion that the Clausius
macroscopic principle had its roots in the numbers W of possible microscopic
arrangements of the system, establishing that Boltzmann’s exponential distri-



bution law was the microscopic manifestation of the Second Law variational
principle. For now let us keep the two definitions of Entropy as if they were
two separate quantities, because it is of core importance for the rest of this
discussion.

In more detail, for any probability distribution {p;} = p1,p2,ps,... over
options 1 = 1,2, 3, ..., we can define the mathematical entropy of that distri-
bution to be, using Shannon’s formula [2]:

Smath = —kB Zpi In p; (1)

This quantity can be computed for any distribution. But this mathematical
entropy Spath 18 not always the same thing as the physical entropy of Clausius,
SClausius:  Omath 1S also not what we need for making theoretical models of
physical equilibria; for that, we need Sgate, which we now describe. First, take
the distribution p; to be over microscopic states of the system. Next, we assert
that only the one specific distribution {p; = pf} that maximizes the entropy,

Sstate = _kB Z p;k h’lp;k (2)

i=states

is relevant to Second Law predictions of physical behaviors at equilibrium.
Sstate 18 defined for one particular distribution, not for just any mathemat-
ical distribution. If the system is isolated there are no information about
the measurable quantities, by maximizing the entropy we obtain that each
of the states is equally probable: p; = 1/W; therefore in this case Ssate =
SBoltzmann = SClausius-

However, if we assume that the system has some very well defined average
energy, controlled by thermal contact to a reservoir, hence the conditions for
the canonical ensemble, the prediction procedure is to maximize Spyai, over
{pi}, subject to a constraint of average energy

ZpiEi = E, (3)

where E; is the energy of microscopic state i, E is the average energy of
the system, and kgT are Boltzmann’s constant and temperature and that
probabilities are normalized quantities ) . p; = 1. The result is the Boltzmann-
Gibbs distribution,

o—Ei/ksT

pi=—F7
Q

4

(4)



where p} are the probabilities that satisfy these conditions, Q = Y e Fi/k5T ig
the normalization factor, or partition function. In this case we can calculate
Sstate:

~Bi/kgT  ,—Ei/kpT

E
Setate = —kB pr Inp! = —kg Z ¢ In =—+kgln@ (5)

Q Q T

It is sufficient to identify k57T In () with the free energy G to obtain once again
Sstate = SClausius- 1N this case Boltzmann formula S = kgInW is not valid
anymore because the hypothesis of equiprobability of the microstates does not
hold true: the probability of a microstate is determined by its energy.

This distribution is at the core of equilibrium statistical physics. Eq. 4
predicts the equilibrium populations of all the states ¢ = 1,2, 3, ... in a model.

The lack of care in distinguishing these different meanings of entropy has
been a source of confusion. Scpausius 18 only a predictor of macroscopic equi-
librium thermodynamics: that heat tends from hot bodies to cold ones, that
particles tend toward places of lower concentrations, and that densities tend to
equalize in materials, for example. It does not tell us about the microscale or
distribution functions. Sg.e is @ quantity we compute from microscopic phys-
ical models of equilibria. To relate an equilibrium model to corresponding
macroscopic experiments, we equate Sgiate = SClausius- Below, we will describe
yet another entropy, which is pertinent to dynamics, namely the path entropy,
Spath, but first we will discuss the mathematical foundation of this procedure.

1.3 The maximum entropy principle

In 1957, E. T. Jaynes showed that informational entropy and thermodynamics
entropy are equivalent and that it is possible to infer each of the distributions
of Gibbs’ ensembles applying a “Maximum Entropy Principle” [3, 4], hence by
maximizing Spatn enforcing the constraints which correspond to each specific
ensemble with the method of the Lagrange multipliers.

The idea behind the principle is the fact that entropy is a measure of how
much a system is “biased”: the lower the entropy, the more biased a distribu-
tion is. And this is a consequence of the choice, or sometimes the necessity,
to describe a system using probabilities; in these cases “the maximization of
entropy is not an application of a law of physics, but merely a method of
reasoning which ensures that no unconscious arbitrary assumptions have been
introduced” (quoting from [3]).

This Principle in original Jaynes formulation, however, is sometime inter-
preted to be arbitrary. On one hand it is reasonable to expect that the actual



probability distribution has to minimize the bias, on the other there seems
to be no firm ground to expect that the proper function to maximize is the
entropy as defined by Shannon [2]|, Spam. Moreover, often this principle is
wrongly expressed as a method of maximizing one’s “ignorance” about the
system, which naturally doesn’t appeal as a learning method.

From this point of view, Jaynes argument falls short to convince skeptics
about the validity and the generality of Max Ent, however, this principle can
be proved on pure mathematical grounds.

1.3.1 The Shore and Johnson argument and the correct expression
for the entropy

The process of inferring a probability distribution might seem only a statistical
tool, so expecting that a purely mathematical principle like Max Ent might
be able to determine some physical outcomes could seem far from reality.
However, statistical mechanics is not a discipline entirely determined by the
laws of Physics, in that, at least for classical physics (i.e. not quantum) the use
of probabilities do describe systems, even when is the best possible method,
is still an arbitrary choice. In principle it is mathematically possible to write
the equations of motion of each single component of the system, it is just
impossible to solve them for any realistic macroscopic system, therefore we
prefer to define probability densities and find the equations and the principles
that describe how these densities change over time and space. However, if
one chooses to describe the system using probabilities, this comes with an
important baggage: the description has to satisfy the mathematical laws of
probability.

Along this line, Shore and Johnson (SJ) [5] proved that the foundation
of the Maximum Entropy principle is a simple self consistency condition of
the inferred probability. They start from the assumption that any probability
distribution that is inferred by maximizing a functional H[p| needs to satisfy
four main axioms (quoting [5]):

e Uniqueness: The result should be unique;
e Invariance: The choice of coordinate system should not matter;

e System Independence: [t should not matter whether one accounts for
independent information about independent systems separately in terms
of different densities or together in terms of a joint density;



e Subset Independence: It should not matter whether one treats an
independent subset of system states in terms of a separate conditional
density or in terms of the full system density.

By enforcing these four axioms, whose generality is undisputable, they
where able to prove that it always exists a functional of the probability H|p]
whose maximum corresponds to the most likely distribution p*. Moreover,
they also proved that the Shannon’s Entropy functional H[p] = Span =
— > . pilogp;/q; is such functional, where ¢; is a prior for the distribution
pi, necessary only when additional information about it is known. Any other
functional used to infer probability will either be completely equivalent to
Smath, With the same maxima and minima, hence inferring the same probabil-
ity distribution, or it will give a result which violates one of the fundamental
axioms of probabability.

An important aspect of SJ derivation is that it never assumes in which
space we are dealing with, so as long as a distribution can be correctly defined,
these four axioms are satisfied only by a functional like Sy, The natural
consequence of this is the application to the maximum entropy methodology
to non-equilibrium systems.

1.4 Maximum Caliber: a variational principle for dy-
namical systems

In 1979, ET Jaynes introduced the Principle of Maximum Caliber [6-11] (Max
Cal), extending his work to non-equilibrium systems. It differs from alter-
natives in: (1) its basis in particle trajectories, not concentrations, (2) its
maximization of path entropies, not state entropies, (3) its inferences of mi-
croscopic models having less confounding logical traps from experimental data
restraints, and (4) its axiomatic foundations in probability theory developed
by Shore and Johnson [5].

Here is a brief overview. Maximum Caliber is to dynamics what Maximum
Entropy is to equilibrium. Where Max Ent focuses on probabilities of states,
Max Cal focuses on probabilities of pathways or trajectories.

Let {T'} be the set of all possible trajectories of a system that is evolving
in time. I' can represent several types of dynamical processes. For example,
a system evolving from an initial state at time 7} into a final state at time
Ty (see Fig. 1) or trajectories of a system that is at steady state. For the
former, the individual trajectories are given by I' = {x7,, v1,41, . .., 27, }, that
the system can take between time points 7; and 7. Other types of trajectories
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Figure 1. Path entropy measures the uniformity of the traffic distri-
bution through different routes. Line thickness indicates the traffic density,
i.e. pathway probability.

are discussed below. Let pr be the probability distribution defined over the
ensemble {I'} of paths.

Let J(I') be a functional defined on the space of paths. Examples of J
include the flux of mass/heat carried by the path, or the average dissipation
along a path, or an average energy along a path. Suppose we want to infer
the distribution Pr over the paths while constraining the average

(J)y =>_ PrJ(T). (6)

Here, and in the following of this dissertation, we use the upper case P
to specifically indicate probabilities over paths, whereas p is used to indicate
generic probabilities and its meaning will be specified when used.

Note that there are potentially infinitely many probability distributions
Pr that are consistent with such constraints. Analogous to the equilibrium
situation, we maximize the entropy, but now over all possible paths, not states:

P
Spath = - Z PF log _F7 (7)
T qr

subject to constraint in Eq. 6 and normalization; see Fig. 1. gr is a reference
or prior distribution over paths.

This constrained maximization problem is solved by introducing Lagrange
multipliers. We write the unconstrained optimization function, called the Cal-
iber C,

C:—ZPplog%—y <ZPFJ(F)—(J>) +a (ZPF—1>.

8



In Eq. 8, v is a Lagrange multiplier that fixes the ensemble average (J) to
the given value, and «a ensures normalization. After maximization, we find

=" ®)
where
Qa = Z QFei’YJ(F)a (9)
r

a sum of weights over paths, is the dynamical equivalent of a partition func-
tion. A key result of Maximum Caliber is the relationship between measurable
average rate quantities and the model dynamical partition function,

7y =S IR = —aloa—gf?d. (10)

In practice, Max Cal works as follows. First, you assert what trajectories
are relevant to the problem at hand. Next, based on relevant constraints, you
construct a distribution over the path space (Eq. 9) where you express each
trajectory in terms of statistical weights of the steps it takes. Using Eq. 9,
you can make predictions analogous to equilibrium statistical mechanics. For
example, you can sum all trajectories into a dynamical partition function Q.
Then, you use Eq. 10 to compute all the statistical weights and pathway prob-
abilities that are consistent with the given value of (J) and other constraints
if relevant.

When a system is far enough from equilibrium, the path entropy is the only
meaningful form of entropy, because it becomes impossible to correctly identify
a state, as in the equilibrium case, as shown in this chapter’s appendices. In
the appendix we also show how taking the equilibrium limit, the path entropy
is completely equivalent to the state entropy, hence maximizing one or the
other would lead to the same result, as one requires for self-consistency.

In the next chapter we will show an interesting application of the principle
of Maximum Entropy for non-physical systems of biological relevance.

In the successive two chapters we will derive some interesting results from
Maximum Caliber for physical systems.
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What molecular properties determine the rates of cell evolution? Proteins
are known to evolve at different rates, partly based on the functions they
perform for the cell, but also depending on their physical properties such as
folding stabilty and propensity for aggregation [12-19], and also depending on
their companion chaperoning [20-27]. While some evolution takes place over
thousands to millions of years, other evolution can be much faster. Cancer
cells evolve over a human lifetime. And, pathogenic cells can evolve resistance
to drugs in just a few years [28-30] or even faster [29]. How do the molecular
properties of proteins and chaperones determine the speed of evolution? Here,
we develop theory for the rates of protein evolution based on the Maximum
Entropy Principle. The distribution of proteins conformations is given by the
Boltzmann; in a similar way, Max Ent, combined with protein’s physics, can
give distribution over sequence space, allowing us to obtain results on proteins
evolution rates.

1.5 The probabilities across sequence space can be de-
rived from a Maximum Entropy approach

The rate at which a protein molecule evolves is given by the dependence on
time ¢ of the probability p;(t) that a protein sequence i is fixed in a population
by the time ¢, through mutation and selection.

Before considering the dynamics, we note that the equilibrium distribution
of such probabilities will be a Boltzmann-like exponential, as shown previously
[31-34]. Here, we give an alternative derivation, applying the principle of Max-
imum Entropy to sequence space, because it gives p; directly, collects together
some results not made explicit elsewhere, such as the sequence entropy, and
gives the meaning of selective pressure directly and without the metaphor of
a bath temperature.

For matters of evolution, we are interested in the space of all possible
amino-acid sequences. Therefore, we derive a general relationship between the
probability p; of a sequence 7 as a function of a quantity V; that we call the
fitness potential (which Sella et. al. call the additive fitness [31]). The concept
of fitness has been center of study of the field of evolution since Darwin’s orig-
inal work [35]; the mathematical formulation of fitness in terms of a function
of the genetic composition of an organism was first introduced by Wright in
1932 [36] and since then the field has been developed extensively [37].

When considering evolution at the protein level, the degrees of freedom in
sequence space are the different amino acid types, also called residues, that
can occur at different positions in the chain. Our objective is to determine the

11



one particular distribution {p}} that maximizes the sequence entropy while
also satisfying an observed constraint on the average fitness!
To do this, we first express a sequence entropy Sseq as

Sseq = _sz 10g(pz> (11)

We define the average value, over the population, of the fitness potential,
as:

<V> = ZPZV(Z) (12)

So, the equilibrium probability distribution p; we seek is that which maximizes
the entropy, Eq. 11, subject to the constraints of the given average fitness,
Eq. 12, and that the probabilities must sum to one. That is, using the method
of Lagrange multipliers, we maximize the functional,

- Zpi log% -G <sz - 1) —A (ZPZV(Z) - <V>) (13)

where A is the Lagrange multiplier that enforces the fitness constraint, « is
the multiplier that enforces the sum to one and g; is the sequence degeneracy
(the number of sequences having the given fitness potential) which acts as a
prior for this problem. Differentiating with respect to p; gives a Boltzmann-
like equilibrium distribution of the populations of amino-acid sequences having
different fitnesses,

gie VO

p; = 0 (14)

where @@ = ), g(i) exp(—AV(i)) is the sum of relative weights over all of
sequence space.

Note a few points. (i) Eq 14 is a Boltzmann-like distribution. This is
not a metaphorical similarity; both are reflections of the deeper point that
maximizing entropy is a principle about drawing inferences over probability
distributions [38, 39]. (ii) Maximizing Eq 13 is identical to minimizing the
free-energy-like quantity F (Sella and Hirsh [31] called it the Free Fitness),

1

F=(V)-— XSseq. (15)

' Maximum entropy applies to a broad range probability-distribution predictions, not just
to thermal physics [38, 39].

12



Eq 15 has an energy-like part (V) and an entropy-like part, Sseq. This means
that a single sequence with very high fitness can sometimes be outcompeted
(i.e. have higher equilibrium probability) by sequences having lesser fitness
if there are many of them having that fitness. (iii) The Lagrange multiplier
A, which describes the force, or selection pressure, for changing sequence fit-
ness, resembles § = 1/(kT'), the thermal driving force in material equilibria,
where T is temperature and k is Boltzmann’s constant. (iv) When there is no
constraint that fixes the value of (V'), Maximum Entropy predicts a flat dis-
tribution: all sequences will be equally likely. (v) Whenever two independent
factors give multiplicative contributions to a probability distribution, they give
additive contributions to the fitness potential [31], so

V(i) = —log f(i) (16)
where f(7) is the absolute fitness [31, 36].

1.6 A ZSB-like model of protein adaptation rates

We model a protein’s evolutionary kinetics by adapting Zwanzig-Szabo-Bagchi
(ZSB) theory applied to the different problem of protein folding speeds [40, 41].
On the one hand, protein folding dynamics is quite a different process than
protein evolution. In folding, a particular protein explores its conformational
degrees of freedom changing its shape, whereas in evolution, a protein under-
goes changes of sequence through mutations and selection. But, the dynamics
can be modeled by a similar formalism. We define the transition rate from
an ancestor sequence ¢ to descendant sequence j as Wj;; the transition takes
place through a process of mutations and selection steps. Then, the change in
population of sequence j in a given time interval is given by the master equa-
tion expressing the “flow” from different sequences into sequence 7, minus the
flows out from j to other sequences,

D0 S Wi t) = Wiy (1) (17

To solve the dynamics, we need to know the transition rates W;;; these
are dictated by the shape of the fitness potential V; since the rates are related
to the equilibrium probabilities p; which is given by Eq. (14). Then, we can
solve for two key dynamical quantities: (1) the adaptation time, T4, or peak
time, which is the minimum time required for changes in a sequence ¢, through
mutation and selection, to reach the sequence that is optimally adapted to its

environment, or (2) the substitution time, 7s, also called the exit time, which
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is the average time required for a sequence i to change and become any other
sequence. The inverse of each of these times is a corresponding rate. The
substitution rate is also called the evolution rate. The adaptation rate and
substitution rate are measured differently, and give different insights.

1.6.1 Solving for the adaptation time

In real systems, the matrix Wj; is very sparse, since not every two sequences
can be connected with a single mutation. We can safely assume that only
those sequences which differ by a single amino acid have a non-zero transition
rate

(18)

W # 0 1 and j differ by a single mutation
‘ = (0 otherwise

Equation (17) can be further simplified if we introduce a reference sequence,
the perfect adapted sequence, relative to which we count the number of mu-
tations. In this way sequences can be binned into classes, each of which is a
given number of mutations away from the perfect sequence. While this sim-
ple mutation count is not always a useful measure, it is sufficient for present
purposes.

We write the transition matrix as W;; = w;5i+17]’ + wjél-,m, where wzi
are the up/down transition rates from the sequence i. The problem is now
equivalent to a death/birth process, a well-studied problem in non-equilibrium
statistical mechanics. Calling m the number of mutations with respect to the
perfect sequence, Eq. (17) becomes

dP,(t _ _
) i Pavsa (1) + 1 Paa (1) — (55 Pt
where w is the transition rate from sequence m to m + 1

The average time for a system which starts at some distance M from the
optimum to reach the optimum at distance 0, for a sequence with length L.
Such mean time is called 7(M) mean first passage time, and it is derived
by considering the average exit time from the interval (1, L) when starting
from M. 7(M) is derived from the master equation (19) and is given by the
recursion relation [42]

WwHM) [T(M +1) —7(M)] —w (M) [r(M) —7(M — 1)] = -1 (19)

whose solution is known to be [42]
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) = YR Y L (20)

where

Rn) =] w (9 (21)

Considering the detailed balance condition for the equilibrium probabili-
ties and the linear fitness potential assumption it is possible to give a more
explicit form of 7(M). When the fitness potential is linear the up/down rates
are uniquely determined by the combinatorics of the sequences. For a se-
quence that is n steps away from the optimal, there are n ways to decrease
the mutational distance and L — n ways to increase it, so we have

w(n) = nw- (22)
wh(n) = (L—-n)wt (23)
Z—J_r = ze M0 (24)

which gives, after some label redefinition

P M1 T & (L
T(M):mz< . ) > < : )zl FenAWol=h)(25)
k=1 I=k+1
The expression above can be simplified in some cases; for instance it be-
comes trivial when the starting sequence is at a distance M = 1. However, in
general, sequence lengths are typically L > 1. In that case, we can approxi-
mate Eq 25 by the ZSB result [40]:

N (1+ ze"\VO)L
(M) = (26)
where z is the number of possible mutations a residue in the protein can
have relative to its starting sequence (z = 19); L is the total number of residues
in the protein; and wy is the average fixation rate for a single point mutation.
(If L is large, the adaptation time is independent of the number of mutations;
it becomes equally hard to find the peak, no matter what the starting sequence

is.)
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Figure 2. The adaptation time 74 of a protein depends strongly on
the selection pressure A. The time it takes for a protein to evolve to its
optimally adapted sequence, assuming a linear model fitness potential (inset),
if an average random mutation is fixed once every 100 years in the absence of
selection pressure [43]. We assume the protein has L = 50 amino acids, and
that each residue can be any of the 20 amino acids (z = 19).

For large values of L, the first passage time does not depend upon M,
giving the adaptation time 74 = 7(M) in Eq. 26.

1.6.2 A protein’s adaptation rate depends strongly on the selection
pressure

First, we ask how protein adaptation can sometimes be very fast. For this
exploration of principle, it is sufficient to adopt the very simplest model of a
fitness landscape that has a single peak. We assume the fitness potential is
linear in the number of mutations m in a single protein (meaning that the
fitness landscape is exponential), with slope V and minimum —V* (which is
the landscape point of the optimal sequence)?:

V(m) =-=V"4+ml,. (27)

The virtue of the linear landscape here is in allowing for a closed-form
expression for the adaptation time given in Eqgs. 25 and 26.

Fig.2 shows a key conclusion: a protein’s adaptation speed can vary over 9
orders of magnitude as a result of only a two-fold change in selection pressure
A. This huge magnification in Eq. (26) is because the adaptation rate is nearly

2Both Vp and V* are taken to be positive quantities
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an exponential function of an exponential (k4 = 1/74 ~ (GAVO)L /2). So, even
though evolution ‘would take forever’ if fitness landscapes were flat, even a
very slight tilt of a fitness landscape gets amplified into very fast adaptation
for protein sequence evolution.? This general conclusion holds also if instead
we had used other hypothetical functional forms of fitness. Here, we have
considered just a single isolated protein. Below, we consider situations where
mutations happen in multiple proteins.

1.6.3 Proteins having the steepest fitness landscapes adapt the
fastest

Eq. (26) shows another key point, namely that the adaptation rate k4 increases
strongly with the steepness, Vj of the fitness potential. Metaphorically, a ball
rolls faster down a steeper hill than down a shallower hill.*

1.7 The fitness landscape for protein stability and tem-
perature

Above, we asked how external pressure affects adaptation speed. Here, we ask
how the properties of the protein itself affect its adaptation speed. So, first,
we need a model for how fitness depends on protein properties. Ever since
the pioneering work of Drummond et al [12, 14, 17, 32, 45], a major idea has
been the misfolding avoidance hypothesis; namely, that a protein’s fitness is
substantially due to its folding - unfolding equilibrium. What is new here is
to give a model of the evolution rates. Consider a protein ¢ having folding
stability, AG; = Gnatlve - Gl(fr)lfolded (< 0 for a folded protein), and abundance
A;. Let the number of different types of proteins in the cell be M.

A well-known result is how the cell’s fitness potential V' is the following
nonlinear function of its folding stability [17]:

Miot eXp AG@/RT)
VT, miot, {AGY}) = _CZ A (1 + exp(—AG;/RT)

(28)

Eq. 28 simply states that each protein’s fitness potential is proportional to

3The treatment is valid in the limit of strong selection and weak mutations, for which
populations are monomorphic and mutations do not interact with each other. Other contexts
require different methods [44].

4In the limit of a small slope, adaptation will follow a random walk in a large space,
requiring an exponentially long time.

17



Fitness Potential
-V (AG)

(a) Adaptation is slow:
——
\ shallow slope

N

(b) Adaptation is fast:
steep slope

AG <0 Unfolding AG >0
(stable) midpoint (unstable)

Figure 3. The fitness potential for a protein-folding stability se-
quence space. Having greater folding stability means higher fitness. The
green and red arrows indicate that where the slope is steepest on this poten-
tial, adaption is fastest. And, it is fastest where proteins are least stable.

the product of (its abundance, A;, in the proteome)® x (its fractional degree
of folding, [native/(native 4+ unfolded)|) x (the total number of protein types
in the cell). (Folding stability and aggregation are not the only physical con-
tributors to evolution rates; conformational flexibility, which we don’t study
here, can also affect evolvability, particularly in virus proteins [46-48]). We
can picture the effect on evolution of such a fitness lanscape by looking at
Fig. 3.

First, compare two proteins: one protein is more stable than the other. The
logic above says that the less stable protein will accumulate adaptive mutations
faster than the more stable protein. Second, compare a ‘fit’ protein, which is
stably folded and well-adapted to its environment, to a mutated version of
that same protein, which is less stably folded and less fit. The mutant protein
will acquire adaptive mutations faster than the well-adapted protein.

Figure 3 illustrates that fast adaptation happens where the fitness potential
is steep, which is where protein stability is marginal (near AG; = 0, neither
stably folded, nor substantially unfolded), for a given abundance A;.

The curve in Fig. 3 is general and applicable when both stabilizing and

5Fitness potential is assumed to be linearly proportional to the number of folded copies
of the protein, but only up to the point of overexpression.
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destabilizing directions are accessible to the protein. But we note that adap-
tation requires mutations in multiple proteins, therefore in the next section
we make a binary simplification of this landscape, but it doesn’t alter the
slope-speed principle.

Also, it is important to notice that the complete dependence of the fitness
on temperature needs to reflect the fact that at very low temperature, when
proteins are extremely stable, the cell is not functioning properly. In order to
account for this, we assume that the complete fitness is given by the growth
rates of simple cells, which are well-known functions of temperature, and are
predictable from the folding stabilities of the proteins in their proteomes [49-
52]. Here, we combine that relationship with the misfolding avoidance hypoth-
esis (given in Eq. 28) so that we are able to to consider mutational changes.
So, the fitness function equals the growth-rate function,

AH X A exp(—AG;/RT)
r(T) = roexp (_ﬁ> exp [CZ I+ exp(—AGi/RT) (29)
i=1

where rq is an in intrinsic growth-rate speed limit, AH is the activation barrier,
Myt 1s the number of different type of proteins that are important for growth,
A; is the abundance of protein type ¢, T' the temperature of the environment
and k is Boltzmann’s constant. AG; is the folding free energy, whose functional
form is given in detail in [53], but taken here, to good approximation, to be
independent of temperature.

In this work, we consider an evolutionary process in which a cell can be
represented by integer m, which is the number of proteins that have one mu-
tation away from the wildtype exact sequence. We assume that every protein
can mutate to increase its stability AGy — AG; + AAG (we are using the
average of the change in the free energy as a first approximation). A given
organism will have a certain number of these proteins mutated in the new,
more stable, sequence. The more mutated proteins, the higher the optimal
growth temperature; therefore, adaptation to higher or lower temperature can
be achieved by mutating to a more or less stable proteome respectively.

For an m-mutant protein organism, the normalized growth law 29, and
therefore the relative fitness, now becomes:

r(T,m) = rokact(m, T') Ktora(m, T') (30)

m is the genotype variable, which counts the number of protein kinds which
have mutated to a more stable sequence, hence a quantity which refers to the
entire proteome. k. (m,T) is exponentially increasing with the temperature,
and takes into account the activation energy for the cellular processes,
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AH 4+ mdh
T) = _ 1
Kact(m, T') = exp < T ) (31)
Kioa(m, T) accounts for the decrease in the fitness due to misfolding.
mA
K, T) = —
foa(m, T) = exp [ ¢ <1 t exp((AGHT) + AAG) /RT))

(mtot — m)A
— 2
¢ (1 + exp(AGH(T)/RT) (82)

In Fig. 4 we show how the fitness depends on the two main variables:
genotype m and environment 7', and show what the paths for adaptation
would look like.

For simple cells, the growth rate is a direct measure of fitness, so f(m,T") o
r(m,T). So, the relation to the fitness potential 16 is

V(m,T) = A(T) + mB(T) (33)

where A and B are functions of temperature determined by Eq. 32 and parametrized
so that the peak of the landscape is at m = 0 when the environmental tem-
perature is ~ 40°C and at m = my,; when T' ~ 70°C". We imagine that ideally
evolution happens at a fixed environmental temperature; either a mesophile

is kept at high temperature and evolves towards a more stable proteome or

a thermophile is put in a cold environment and it undergoes the opposite
process.

In this simple model, the landscape potential is linear along the m axis,
and the slope is determined by the environmental temperature, other than the
organism-specific growth parameters, which can be obtained by fitting real
data [49].

1.7.1 So, cells should adapt faster to a warmer environment than
to a colder one

How fast can proteins adapt if cells are put in climates of different tempera-
tures? Some unicellular organisms (mesophiles) live in moderate-temperature
environments (around 40°C for E. coli), while others (thermophiles) live in hot-
ter environments. Cells grow the fastest at the temperature of their natural
environment [49, 53, 54|, but moved to different environments having different
temperatures, they can adapt [55]. We compute the speed of adaptation of
a cell that is transferred from its normal environment to a new environment
having either a higher or lower temperature. We compute rates from Eq 25,
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Figure 4. Fitness trajectories for explaining why cells adapt faster
to warmer environments than to cooler ones. Paths 1 and 2 show
how cell fitness changes upon heating. Path 1: start with a mesophile pre-
adapted at 40°C, at the peak of its landscape. Increase the temperature. Path
2: mutations occur to bring the cell to the peak fitness for 70°C. This is
fast because the proteins are destabilized by heating, so the fitness landscape
is steep along path 2. Paths 3 and 4 show changes upon cooling. Path 3:
cooling reduces the fitness of a pre-adapted thermophile. Path 4: he cell now
undergoes mutations to bring it to the peak of adaptation for 40°C. But path
4 is much slower than path 2 because cooling pre-adapted proteins does not
affect their stabilities much. So adaptation to heat is faster than to cold.

with a fitness potential given by the thermal folding Eq 28, and using Eq. 29
to find its slope along the mutation axis. In this example, we consider a given
number of proteins in the cell with either zero or one adaptive mutations to
each protein (assuming no epistasis).

Figure 5 shows the prediction that cells should be able to adapt much faster
to a warmer environment than to a cooler environment. (We are unaware of
experiments that bear on this.) Fig 4 illustrates the reason for this, using a
fitness landscape. Start with a healthy mesophilic cell in its normal environ-
ment, say at T' = 40°C, where it is maximally fit. Its proteins are stably folded.
Now upshift its environment to 7' = 70°C (path 1) (slowly in small steps, to
avoid killing the cell). Initially, the cell is unfit for its new warmer environ-
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Figure 5. Proteins adapt faster to a warmer than cooler climate.
R = kpigh/kiow is the ratio of adaptation rates: (a mesophile adapting to
a higher temperature) / (a thermophile adapting to a colder temperature).
Heat destabilizes folded proteins, putting them onto the steep slopes of fitness
landscapes so cells adapt faster to warmer environments. x-axis: the selection
pressure per misfolded protein, A x c.

ment because its proteins are less stable at this higher temperature, T' = 70°C.
Now, mutations accumulate rapidly (30 total, in the model example) because
the fitness landscape is steep for proteins that are unstable, leading to fast
adaption to the new peak (path 2).

Now, contrast this with cooling. Now, a thermophilic cell starts at T =
70°C, maximally fit, with its proteins stably folded. Cooling causes this cell
to be less fit for its new environment at 7" = 40°C (path 3). But this is
not due to protein stability; cooling proteins that are already stable does not
change their native populations. Rather, the reduced fitness upon cooling is
because of the Arrhenius temperature factor: cells naturally grow slower in
colder temperatures (see Eq 29). Overall, for this cooling situation, the cell’s
fitness landscape has a shallow slope (along path 4), and adaptation to the cold
through mutations is slow. In summary, cells should adapt to warm climates
faster than to colder ones.

1.8 The substitution rate vs. adaptation rate: they
reflect different features of fitness terrains.

We now switch attention from the adaptation rate (how fast an arbitrary se-
quence evolves to become the sequence that has the maximal fitness) to the
substitution rate (also called the evolution rate: how fast, on average, an arbi-
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trary sequence changes to become fixed as a different arbitrary sequence). This
switch allows us to test predictions against experimental data for the prop-
erties studied below. Substitution rates are properties of individual proteins,
meaning that the accumulation of multiple mutations can take a long time. In
contrast, adaptation involves mutations that can occur in parallel throughout
the entire proteome, and therefore those changes can happen much faster. For
this reason, for the remaining of this section we will be counting the number
of mutations in a single protein, as opposed to what done in the previous part.

More importantly, these two rate properties reflect different features of fit-
ness landscapes. Whereas our model shows that adaptation rates are positively
correlated to the slope of a fitness landscape (see above), substitution rates,
instead, are proportional to the average mutational distance of a given protein
to its fitness peak (at equilibrium) (see below):

e*)\V(m)

(W) ~ o Y me—a = fio(m) (34)

where f is a rate quantity used as fitting parameter and (m) is the average
number of sequence mutations from the optimum in a single protein, hence
the average mutational distance from an hypothetical optimal sequence at
equilibrium.

1.8.1 The amino-acid substitution rate can be determined from the
equilibrium probabilities

Here is how we compute the average amino-acid substitution rate (W) for
accepted mutations as a function of the probability distribution, Eq. 34. For
a given protein, the average rate can be written as [32]:

W) =5 33 Wany(0), (35)

where now the indexes ¢ and j refer to different sequences of a given protein,
as it can appear in two different organisms which are related in evolution.

The left side of Eq (35) depends upon time, but the average rate is constant
according to molecular clock data. So, we take the long time limit, so that the
expression of the probability will be determined by its Max Ent distribution
p(t) — p*. Considering a death/birth process, which means assuming that we
can just count the number of mutations from a reference state and including
the fitness degeneracy, the rates take the form Wi; = w; d;41,5 + wj 0i-1;, and
the average substitution rate becomes
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1 imax
(W) = 2 Z (%‘1110:“ + W;r—1p;'k71) (36)

+

Using detailed balance, we can replace w;” | = w; p;/p;_,, which leads, after

some steps to

W)= wntl, (37)
m>0
The detailed balance condition is correct in this case, because we are consid-
ering the fitness to be dependent on the protein’s property alone, so detailed
balance is the only steady state solution of Eq. 17 as it is obvious from the
theory of linear systems of equations; it is interesting to note that when the
fitness depends on the frequency of a given allele, as it happens for phenomena
of co-evolution, like predator-prey dynamics, detailed balance is broken, and
a different approach needs to be taken [56].
Next, we express the transition rate w, , the fixation rate from the sequence
m to the sequence m — 1, which is a higher fitness one by construction. Based
on the combinatorics, the transition rate will be proportional to the number
of mutations in the protein m, simply because there are m possible ways of
reducing the number of “defects”. This quantity will be multiplied by the
mutation rate p and the probability of fization m, . Assuming a constant prob-
ability of fixation (which is a good approximation when the selective advantage
relatively small per single mutation), =, — 7, so we can write

W S Mg = Ml (38)

where py = umg is a rescaled rate quantity which can be used as fit param-
eter. We obtain

(W) = jio S mP, = puo (m) (39)
m>0

Eq. 39 says that the average substitution rate is proportional to the average
distance from the optimum at equilibrium (in the example of the main text it
is the average number of mutations away from the optimum). Such distance
is lower when the optimum has a high probability of being populated, then
the total number of mutations per unit time tend to be smaller, and this
is because there is less doubt on which direction evolution will continue; on
the other hand, when there are a lot of alternatives with a relatively similar
fitness potential, the system, here intended as all the possible lineages that
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Figure 6. Substitution rates are higher on ‘high-shouldered’ fitness
landscapes. The bluescape has more directions in which mutations are fit and
adaptive than the orangescape has, (m;) > (ms). On the bluescape, mutations
can be fixed in either direction (green arrows). On the orangescape, mutations
downhill (red arrow) are too unfit to be fixed. Eq 34 shows that the bluescape
has the higher substitution rate than the orangescape.

can develop from one given individual, tends to explore more possibilities in
the genotype space and the substitution rate, as a consequence, is higher.

Figure 6 shows the interpretation of (m). It measures the weight under
the curve, so substitution rates are highest on fitness landscape contours that
are ‘high-shouldered’: plateaus of high fitness where slopes are shallow. The
bluescape Figure 6 is high-shouldered, with larger (m): a mutation in either
direction (green arrow) is fit enough, so substitution is fast. The orangescape
is not a high plateau or flat. It has smaller (m): a mutation downhill (red
arrow) is too unfit to be fixed. Because of greater access to allowed direc-
tions, Eq 34 says that substitutions happen faster on the bluescape than the
orangescape. Moving away from the peak on the bluescape still leads to adap-
tive mutations, hence to substitution; moving away on the orangescape leads
to non-adaptive mutations. So the net substitution speed is greater on the
bluescape. This high-shouldering principle is valid beyond the simple model
used here to illustrate it.

Substitution rates of amino acids are measurable, and have been the basis
for the molecular clock idea [57-59] that substitution rates differ among pro-
teins, but are approximately constant for a given protein. Recent work shows
that the average substitution rate is determined not by functional constraints,
but by physical ones. Proteins that are more abundant are observed to evolve
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more slowly than proteins that are less abundant [60]. The E-R anticorrelation
is the observation that increasing Expression levels (protein abundances) lead
to reduced Rates of their evolution. It has been hypothesized that this is a
result of either protein misfolding or protein-protein interaction [32, 45, 61].

1.9 Abundant proteins evolve slowly

We model the mechanism of the ER anticorrelation. In a population of cells,
many proteins are not peak-fitness sequences. Increasing the abundance of
these imperfect proteins reduces the cell’s fitness relative to a perfectly adapted
cell. We consider two mechanisms: (i) Misfolding, where fitness, V°"(n) de-
pends on how perfectly a protein sequence folds in its lowest energy state to
maximize HH contacts in the core of its native structure. The deviation from
the fitness peak is a count of the number of defects, n = 0,1, ..., N.. (ii) Aggre-
gation and misinteraction, where fitness, V" (m) depends on how perfectly
the protein surface is covered with P residues, to avoid protein-protein sticking
through HH contacts. The deviation from perfect fitness is m = 0,1, ..., N
the number of H residues on the surface. Now, to get these fitness landscapes,
we use the HP lattice model, in which a protein is assumed to have only hy-
drophobic (H) or polar (P) residues, and different native and mutated protein
sequences are enumerated on a 2D square lattice [62]. Random mutations
over different proteins can reduce either form of ‘perfectness’. In the next
sections we will explore the two assumptions. The main distinction between
these mechanisms is their dependence on abundance A: V°™(n) o A and
Vsul(n) o A2, We calculate the substitution rates for these two different
mechanisms using Eq 34.

1.9.1 Is misfolding a driving force for evolution?

In this HP model, the noncovalent folding free energy of the native protein is
calculated by adding the contribution of each pair of H residues that are in
contact by assuming that each pair contributes at the same way. The total
folding free energy for a single protein can be written in general as

AG, = —pNydg (40)

where Ny is the number of H residues in the core and p is the average
number of HH contacts that a single H residue makes and ¢ is the free energy
associated with it. Considering that removing a single H residues will remove
its contacts, it is better to write Ny in terms of the total core residues and
the number n of P residues in the core: Ny = N. — n. Eq. 40 now becomes
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AG.(n) = —N.0G + ndsG (41)

where 0G' = pdg. In this case we also have d0G = dG but in general they
can also differ, in the case in which the effect of removing a H does not change
0G of the exact same quantity, so we prefer to keep them distinct.

With all these assumptions, we can write that the fitness contribution due
to misfolding is

f;ore = exp (C Aexp(—BAGc(n)) )

1+ exp(—BAG.(n)) (42)

1.9.2 Is aggregation a driving force for evolution?

As the stability contribution to fitness comes from the residues in the core,
aggregation, which is the basic form of misinteraction when considering a single
type of protein, as we are doing in this model, is mainly due to the residues on
the surface, which is the reason why the misinteraction avoidance hypothesis
was proposed: E-R anticorrelation is observed also for residues on the surface,
which contribute too little to the stability of the protein [18, 19]. A functional
form for the additive fitness due to mutation on the surface is still lacking:
results have been obtained either by analyzing known data on the basis of the
interaction propensity of a protein [19] or computationally [18].

Since we need a functional form for the additive fitness we will guess a
function by relying on basic principles only. We assume that the additive
fitness is a decreasing function of the probability that two proteins will come
in contact in the cell and of the average number of “wrong” residues (H) that
can come in contact. Indeed we assume that a misinteraction takes place
when two hydrophobic residues of two different proteins interact. Our guess
is therefore
ft o< exp [~TI(A) x M (m)] (43)

m

where m is the number of H residues on the surface and

e [I(A) is the probability that two proteins out of A have a face in contact.

e M(m) is the average number of mutants on a face when there are m in
total.

In the lattice model it is simple to derive such probability from geometrical
v
point of view: T1(A) ~ (V> A%, Where v is the volume of a protein and V is

the volume of the cell.
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m
In 2D we simply have M(m) = T if we assume that the mutations can

appear with equal probability in each side of the lattice.
In this way our guess for the additive fitness due to surface residues muta-
tions in a single protein type is the one given in Eq. (44)

ff,;”f = exp [—cSpA2m} (44)

where ¢, describes the degree of fitness harm there is to a cell due to a
misinteraction, and p = (%)2 is the relative size of the protein with respect to
the cell, which is a number that varies in the range 107'2 — 10~ for bacteria.

1.10 The ER anticorrelation is explained by either mis-
folding or aggregation or both

In Figure 7 we compare the misfolding and aggregation models we discussed
in the previous section to experiments. Both models predict a general ER
anticorrelation. And, both are consistent with the (not very precise) data [45].
So, we have no basis for favoring one mechanism over the other. Previous
modeling has also observed the ER anticorrelation, but based on assuming an
anticorrelation between AG and mutational AAG’s taken from the PDB [17,
18]. Our more microscopic mechanism here of the full evolutionary landscape
allows us also to study aggregation and chaperone effects at a single protein
level.

Table 1 gives the parameters we use for the fits in Fig. 7. Defined in
Eqgs. 28 and 44, they are the folding energy per residue 6G, the change in
the folding energy per residue due to a single mutation 600G, the length of the
protein, the protein-to-cell volume ratio p and the two fitness parameters c,
and c¢g, multiplied by the selective pressure A. The model focuses on a single
protein, whereas the experimental data shows multiple proteins under different
conditions.

The model explains the ER anticorrelation as follows. Fig. 8 (yellow sur-
face) shows the substitution rate as functions of both protein stability and
abundance. In a very stable protein, a mutation that removes a hydrophobe
from the core is usually acceptable (a high-shouldered terrain), so it has a
high substitution rate. In contrast, in a weakly stable protein, removing a
hydrophobe from the core can unfold the protein, so it is not adaptive (not
a high-shouldered terrain), so fewer possible substitutions are acceptable and
the substitution rate is slower. The abundance effect is as follows. This is an
integration over all the proteins in the cell, and most of them are imperfect
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Figure 7. Expression-Rate anti-correlation: abundant proteins
evolve more slowly. Experiments (dots and density plot) on different pro-
teins in 6 organisms, from [45]. (Red) Misfolding model, V' ~ A. (Blue)
Aggregation model, V ~ A2, The curve parameters are given in Table 1.
Both misfolding and aggregation models are consistent with the data.

and not maximally stable. So, increasing the abundance manifests as increas-
ing the concentration of imperfect proteins, which are not high-shouldered,
leading to slower average substitution.

Fig. 8 explains the ER anticorrelation in terms of substitution rates. Here,
we illustrate it, instead, on the fitness landscape. (1) The shape of the fitness
landscape (see Fig 9) is given by Eq 42, where the mutation axis indicates
proteins becoming increasingly unstable to folding due to increasing mutations,
and the abundance axis indicates that the cell’s overall fitness diminishes in
proportion to the concentration of these unfit proteins. (2) For the same reason
shown in Fig 6, evolution is faster along the bluescape than the orangescape
contour in Fig 9. (3) Therefore, increasing abundance (i.e. moving from the
bluescape line to the orangescape line in Fig 9) leads to slower substitution
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Figure 8. (Yellow) Substitution is slower for proteins that are unsta-
ble or abundant. (Blue) Chaperones increase all the evolution rates.
(Yellow surface, proteins alone) Mutating a stable protein is usually adaptive
because the protein can tolerate it. Less-stable proteins are less tolerant of
mutations, so their substitution rates are lower. Since most proteins are im-
perfect, increasing the average abundance decreases cell fitness, leading to a
lower substitution rates. (Blue surface, with chaperones). Chaperones raise
the evolution rates of client proteins overall because they raise their tolerance
to mutations.

rates. (The example in this figure is for the misfolding mechanism, but the
same general features apply to the aggregation mechanism.) One general point
is that because folding rate is so universally anticorrelated with abundance,
across a broad range of proteins, it suggests that the physical misfolding and
aggregation properties may be more generally relevant to sequence evolution
than the biological mechanisms, that differ from one protein to another.

1.11 Chaperones are evolutionary accelerators

The speed of cell evolution is modulated by chaperones in the cell. Chaper-
ones are biomolecular complexes that help other proteins (their clients) to fold.

30



Organism 0G/kKT 660G /KT Length Volratio  Ac. ACs
E. coli 1.8 1.8 20 2 x 1077 0.0008 0.000065
S. cerevisiae 1.1 1.1 22 3x107% 0.01 0.0009
A. thaliana 1.1 1.1 30 2x 1078 1.1 1.1
D. melanogaster 0.9 0.9 35 1x10°8 0.5 0.5
M. musculus 0.7 0.7 40 1x1077 20 20
H. sapiens 0.5 0.5 40 3 x 1077 20 20

Table 1. Parameters used for the curves in Fig. 7. Volume ratio and free
energy per residue are not used as fitting parameters but taken from known
experimental averages.

Experiments show that chaperones are generally evolution accelerators (they
have been called evolutionary capacitors). That is, increasing a cell’s chaper-
one concentrations can speed up the cell’s evolution [20, 21, 23, 25, 26, 63].

What is the mechanism of evolutionary acceleration by chaperones? In
the next section we develop a model for calculating the fitness landscape for
proteins whose folding mechanism is mediated by interaction with two different
type of chaperones.

1.11.1 How to account for the different effects of the different chap-
erones, DnaK and GroEl, on a client protein’s evolution
rate?

The misfolding avoidance hypothesis [14, 17, 45] can also be used to include
the effect of chaperones in this model. Accordingly, the fitness is determined
by the total number of unfolded proteins, assuming a 2 states dynamics for
protein folding. However, a more realistic mechanism of protein folding has
to be more complex [64]; the first modification which is needed to make the
model more realistic is to consider the possibility that the protein will transi-
tion into a misfolded state (M), a local minimum of the free energy landscape
which would make the protein non-functional and prone to aggregation. We
therefore have 3 possible states M, U, N (misfolded, unfolded, native); a pro-
tein is synthesized in the unfolded state, but it does not stay for long in this
state, given the energy minimum is away from this state. It either misfolds
or folds correctly. When it is misfolded there is much more chance of aggre-
gation, because many hydrophobic residues are exposed. We therefore modify
the misfolding avoidance hypothesis considering this 3-states model, and the
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Figure 9. Fitness landscape assuming stability only. Increasing protein
abundance changes the shape of the fitness landscape from big-shouldered
(blue) to small-shouldered (orange), reducing the substitution rate for the
reason explained above and expressed in Eq. 39.

fitness is taken to be proportional to the number of misfolded proteins M

f(AG,C) = e MRG0 (45)

where M is the number of misfolded proteins at steady state, ¢ the usual
parameter for the misfolding avoidance hypothesis (see Eq. 28) and C is the
chaperone concentration.

The role of chaperones in the cell is to prevent aggregation by binding to
the misfolded proteins; the number of misfolded proteins at steady state is
negatively correlated to the chaperones’ concentration. Here we consider two
models for protein-chaperone interaction, one for GroEl (G) and the other
for DnaK (D). The main difference between the two chaperones is that after
binding to the misfolded state, GroEl can release the protein either in the
unfolded U state or in the native N state, whereas DnaK can only release
in the U state, giving the protein a new chance to fold independently; they
indeed belong to two different classes of chaperones called foldase (because
it direcly helps folding) and holdase (because it just delays aggregation by
“holding” the protein). Although this is a very minimal approximation of the
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Figure 10. The chaperone assisted protein folding model for

GroEl (top) and DnaK (bottom). The constants a,b,c... are the fold-
ing /unfolding /binding rate constants and they can be expressed in terms of

an activation energy. Cx is the chaperone-protein complex (C can be G or D,
X can be M, U, N).

true mechanism, it is able to capture the basic difference between the two form
of chaperone-mediated folding.

Fig. 10 depicts the two models. Both models consider ATP aided folding:
the chaperone-ATP complex (G* or D*) binds to the M protein, ATP is used to
unfold the protein and then the complex chaperone-ADP (G° or D°) releases
the protein in the new state (U or N).

We first consider GroEl. In order to find the number of misfolded proteins
at steady state we need to solve the ODEs associated to the mechanism in
Fig. 10 (top). First we consider the equations for Gx, where X = M, U, N and
solve them at steady state:
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TOM M= (b + €) G + dG = 0

dt

dGU o

- = cGy — (d+e+9g)Gy + fG°U+ hGny =0

df—tN = ¢Gy— (h+1)Gy+iG°N=0 (46)

Solving these equations at steady state, we can use the result to calculate
M, U and N. For instance, the equation for M is given by

dM
E = pU + bGM - CLG*M — k’aM (47)

where k, is the aggregation rate. Replacing Gy with the solutions we found
from the previous equations, we can write the latter equation in terms of some

effective rate constants axy, which take into account the chaperone route for
folding — unfolding (See Fig. 11):

dM
% = pU — k’aM — (OéMU + OZMN)M + O./UMU + OéNMN (48)

Now we solve at steady state the equations for M,U and N and find all the
constants

A bdf (h + 1)G°
ceh +b(d+e)h+ cle+ g)l + b(d + e + g)l
B bdhinG®
N = ceh +b(d+e)h + cle+ g)l +b(d+ e+ g)l
eac(h + 1)G*
MU= ceh +b(d + e)h+ cle + g)l + b(d + e + g)l (49)
B ehi(b+ ¢)G°
NV eh+ b(d+ e)h+ cle + g)l + b(d + e + g)l
— [fg(b+ )G
ceh +b(d+e)h + cle + g)l +b(d + e+ g)l
lacgG*
ANMN =

ceh +b(d+e)h+ cle+ g)l + b(d + e + g)l
to simplify the model we make 2 assumptions (see Fig. 11):

1. GroEl is extremely selective, it only binds to M: ¢ =0 and f =0
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Figure 11. Effective mechanism of protein chaperone interaction in
term of the rate constants, for GroEl (top) and DnaK (bottom).
The main difference between the two models is in the folding paths: GroEl
can release the protein either in the U state or in the N state, whereas DnaK
can only unfold it, giving it a second chance to fold independently.

2. GrokEl is perfectly efficient, it never releases the protein in the M-state

in this way only 2 rate constants are non-zero (see Fig.11), and their ex-
pression is simplified

= ax
anMU 1+ UCL
1

where
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Figure 12.

A qualitative free energy landscape for the chaperone
mediated protein folding. Folding for a free protein vs a chaperoned protein

follows different routes on the energy landscape, so the latter is more favorable

than the former. p; and py are reaction coordinates identifying folding and
chaperone binding, respectively.

The ratios e/g and h/l can be expressed in terms of the activation energies.
For the first, we can assume that folding inside the chaperone is much more
convenient than releasing the protein in the unfolded state, therefore

e [AUN—AU
5 ~ exp _—RT :|
(52)
h AN — ANU
7 R exp _—RT ]

where AU and AN are the barriers for release of the protein in the U and
N states, respectively, and AUN — ANU = AG < 0 is the folding energy.
Fig 12 qualitatively depicts how these energy differences are defined.
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Figure 13. Increasing chaperone concentration increases a client
protein’s evolution rate. Model calculations are given in SI, based on
slightly different mechanisms for GroEl and DnaK; see Fig 10. The GroEl
curve is computed from Eq. 55), with a 2X overexpression level, compared to
experimental data of [21], shown with green triangles. Increases from DnaK
are also observed in experiments [26].

We can assume that there is no preference in the release of the protein,
whether in the U or in the N state, therefore AU ~ AN. We also assume that
exp(AU/RT) is of order 1, so that

R e AUN +e AG ~l+e AG (53)
oF PN TR PNRT | T TP AR

if we also assume that folding inside the chaperone is extremely favorable.
In this way Eq. (50) becomes

. 1+ exp [AG/RT]

MU 9 4+ exp [AG/RT]
1

NN = S exp [AG/RT]

aG*

aG” (54)

Now the entire model depends upon 3 measurable parameters: the GroEl-
misfolded protein binding rate a, the GroEl concentration G* and the chap-
erone assisted folding energy (naturally smaller than the free one) AG. We
can proceed now to calculate the fitness by solving the steady state equation
for M and using Eq. (45). We therefore solve the system of linear equations
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derived from Eq. (48) and the correspondent ones for U and N at steady state,
leading, after some further approximations, to

A
14+9G/(Go(1 +0))

where we introduced the protein abundance A by enforcing mass conservation
M+ U+ N = A and introduced a chaperone’s concentration parameter Gg
(corresponding to the concentration in normal conditions) and v = aGg/k;, is
the ratio between the protein-GroEl binding rate in normal conditions (i.e. at
G = Gy) and the protein removal rate k., which is proportional to the overall
growth rate of the cell.

At this point we have all we need to calculate the average amino-acid
substitution rate with the same method used in the main text, using Eq. (39),
calculating the folding energy AG using a lattice model (see Eq. 40). A similar
analysis can be done to determine the effective rate constant Syy for the DnaK
assisted folding. We get

MGroEl ~ (55)

A
14 ~Dp/Dy
where p = exp [-AG/RT]. We now use the two expressions (55) and (56) to

calculate the average substitution rate as a function of the protein abundance
A and the chaperone concentration (see Fig. 13, bottom row).

(56)

DnaK ~

1.11.2 Results of the chaperone’s mediation

The blue surface in Fig. 8 shows the effect of adding chaperones within the
present model. Chaperones are active ATP-driven devices that shift the bal-
ance from misfolded and unfolded states to native states of client proteins,
resulting in stabilizing the client proteins. And, according to theory above,
more-stable proteins have terrains that are more high-shouldered, leading to
faster amino acid substitution. Hence, chaperones accelerate evolution.®
Figure 13 shows the prediction that evolutionary acceleration can be dif-
ferent for different types of chaperones. The model predicts that GroEl is
effective at lower concentrations, and on a different set of client proteins, than
DnaK. Why the difference in chaperone concentrations? In short, clients of
GroEl see only an unstable U and stable N state, so those clients mostly fold.
In contrast, clients of DnaK mostly see an M state that is almost as stable as

6A subtle point is that while chaperones accelerate substitution, they can slow down
adaptation, since chaperones can make ‘near-perfect’ proteins appear perfect to the cell.
Such near-perfect proteins have no selective disadvantage in cells with chaperones.
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Figure 14. How client protein folding energy landscapes are affected
by different chaperones. With no chaperone (red), native (N) and mis-
folded (M) states of the client are populated. Chaperones serve different client
proteins, but they also act differently. GroEl (green) stabilizes and populates
N. DnaK is less effective at promoting N relative to M than GroEl is, so Dnak
is less effective at increasing substitution rates.

N, so more chaperone is needed to produce more N. This is reflected in the way
the free energy landscape is modified when a protein interacts with different
types of chaperones [64], as showed in Fig. 14. That’s why GroEl and DnaK
should have different values of ‘evolutionary capacitance’.

1.12 Conclusions

We model here how rates of protein evolution depend on folding and aggrega-
tion properties. The present model gives a single framework for understanding
disparate observations. (1) Adaptation speed depends on the slope of a fitness
landscape. This depends strongly on selection pressures. It is fastest for the
least-stably folded proteins. Cells that are shifted to warm climates become
unstable, so they adapt rapidly. (2) Substitution speed depends on how “high-
shouldered” is the terrain of a fitness potential. Abundant proteins evolve
slowly. This is because most proteins are not perfectly stable, so increas-
ing their abundance, shifts the cell to non-high-shouldered terrains of fitness,
leading to slow substitution. (3) This effect is mitigated by chaperones, which
increase protein stabilities, increasing their substitution rates. This modeling
describes how protein evolution rates depend on their folding and aggregation
properties.
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Chapter 2
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Maximum Caliber for Dissipative

Systems

In this chapter we switch our attention to the dynamical version of the Maxi-
mum Entropy Principle, hence Max Cal.

As we mentioned in the introductory section, Max Cal begins with a model
of the accessible trajectories, X = {&(to),&(t1),&(ta)...} of values & at different
times ¢. Max Cal infers the probability P(X) of observing trajectory X within
trajectory space { X} by maximizing the path entropy, which for a continuous
set of trajectories would be written as

P(X)

Spath /dX P(X)log (X (57)
where the function g(X) is some reference/prior distribution in the absence
of constraints. Now, in the simple situation of non-dissipative dynamics of a
single dynamical quantity J(X), for which the average,

() = / X P(X)J(X) (58)

is known, the trajectory populations are obtained using the method of La-
grange Multipliers [10, 11].

Here we want to address some potential controversies which might arise
when Max Cal is applied to dissipative systems whose currents have specific
symmetries under time reversal and space reflection and show that, contrarily
to what it might be argued, the results are consistent with the physics of the
problem when the right set of constraints are applied.
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2.1 Dissipative dynamics requires more constraints

Two recent papers [65, 66] assert that Max Cal will fail in some cases. Jack and
Evans (JE) [65] assert that Max Cal does not deal with dissipative systems, and
Maes (M) [66] asserts that Max Cal does not handle cases of a time-asymmetric
component in one of the constraints. Here we make use of the reasonable
concerns that these argument arise to show that these are not problems of the
principle of Maximum Caliber; these result from an application of the wrong
constraints. When proper constraints are applied, Maximum Caliber handles
these situations properly.

We first address the JE situation. Consider a dissipative system where a
current J(X) flows in conjunction with some finite amount of heat flow dg(X)
out of the system. Assume that the statistical ensemble of all trajectories
contains also those trajectories that are related to each other through a time-
reversal transformation T and a space-reflection transformation P (it can also
refer to reflection along only one of the physical coordinates [65]). For the
right choice of current-generating force, the resulting current will always be
antisymmetric under both time reversal and space-reflection transformations,
so we assume that the forces acting on the system are of this type (an example
is a shear stress, which generates a current with such property). As a conse-
quence, under a combined PT transformation, the current will be identical to
the untransformed current [65].

Now consider the heat and work transferrence between the system and the
external bath. This will be antisymmetric under time reversal: running time
backwards would reverse all three: the flow, the work, and the heat along
the trajectory. But, it will be invariant under space reflection. No matter
whether a force drives a current in a forward or backward direction along
a trajectory, an identical amount of heat will be dissipated. This is not an
assertion of reversibility of heat transfer; that would violate the Second Law of
thermodynamics. We are considering only a single non-equilibrium trajectory
here, not a Second Law average over all trajectories. Rather, it just means that
if a trajectory entails heat flowing into the system, its time-reversed trajectory
entails heat flowing out. As an example, consider a particle with mass m
sliding on a surface with friction coefficient ¢ and initial velocity v. The total
energy dissipated through the process of slowing down until stopping is equal
to the total kinetic energy Ej = 1/2muv? of the particle, which will increase
the temperature of the surface by AT = FE,/C, where C is the surface’s
heat capacity. The time-reversed process would be the following: heating up
the surface by exactly AT and wait for the thermal energy to spontaneously
transform back into kinetic energy, accelerating the particle back to velocity
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v. This reverse process is extremely unlikely. We illustrate a calculation of
this probability in Max Cal below, and at the end of this chapter we will show
its relevance in the context of molecular motors.

In general, for a dissipative system, a trajectory X will have some current
flow J(X), in which some work dw(X) is done on the system and the system
dissipates some heat 0g(X). The PT-reversed trajectory, PTX, would have
heat 6g(PTX) = —d¢q(X) going into the system and work dw(PTX) = —jw(X)
done on the external environment, because a space reflection transformation
does not change the heat/work flow, but time reversal does. The probability of
the trajectory PTX should be much lower than of X for macroscopic currents,
although we know from fluctuation theorems that for very small currents they
can become comparable [67, 68]. The result below agrees with such predictions.

For a dissipative steady state (DSS) the internal energy is unchanging,
AU = 6w + 6q, because in steady state, the heat out must equal the work in”.

The argument of Jack and Evans is straightforward [65]. First, they cor-
rectly note that if the only constraint is on (J(X))

(J(X)) = / 4X P(X).J(X) (59)

then maximizing the Caliber (i.e. the path entropy subject to the con-
straint) gives the following probability of trajectory X:

etd (X)

X) = 70 (60)

where Z(p) = [dX et(X) is the sum of weights over all paths. Second, since
the flux is PT invariant, substitution of J(X) = J(PTX) into Eq 60 gives the
result that the probabilities must be PT invariant,

P(PTX) = P(X). (61)

JE argue that such systems are not dissipative, because (d¢) = 0, which
they show as follows:

(6q) = / dX P(X)(X)
— 12 / dX (P(X)oq(X) + P(PTX)dg(PTX))

= 12 [ dXPOOGAX) - 5a(X) =0, (62)

"Note, in our convention energy going into the system is positively defined.
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where the second line is obtained by considering that the Jacobian of a PT
transformation equals 1.

JE conclude from this, incorrectly, that Maximum Caliber cannot handle
systems, such as a sheared fluid, that are dissipative. On the contrary, we
show here that the problem above is the use of only a single constraint, namely
(J(X)). This misses the essentiality of the coupling of the flow J to the heat
and work exchange into the process, which require additional constraints.

2.2 The number of constraints must at least equal the
number of independent flow variables

To illuminate the problem, consider the corresponding situation in equilibrium
thermodynamics. The equilibrium entropy can be expressed as a function
S = S(U,V,N) of three independent extensive variables — energy, volume
and particle number. If all three independent variables are free to change in
a process, you cannot adequately specify the state of the system with only
a single Lagrange multiplier, say the pressure p; you must also specify the
temperature 7" and chemical potential p. You need a Lagrange multiplier for
every independent variable.

In dissipative dynamical systems too, there are multiple independent vari-
ables. You can specify an average flow rate (J), but dissipative systems also
entail heat and work flows in and out, and those can affect the trajectory dis-
tribution. For example, you can achieve a given average particle flow rate in
multiple ways, such as increasing the work done on the particle in a medium
of increasing viscosity that dissipates more heat. Predicting the trajectory
distribution in dissipative systems requires knowing the heat and work rates,
not just the particle flow rate.®

For example, consider particles flowing along the axis of a tube, with an
average current of (J(X)) = J. That particle flow can be independent of the
rate of work flow (J,, (X)) and heat flow (J,(X)) into and out of the tube; for
instance, if the viscosity is free to change the relation between the flow and
the applied work would change as well. Some situations will reduce these 3
variables to fewer; other situations will not.

First, consider any steady-state flow, dissipative or not. By definition, the
total internal energy will be unchanging with time, AU = 0. So, it follows
from the First Law that

8Note, however, that while (U,V,N) are conserved quantities in the equilibrium
metaphor, J; and J,, are not necessarily conserved in flow situations. In the next chap-
ter we will consider cases in which flows are conserved quantities.

44



dq = —ow. (63)

Thus, in steady-state flows, the heat current must equal the work current,
(Jg(X)) = = (Ju(X)) (64)

where our convention is that current flows into the system are defined as
positive.

Now, in a non-dissipative steady state (nDSS), we have (J,(X)) = — (J,(X)) =
0, leaving us only one independent variable, J. However, in a dissipative steady
state (DSS), energy must continuously enter the system in order to sustain the
current J, so now we have 3 constraints,

D
(S

(J(X)) =J (
(Ju(X) + J4(X)) =0 (
3(Ju(X) = Jy(X)) =g (

S O
~N
~— ~— ~—

where Jg is the energy influx rate.

Specifying a dissipative steady-state system requires specifying three in-
dependent currents. The flaw in the JE argument is their assumption that a
dissipative system can be modeled by specifying only (J), which carries the
implicit assumption that Jg = 0. At steady state, only non-dissipative systems
can be described when only a single constraint, (.J), is specified.

2.3 For dissipative steady-states, Maximum Caliber re-
quires at least 3 constraints.

For DSS situations with the 3 constraints above, the expression for Caliber is:

C:

/ dXP(X)In P(X) — a ( / dX P(X) — 1) (68)
- faxpeoieo - ) (69)
_ ( / X P(X) (X)) — JE) (70)
~ ( / dX P(X)J,(X) + JE> (71)
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where we chose here, for simplicity, to define each current individually instead
of constraining the sum and the difference. Maximizing Caliber gives the
trajectory probabilities as

ol (X) 41w (X)X Tg(X)
P(X) = 72
X =20 72)
where Z = [dX ehd (X)HvJu(X)+2J4(X)

This Max Cal formulation shows that reverse trajectories in dissipative
processes are unlikely for large currents. Using the PT transformation, we can
calculate the relative probability that a system would absorb heat from the
environment (and produce work):

PPTX) o 201,(x)17,(x)) (73)
P(X)

This fluctuation relation shows that ‘wrong-way’ paths, which take up heat in
dissipative flows, become exponentially improbable with increasing current, as
they should. If the only constraint here were on (J), as in JE, then (J,) =
(Jw) = 0 and wrong-way flows would be predicted to be much more probable.
The Max Cal procedure gives the distribution of all the trajectories. On
the one hand, it uses as an input constraint, the heat uptake J,(X) averaged

over all the trajectories:

(6q) = (J,) At = At / dX P(X)J,(X). (74)

On the other hand, Max Cal then gives as a prediction the higher moments,
such as the mean-square fluctuations of the heat:

(0¢°) = At? / dX J}(X)P(X). (75)

This reflects a deeper aspect of statistical mechanics which applies to equi-
librium systems as well. When a macroscopic quantity is used to define a
system, temperature for the Canonical Ensemble, there is no predicting power
for the related measurable, hence average energy: Determining the first or
the second is equivalent. In fact, Max Ent shows this from a mathematical
perspective; the Lagrange multiplier (inverse temperature) is just a fictitious
quantity used to constrain the actual measurable (average energy), so in a way
is just an alternative way of expressing the measurable itself. On the contrary,
fluctuations of the average energy are predictable quantities.
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Figure 15. A particle in a dissipative system. The particle can receive
energy from the belt or from the thermal bath, but it can also transmit energy
to the belt by hitting it or to the thermal bath, by friction on the walls of the
conduit.

2.4 A solvable model of a dissipative system: a particle
in 1-dimensional flow, with heat and work.

In this section, we illustrate with a concrete model. Consider one particle
moving along inside a 1D conduit. The particle is in contact with a thermal
bath with which it can exchange heat. The particle can also interact with a
conveyor belt that performs work to boost the particle’s velocity; see Fig. 15.

A trajectory X is a series of N steps, each one of which takes time At.
In each time step, the particle experiences one of three possibilities: (i) it
increases or decreases its velocity by Aw, by collision with the belt, (ii) it
increases or decreases its velocity by Au by exchanging heat with the bath,
or (iii) it undergoes no change in velocity in that time step. A full trajectory
is a string of such states: up, up, stay, up, down, up, .... for example. The
quantities Av and Awu are not limited to a fixed value, but can be anything
within a given range.

The trajectory for a given particle has three identifying quantities. The
average velocity of the particle along the trajectory v(X), the work done on
the particle by the belt w(X) and the heat absorbed by the particle from the
thermal bath ¢(X). As a convenient convention, we take both w(X) and ¢(X)
to be positive when the energy flows from the external environment to the
particle, so for the work, this convention is the opposite with respect to the
one used in thermodynamics. Note that for the average velocity of a given
trajectory 7(X) we have used the overbar symbol to distinguish it from a
trajectory-ensemble average; T(X) is just the average velocity maintained by
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the particle in a specific trajectory, whereas we would use the symbol (v(X)) =
> P(X)u(X) to refer to the trajectory-ensemble average, hence averaged over
all the possible trajectories.

This allows us to enforce some minimal constraints which identify a DSS
without ambiguity. The constraints are the following:

(w(X)) = B (76)
(¢(X)) = —Eun (77)
@(X)) =V (78)

where Ej, is the average work input (or negative heat output).
The particle starts at time ¢t = 0 with velocity vy. So, a given trajectory X
can be specified by an initial velocity and a sequence of changes in velocities:

X: {U07§17€27-~-7£N71} (79)

where ¢; = Av; or Au;, where j is an index of the time step, depending on
which processes occurred along the given trajectory. Now, Maximum Caliber
gives the probability of a given DSS trajectory as

vw(X)+Aq(X)+uv(X)
P(X) = P(UO;€1,€2, "-7£N—1) - 7

All the functions w(X), ¢(X) and T(X) can be expressed in terms of the
particular sequence of velocity changes in trajectory X.

Now, under a PT transformation, each trajectory function is transformed
as follows:

e

(80)

w(PTX) = —w(X) (81)
q(PTX) = —q(X) (82)
o(PTX) =79(X). (83)

This is because both heat and work are invariant under space reflection, but
are anti-symmetric under time reversal. Therefore, the ratio between the PT-
transformed and untransformed trajectory is

P(PTX) 672[Vw(X)+)\q(X)}

PIX) = (84)
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which does not equal 1, except in the non-dissipative case that the trajectory
does not involve any energy exchange®.

For a general N-step process, the functional form is too complex for an-
alytical solution, due to the non-linear relation between velocity and kinetic
energy: the change in velocity at time step n will depend upon all the changes
in velocity at time stepsn —1, n — 2, ..., 0.

The partition function can be calculated numerically in that case, and the
values of the Lagrange multipliers can be tuned to make sure that constraint
averages are satisfied. In the next section we will show how to solve the
problem analytically in an even simpler case.

2.4.1 Simplified trajectories with only 3 time steps

It is interesting to further simplify the model above to just 3 total time steps
so that we can obtain a closed form expression. A trajectory is described by
the vector

X ={v, &1, &} (85)

where vy is the initial velocity of the particle (first step), & is the change in
velocity in the second step and &5 is the change in velocity in the third step.
At steps 2 and 3, the velocity can either remain the same (& = 0) or change
by interaction with the moving belt (§; = Awv;) or change by heat exchange
(& = Auwy;); see Fig. 16. Again, the functional form of the probability is given
by Eq. 80, but now just for the short-trajectories of Eq. 85.

The Max Cal dynamical partition function is obtained by computing the
following sum over all the small number of trajectories X:

Z _ Z el/w(X)-f-)\q(X)-HLﬂ(X) (86)
X

In order to correctly express the form of the sum in Eq. 86 we take into
account the fact that at every step we are assuming that only one type of
velocity change is possible, either heat driven or work driven.

The expression for the functions of the trajectory at the exponent for the

9In this case, the PT-reversed trajectory must have identical probability, because it is
the identical trajectory.
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3-steps trajectory are

u(X) =
w(X) =
+
q(X) =
+

Vo + ggl + %fz

mé; (Uo + %) d(& — Avy)

mé&s <Uo +& + %) 6(& — Avy)
3!

m§1 <U0 + 5) 5(51 - Aul)

més (Uo +&+ %) 6(§2 — Aup)

(87)

(88)

(89)

where the Dirac delta functions assign the correct values to the specific

process of energy transfer,
The partition function

Vinax
z - |
_Vmax
AV
.
AViy
AVg
.
AV
AV
o
AVqg

X

whether it is heat or work exchange.
is therefore

m/%mx

/ dAv, / dAv, VX HAa(X)+uo(X)

AV

AV

AVg
dA’Ul/ dAUQ euw(X)—l-)\q(X)—Hm(X)
AVp

AV
dAu, / dA’Ug euw(X)—i-/\q(X)-HAE(X)
AV

AVo
dAul / dAUQ euw(X)—&-)\q(X)-huﬂ(X)
AV

(90)

(91)

(92)

(93)

(94)

where the integrals over &; are only used to make use of the delta functions. The
limits of integration correspond to the maximum velocities which are allowed
by the physics of the system (for example, beyond such values the conduit will

break down).

In the MaxCal procedure, the values of the three Lagrange multipliers
1, v, A are unknown until measurements of the average velocity, work and heat
are provided, and the following equations are then solved:
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Figure 16. Possible trajectories for the 3-step toy model. X; =
{vo, Avy, Avy} is a trajectory in which all the changes in velocity are due to
work exchange (the sign of the change determines the direction of the work
flow); Xo = {vg, Avy, Aus} is the trajectory in which first there is exchange of
work then heat; X3 = {vg, Auy, Auy} is the trajectory in which there is only
heat exchange. Other possible cases include a trajectory without changes and
trajectory with more mixed exchanges.

olnZz
V=" (95)
olnZ
Ein - W (96)
olnZ

which are the same as Eqs. 76-78 but expressed in terms of the partition
function.

From these, and after some approximations, we obtain the values of the
Lagrange multipliers
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3n

~ — 98
0 v (98)
€
v o~ T (99)
€
~ 1
A 7o (100)

where we have introduced the dimensionless parameters n = V?/V2 _ and
e = AV /AVyy for convenience. Vi is the maximum velocity that the conduit
can withstand, AV is the maximum change in velocity due to heat exchange
and AVyy the one due to heat exchange.

In order to obtain this result, we have assumed that the measured velocity
V' is much smaller than the maximum rate Vi.x, so n << 1; also we assumed
that the maximum change in velocity due to work is much larger than the
one due to heat, because work is always directed in a specific direction, so
this means € << 1. Such assumptions, although not necessary to solve the
problem, make it easier to obtain an analytical expression for the Lagrange
multipliers.

The trajectory probabilities in this 3-step model is

P(X) = %exp {ew(X;E_,inq<X) + 3776(;() } (101)

Eq 101 computes the probability of any pathway X in terms of the two
observables, Ej, and V. Fig 17 shows an example of populations as a function
of the trajectory functions v(X), w(X) and ¢(X) for fixed values of V| the
particle flow velocity, and energy input Ei,. The Max Cal result (blue plane)
shows how the probability of a given trajectory is increasing when the average
speed increases in the same direction of the measured velocity V. Also, it
predicts that the probability is larger for the processes which have working
going into the system and heat out (w(X) — ¢(X) > 0), and lower for the
reverse processes (w(X) — ¢(X) < 0).

The orange plane is based on supposing that the only constraint in Max
Cal derives from the observed particle flux alone, without knowing energy
flux in or out, therefore it predicts the same probability for each process with
different energy input/output.

From Eq 101, we can readily compute the ratio of probabilities for PT-
reversal:

w(X) — q(X)
P(PTX) > g

o) = (102)
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q=0, w>0

q>0,w=0

Figure 17. The Max Cal probability distribution vs JE. Using 3
constraints (blue plane) it is able to capture the difference between trajectories
with different energy sources, which is not possible when only one constraint is
used (orange plane). The coloured dots show the difference of the probability
of three trajectory with the same average velocity but different energy source,
as depicted in Fig. 18.

Eq 102 shows that for a given amount of energy that is put into the system, a
trajectory with a large dissipative current is more likely than the PT-reversed,
non-dissipative one; at the same time, it correctly predicts that for small energy
currents, the probability of a 2nd law-violating process is comparable to the
opposite process.

In this way, Max Cal captures the difference between trajectories having
the same average velocity but caused by very different processes. In Fig 18
we show three examples of trajectories, each with the same average velocity v
but with different values of w and ¢. The first trajectory corresponds to the
process in which the particle is hit twice by the belt; in the second the particle
is hit first by the belt and then it receives energy from the thermal bath; in
the third, the particle receives energy from the bath twice. If the process
were non-dissipative, the three trajectories would have the same probability,
but in this dissipative case, Max Cal shows how the probabilities are different
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v >0

.\ ‘/\ ./ w=20

qg>0

Figure 18. Three possible trajectories for a single particle. Top:
The particle interacts in both steps with the conveyor belt, receiving energy
as work; Center: The particle first receives work then heat from the thermal
bath; Bottom: The particle only receives energy as heat from the thermal
bath. In Fig. 17 the corresponding coloured dots with the respective proba-
bilities.

(Fig 17).

2.5 The Maes Argument and the proper number of con-
straints

Maes argument [66] is a bit more subtle, because it points out the fact that
when the only chosen constraints are time symmetric currents, the only pos-
sible outcome is a system without any dissipation. We agree in principle that
this is the case, but with the caveat that this would be a problem with a poor
choice of constraints, and not with Max Cal itself: when there is an extra
knowledge of the system which is ignored, like work or heat transfer, (or in
general what Maes calls a frenetic contribution [66]) it should not be surprising
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that Max Cal will lead to inexact results. Once again, the criticism should be
directed to a poor choice of constraints.

The example that seems to be of concern when we try to apply Max Cal is a
system that exhibit some symmetry in a given regime and then such symmetry
is broken in another regime.

Imagine a dynamical system at steady state which is macroscopically de-
fined by some average current J. This time we assume that J has an observed
dependence upon some external parameter ¢: J = J(¢). An example could be
a current which has some non-linear dependence upon an external stimulus,
like an electric field, arbitrary far from equilibrium, so no linear approximation
is allowed.

We also assume that there is some transformation in the system R for
which the current has the same symmetry as the parameter, but only in a
very specific regime of the parameter ¢ < L:

RO = of (103)
RI(() = aJ(O)8(L—¢)+ J(0)0(¢— L) (104)
4e[RT] = aj[I1O(L — €) + jy[T]0(¢ — L) (105)

Where j,[I'] is the specific current for the trajectory I', which is itself parameter
dependent, obviously, & = £ for symmetric/anti-symmetric systems; jj[I']
and J'(¢) are the transformed microscopic and average currents outside the
symmetry region ¢ < L. 6(x) is the Heaviside step function.

We can imagine a current that increases with an electric field in a given
range and then it starts decreasing when turbulence arises. With the proper
choice of symmetries and at steady state this would correspond to the Maes’
ideal system.

How do we apply Max Cal in this scenario? First of all, if the parameter
is not allowed to change during the measurement the answer is simple: the
caliber is calculated at a fixed value of the parameter and the inferred prob-
ability distribution is valid only at that specific value of the parameter. On
the other hand, if the value of the parameter can arbitrarily change during
the measurement, the Caliber cannot be parameter-dependent, because we
need to account for all the possible trajectories and normalize the probability
accordingly, irrespective of the value of the parameter. So we consider the
system at steady state in this second scenario, so the caliber is

C = / dT'p[T log %—a ( / dp[T] — 1) - / deB(0) < / dTp[Tj[T] — J(f))
(106)
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which is similar to what we obtain when the constraint is time-dependent,
but this time we have a generic parameter ¢. So in a very similar way as for
time-dependent systems we have

P[] = @ exp { / dea(0) ﬂm} (107)

Now we can actually calculate the PT transformed current probability

p[PTT] = @exp / dﬂﬁ(ﬁ)jg[PTF]} (108)
= ey | [ atpto) irdrioce — 0+ irioce — 1] (oo
= @exp _04 /£<L dlB(€) [T +/€>L dﬁﬁ(ﬁ)jg[f‘]] (110)

Now we take the ratio

p[PTI]
pll']

—exp (=) [ ats(oilr] e | [ atstoir - slr)
<L >L
(111)

If the current is symmetric « = 1 in the entire allowed regime (basically
L — o0) the system is non-dissipative, as we expected since we are assum-
ing there is no dissipation (same argument as for Jack and Evans). How-
ever, if we observe that the current J(¢) is symmetric only in a very specific
regime, the fluctuation relation has a non-trivial component due to the dif-
ference j;[I'l — 7¢[I']. In addition to this, for systems that we know to be
dissipative, a single constraint is not sufficient, as we have seen in the previous
section; as a consequence, the fluctuation relation would always contain some
non-zero component which include the non-symmetric part of the current and
the work/dissipation currents as well.

In the case of a simple DSS, we showed how adding two constraints on
the total work and heat exchanged between the system and the external en-
vironment can give a more correct result. However, this does not mean that
any non-equilibrium dissipative system can be sufficiently described with only
3 constraints, because it is possible that some other system can be designed
for which some additional constraints are needed. Failure to account for that
won’'t make Max Cal invalid as a whole, but only the particular choice of
constraints.
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2.6 Conclusions

We show here that dynamical pathways for dissipative steady-state flows are
given correctly by the method of Maximum Caliber when supplied with ap-
propriate restraints. You need to know not only the mean rate of flow, but
also the work put in and the heat that is dissipated. Leaving out the latter
types of energy flows is shown to be the flaw in previous arguments [65, 66].
We show this on general grounds, but in addition, we give a specific solvable
model of a single particle flow subject to heat and work input and output.
This toy model is a useful conceptual way to capture the relationship between
flow velocities and dissipative quantities in a 1-dimensional toy case.

Current and future application of this results are shown for biologically
relevant systems like molecular motors, which are actively driven system often
at steady state, which require a constant energy input and consequent dis-
sipation. Preliminary results reported in the appendix of this chapter show
that the relative probability that a rotation is fully determined by thermal
fluctuations depends only upon the enzymatic activity of the phosphorylation
process. In the future we plan to extend the method by including the correct
information about molecular motors, hence rotation rate and ATP consump-
tion rate, in order to determine the probability distribution over trajectories
as well as predict the fluctuations of dissipation and revolution rates.
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Chapter 3
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Maximum Caliber and conserva-

tion laws

In this concluding chapter we want to address this specific question: is there
any physical system for which the necessary constraints can be known a priori,
and are related to the physics of the problem? One of the possible limitations
of the use of Max Cal is indeed the fact that there is not a general rule to
determine which constraints to use; in the previous chapter we have shown a
minimal condition in the case of DSS systems, here we consider cases in which
the constraints can be determined from conservation laws.

We argue that when some dynamical currents are conserved they should be
used as Max Cal constraints: in that case, in a similar way as or the Boltzmann
distribution for systems which conserve energy, Max Cal can give insights
on the probability distribution of the microtrajectories for non equilibrium
systems.

3.1 Non equilibrium momentum ensemble

We consider a system with A/ > 1 particles with mass m which can exchange
energy and momentum with each other. The total energy Fi, is conserved,
as is the momentum Py, so there is no external forces acting on the system
or dissipation to an external environment. Now we consider all the possible
trajectories of one of such particles over a period of time 7. A given single-
particle trajectory can be represented by a velocity function v(¢) over the
time domain (0,7). Within this period the particle can increase or decrease
its velocity by interacting with the rest of N/ — 1 particles, which act as an
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external environment, but the average value of its energy and momentum is
imposed by the overall conservation laws.

For a system like this, we can use Max Cal to determine the probability
distribution over the trajectory ensemble P([v(¢)]) by maximizing the caliber

/DVP i P(v(0)]) — I </DVP —1) (112)
- 1o ([ o BRI - ?v) (13)
- 1o ([ oy BRI - S (114)

where Dv represents the functional integration over the trajectory space,
and the overline represents the time average of a given quantity over the period
7 (to be distinguished from the ensemble average we will introduce later in
the text). The Lagrange multipliers are [, lp and lp are needed to enforce
normalization, average energy and average momentum, respectively.

To start, we consider the total energy and momentum fixed quantities, but
we will show how to deal with systems for which they slowly change with time.

Maximizing the caliber with respect to the probability P([v(t)]) we obtain
the expression for the probability distribution

P(V(0)) = 5 exp [~ 5BV ~ 1 - PV (115)

where Z is the partition function, which is the quantity we need to express as
a function of the Lagrange multiplier in order to fully determine the problem:

zZ = /DV exp [—ZEE[V(t)] —1p- p[v(t)]} (116)
= /DV exp [ /dt <ZE%U2(75) +mlp-v(t)>} (117)

In order to solve this integral we discretize the time interval 7 in N steps of
size 0t < 7, so that we can express the functional integral in a simpler form:

N

1 ot m
Z = W/dvldVQ...vaexp [—Z? <ZE5UZ +mlp - Vz>]

i=1

- (e[ e mes)])
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where we have used N = 7/6t and defined v; = v(¢;); B(N) is a combinatory
factor needed to ensure that the correct counting is performed (for instance, if
two trajectory with the same energy and momentum averages are considered
indistinguishable, B(N) = N!, like Boltzmann correct counting). The last
integral in Eq. 118 is a standard Gaussian integral with a known solution of
the form

I = /d3xexp [—%X-A-X—J-X:| (119)
3
((i2e7tT)A exp (%J SATL. J) (120)

where A is a 3x 3 matrix and J a 3-vector. The integral in Eq. 118 is equivalent
to this with the following identifications

A=2E0g (121)
1p (122)

where I3 is the identity, 3 X 3 matrix.
From this, we obtain for Eq. 118

3N/2 2
Z= % (%) exp {TZ—P - ﬂlm ZE] (123)
here we have introduced the following notation which we will use throughout
this chapter for the norm of a vector quantity: ||ul| = u.

Now we can use the constraint equations to find the relation between the
Lagrange multipliers /g and 1p and the physical measurements done on the
system. Given the conservation laws we can assume that the path average
value of each of the variables (energy and momentum) is just the overall value
divided by the number of particles, so the constraint equations are

Etot ah’lZ

= — 124
N o, (124)
Pov  _ V., InZ 125
N —Vipill ( )

which can be solved to find the Lagrange multipliers. For simplicity, we define

the single particle average energy and momentum as € = Fi /N and p =
Pt /N, to obtain
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lp = = 126

b e—p?/2m  kp© (126)
N p

lp = —=— 127

P ]{ZB@ m ( )

where kg is the Boltzmann constant and we have introduced the non-equilibrium
temperature

2
€ —p*/2m

0= 128

3kp/2 (128)

With these results we have the complete expression for the partition function

1 [27kp© p2/2m\ 1"
Z=_ 12

N![ m eXp(kB@ (129)

and the probability of a given trajectory with N = 7/t steps
1 N
PIMOIT) = g o0 |~ (EWTE] - p- () (130)

This result is a correction to what is known as the Gibbs momentum ensemble,
and it is valid arbitrary far from equilibrium for arbitrary long trajectories.

3.1.1 The equilibrium limit

It is interesting to observe what happens when we take the limit to equilibrium.
Considering the number of steps in the trajectory N, we write the probability
as single step probability:

P(iv(t)lr) = PY(v(D) (131)
where
1 1
R(0) = 5o |~ (BVET-p - v0)]
Z = %exp <p;/3—2@m> (132)

When the system reaches equilibrium, the measured single-particle average
momentum goes to zero p — 0, so the non-equilibrium temperature becomes
the actual temperature:

€ —p?/2m €

O = =T
3kp/2  3kp/2

(133)
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where the last step is obtained by using equipartition theorem in a 3D sys-
tem. The single step partition function becomes the single-particle canonical

partition function:

2rkgT
Z — s

=0, (134)

And finally, the trajectory average energy is simply the microstate energy,
so the single step probability is equivalent to the Boltzmann distribution:

o—E1/ksT

Pi(v(t) » o

(135)

3.2 Non-equilibrium Einstein Relation

In the context of equilibrium statistical physics, an important result is the re-
lation between the diffusion constant entering the Fokker-Planck equation and
the temperature of the system, known as Einstein’s relation [69]; the relation
states that the diffusion constant is directly proportional to the temperature:

Deg = pksT (136)

where p is the mobility of the particles, namely the ratio of the terminal ve-
locity of such particles to the applied force. It has been argued that in order
for such relation to hold for non-equilibrium processes it is necessary to re-
place the temperature in this equation with an effective temperature [70-72].
However, the proposed replacement for such effective temperature is usually
obtained from a re-definition of the diffusion constant, rather than from some
independent measurable. On the contrary, we can show that, under the as-
sumptions we mentioned above, our definition of effective temperature O is
the right replacement to re-define the diffusion constant, giving an expression
which is valid arbitrarily far from equilibrium:

Duon-eq = 1k50 (137)

We have already proved that © reduces to the absolute temperature if the
system approaches equilibrium, so we just need to show that the diffusion
constant can be written as in Eq. 137 when the system is not at equilibrium,
hence when p # 0.

The general expression for the diffusion constant is the following [70]

D i (X)) = (1)) (138)

T—00 21
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We can calculate the path averages of x and x? rather easily. First of all
we consider a given trajectory of length 7 = Not, [v] = {v1,va,...,vy}. The
total displacement x(7) is therefore

x(7) = 6t(vi + ... + vn) (139)

where, without loss of generality, we have assumed that the starting position
of the trajectory is the origin. It is straightforward to show that (x) = 72,
which is nothing but another form of the constraint equation. The quadratic
term can be written as

x*(1) = ot (vf + ...+ v?\,) +2vy - (Vo + .o+ VN) + oo+ 2V - vy

= 51522@ +2Z Z Rij (140)

=1 j=i+1

When calculating the average, the probability contains an exponential with
the sum of v;-dependent quantities, so it factorizes in the product as in equa-
tion 118; for each of the element of the sum in equation (140) v; - v, there are
N — 2 terms which can be taken out of the specific integral and they cancel
out with the correspond term in the partition function at the denominator;
therefore, we are left with the integrals in v; and v;, and the average of the
ratio is ratio

B [ dvid®vv;-vjexp [ =5 (B(vi+ v —p-(vi+ vj))]

kp©
<Ri’j> - m 2 2
fd3vld3vj exp [ —@ (;(vi +vj) —p-(vi+ Vj)):|

(141)

Since v; and v; are integrated variables, they can be arbitrarily renamed,
so (R, ) can be taken out of the summation symbols in equation 140. The
summations then yield

Z_ Z N. (142)

The denominator is a simple Gaussian integral, which we have already solved
in the first part of this chapter (see Eq. 120). For the numerator we write the
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integrals in spherical coordinates, by taking p along the z direction:

v; = wv(sinf cos¢,sinfsin ¢, cos ) (143)
v, = u(sinacosf,sinasinf, cosa) (144)
d*v; = v?dvdpdcosd (145)
d*v; = u’dudBdcosa (146)

The internal product v; - v; gives the sum of three terms, but when integrated
over the azimuthal angle ¢ the first two disappear because of the symmetry
property of sin and cos functions. So the numerator factorizes in the product
of two identical integrals Z, which are standard Gaussian integrals. The final

result is therefore
Z\? p2
R=|—=—] =— 147
(2) 47

m2

Now we can input all these results into the expression for the mean square to
obtain obtain

9 9 N-1 N
(o) = TN+ Y Y [y, (4
m Zi i=1 j=it+1
1 m
X exp {——kB@ (3(V22 + VJZ) —p-(vit Vj))} (149)
9 N? — N p?
= 552N + 2612 L (150)
m 2 m2

we also have

2
2 272 P
(x(7))” = 0°N" 5 (151)
which leads to the very important result
3 o0t (e—p?/2m
Dioneq = =kp— | ——7— | = pkp®© 152

The term within the parentheses is the non-equilibrium temperature we have
introduced in Eq. 128, so we just need to identify the mobility u = %&/m to
obtain the expected result in Eq. 137.

This equation can be rewritten with the use of the equilibrium temperature
T = ¢/(3kp/2) and the non-equilibrium deviation 67 (p) = (p?/2m)/(3kg/2):
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Dnon-eq = ,UkB(T - (ST(p)) = Deq - 5Dcorr(p) (153)

So for non-equilibrum processes with conserved momentum, the diffusion con-
stant needs to be corrected with a term which is proportional to the average
momentum squared, or equivalently introducing an effective temperature in
the form obtained in Eq. 128. It is interesting to notice how the correction
to the diffusion constant is always negative, which means that far from equi-
librium diffusion is opposed by the non equilibrium flow, which pushes the
particles towards the direction of the average momentum p.

3.3 Electrophoresis: a near equilibrium result

The simplest direct application of this result is in the process of free flow
electrophoresis. Electrophoresis is the process of charge migration in a solution
under the action of an applied electric field. Because of the interaction between
molecules flowing in opposite directions (with opposite charges), the terminal
velocity of a charged molecule is linearly related to the applied electric field,
yet the total momentum is conserved and always zero, because the total charge
of the system is null.

There is a broad availability of measurements of the electrophoretic mobil-
ity in the literature, however, there is also a lot of confusion which we need to
clarify.

Electrophoretic mobility, ug, is defined as the ratio between the terminal
velocity v (E) and the applied field E. Often this is simply identified with the
mobility p which enters Einstein’s relation and, for this reason, the diffusion
constant in the case of electrophoresis is often ill defined [73, 74], because it is
assumed that Einstein relation would apply. However, 1 and pup are quantities
which are conceptually different, because the first is relative to the thermal
(brownian) motion of the particles in a solution, while the second is relative to
a process which entails an external driving force. At low fields, it is obviuous
that ugp ~ p, because brownian motions become dominant, and Einstein’s
relation would hold in the simple form given in Eq. 136, but for arbitrary
fields a non-equilibrium correction is required.

Our model allows us to find the correct relationship between D(E) and pp.
Indeed when a charged particle is in a solution under the action of an electric
field, it’s average momentum is

P(E) = mv.(E) = mugE (154)

Since the total solution is neutral in charge, the total force acting on the
system is null, and the momentum is conserved. However, the field will deliver
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Figure 19. Comparison of the present model with data from [73].
The error in the data points is too large for this effect to be visible in the
current range of applied field.

energy to the system, which can ultimately result in an increase of the total
energy of the system. In order for our assumption to hold we need to limit
this to the near equilibrium case.

Under these assumptions, Eq. 153 can be written as

D(E) = D, <1 - 3‘:5{??) = Dy (1 - ;’;’;JQ;EQ) (155)

where Dy is the zero-field, equilibrium diffusion constant.

Unfortunately, the coefficient of the E? term is extremely small for the
available data [73, 74], so any non-equilibrium effect can only be seen for
strong fields, whereas all available data are in the range of few V/cm, as it
can be seen in Fig. 19. Considering a single stranded DNA molecule, using
the experimental parameters given in [73], the minimum field required to see
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any non-equilibrium effects is E 2 100 V/cm, which is far from the available
range, but still within the range of near-equilibrium assumption for such small
systems, because it is shown that no Joule heating is present for fields up to
~ 250 V/cm [73], where the discussed correction would certainly be visible.

Note that in the case of gel electrophoresis, the electrical mobility would
become dependent on the applied field, because the field would stretch long,
charged molecules, changing their ability to flow through the gel’s pores. Our
result in Eq. 155 would still be valid, once the dependence pg(E) is taken
into account. However, there are not available data for the diffusion constant
in such cases; many papers report a dispersion coefficient, which is believed
to be equivalent to the diffusion constant, when this is measured in the same
direction of the applied field. However, such quantity is obtained assuming that
Einstein’s relation is still valid, which is certainly not true when the mobility
depends upon the applied field, so the dispersion coefficient measurement is
just equivalent to a mobility one.

3.4 Angular Momentum Conservation

A similar argument can be applied for systems in which the angular momen-
tum is conserved, which are very common for astrophysical objects, that are
naturally isolated from external influence.

Imagine a system of N particles constrained to move at a distance R from
some arbitrary axis, hence in a cylindrical manifold. As in the original case
the particles can collide and change direction, as long as they maintain the
distance from the axis of rotation. Since all the forces acting on the particles
are radial with respect to the axis of the cylinder, the total angular momentum
along 2, My = ZM,y, is conserved. We can therefore follow the same logic
as before and write the probability distribution as

1 S —
P(v(t)]) = z exp | ~lpBv(0)] = L - M[V(t)]] (156)
Where M [v(t)]] is the time average of the path dependent angular momentum
of a single particle r(¢) x v(t).
In order to determine the Lagrange Multipliers we need to calculate, once
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again, the partition function, which in this case is.

1 ot rom 2
Z = m/DvDrexp[ ZT(ZEZ (t)—i—mlM-rixvi)]

= H </ dv;dr;6(p; — R) exp [—% (ZE%UZ +mly -1y X VZ)})

(157)

where DvDr = dv;...dvydr;...drnd(p1 — R)...0(py — R); here p; = /27 + y?
and the Dirac delta functions are used to enforce the integration over the
correct trajectory space. Because of the rotational symmetry we can choose
I, to be along the Z axis as well: 1, = ;2 so that we need to solve the
integral

1
/dvidrié(pi — R)exp [ N (lE%vZ + mly (zv] — wa))} (158)

The integral over the velocity is once again a Gaussian integral, so we can
solve it again using equation 120, but with the new associations

l
A = ETmIS (159)
m —Yi
0
so that Eq. 158 gives
2N\ Y2 mi3
dr;6(p; — - M (2 2 161
Jarsto -1 (Z0) e | S (a2442)| (161)
2N\ ¥/2 ml?
/ zipidpiddio (p R)(mlE> exp [QNZE/)Z] (162)
2N\ ¥/ mi3
=2 — 2 1
7hR (m E) exp [QNZER } (163)

At this point it must be clear that the result we obtain is analogous to the same
we obtained in the case of linear momentum conservation with the standard
associations p — M and m — mR?. The effective temperature in this case is
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e — M?/2mR?

O —
3kp/2

(164)

where M = My, /N
From this we have the full probability distribution

PIV(OIT) = g b |~ (B0 - M@ ovial )| o)

where r(t) = Rp(t) is the radial vector of fixed length R. I is the moment of
inertia of the particle.

This result has an interesting range of applicability to a lot of rotating ob-
ject, common in astrophysics: every time it can be reasonably assumed that
the trajectories of the particles are limited to the surface of the object (for
instance, what happens for rotating black holes) this result can be applied
to determine the probability of each trajectory. © represents, once again,
the deviation of the system from the equilibrium. The extension to spherical
symmetric object generated by a central potential V' (r) needs to be done by en-
forcing the fact that each trajectory respects the proper dynamical equations,
hence Hamilton’s equations.

3.5 Discussion

We have shown how Max Cal can obtain an exact expression for the path
probabilities of a single particle in a medium of N particles moving with
total energy FEi, and momentum Py. In this case, Max Cal gives an exact
result because the constraints are enforced by physics conservation laws, rather
than physical measurements. Max Cal is therefore the natural extension to
dynamical systems out of equilibrium. This is also confirmed by the fact that
when the equilibrium limit is taken the single particle distribution is the same
as in Boltzmann theory.

It is also interesting to observe how a generalized definition of temperature
was found, which we call non-equilibrium temperature, which deviates from
the equilibrium temperature the more a system is taken away from equilib-
rium, but never reaching negative values, and reduces to the thermodynamics
temperature if the equilibrium limit is taken.

The non-equilibrium temperature might be the long-sought measurable
marker for deviation from equilibrium: maximum deviation from equilibrium
is achieved when © < T, whereas near equilibrium condition is simply © < T'.

A very important result obtained here is the non-equilibrium correction
to Einstein’s relation, which relate the diffusion constant to the mobility and
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the equilibrium temperature. For non equilibrium processes, the temperature
needs to be corrected, so that the effective/non-equilibrium temperature is
always smaller than the equilibrium counterpart. Indeed for non equilibrium
processes there is a current which opposes random diffusion and, in the case
of system for which the momentum is conserved, such current is the average
momentum of the system.

The form of the Diffusion constant is a testable prediction in the context
of free flow electrophoresis, where the fact that the total charge of the sys-
tem is zero ensures net zero force on the system and, therefore, no change in
momentum. However, present experimental data are not resolved enough to
observe the effect of this correction (see Fig. 19), in addition, other phenomena
like Joule heating could prevent the possibility of observing this feature if the
electric field range is improved.
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Appendices

Appendix A2: Caliber is maximized by non-equilibrium
dynamics.

The generality of the SJ argument is extremely powerful when one wants to go
beyond equilibrium statistical mechanics. Indeed, nowhere in their derivation
any assumption on the type of system is made: as long as the concept of
probability is well defined in the given space, Max Ent can be applied, so Max
Cal is its natural extension for non-equilibriyum systems.

In the case of non-equilibrium physics, however, it is important to define
the working space correctly. Indeed, the standard definition of State Entropy
becomes problematic as soon as we move away from equilibrium, and the
reason is simple: one of the most important properties of entropy is additivity.
We know from thermodynamics that taking two sub-systems at equilibrium,
the total entropy is the sum of the entropy of the two systems. This holds
true naturally for Shannon’s definition of entropy when applied to equilibrium
states and it is in fact one of the fundamental properties that any functional
H{p|] needs to satisfy in order to respect the SJ axioms [5].

As an example let’s consider a 1D lattice model for a gas, with total 2/V
lattice sites and n total particles, with n < N. Let’s divide the volume
into two compartments C and Cs, each with N lattice sites and consider the
system as far from equilibrium as possible: all the particles are in subset one.
Considering the particles to be all identical, the state entropy S; of the subset
one would just be given by Boltzmann formula S; = logW = log (N_Ln'),n,,
whereas S, = log1l = 0. When one particle moves from C; to Cs, the state
entropy in both system changes, and one can easily verify that

n

A = log——m 1
S1 OgN—n+1<O (166)

ASy; = logN >0 (167)

The entropy has decreased in C and increased in Cy but, as it is obvious,
|ASy| # |ASs|, which means that the state entropy does not flow, that is a
well known result, because the total entropy needs to increase when reaching
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Figure 20. Trajectories in a 1D lattice. The possible lengths of the
trajectories from the left to the right side of the lattice are d =1,2,...,2N —1;
the multiplicity of each trajectory is given in Eq. 168.

the new equilibrium, as the second law of thermodynamics tells us. When
the system is very close to equilibrium, the behavior of entropy becomes more
flow-like, as one can easily show, so it becomes possible to treat entropy with
differential methods, introducing the concept of entropy production [75].

However, using entropy production to address non-equilibrium problems
must be done carefully, because state entropy, as we said above, is meaningful
only at equilibrium, when it does not depend on time. It is reasonable to expect
that the mathematical entropy, which is time dependent for non-equilibrium
processes, is continuous and differentiable in the neighborhood of equilibrium,
but when a system is far from equilibrium we cannot maximize the state
entropy anymore, hence in order to use correctly the SJ approach we need to
redefine the system altogether.

We now consider all the possible routes that a particle can take to move
from subset C to Cs, we will refer to these routes with the term path or
trajectory. We call Py the probability that the observed path is d. As an
example, we can consider that d is the number of lattice sites crossed in a
given trajectory; for a 1D lattice, the possible lengths are d = 1,2,...,2N — 1.
Let’s consider for instance the example above for a single particle; the number
of possible trajectories of length d can be written as

q(d) = O(N — d)d + 6(d — N — 1)(2N — d) (168)

where 6(n) is the step function with the convention #(0) = 1; Fig. 20 shows

some examples of such trajectories. We want to determine the probability P(d)

of observing a trajectory of length d, using ¢(d) as prior of such distribution.
The path entropy for this system is

S = = 3 P log ) (169)
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Since we have no additional information about what is driving the tran-
sition other than random mixing, we can obtain the most likely distribution
by simply maximizing Span under the constraint that the probability sums to
one. Hence the caliber, as defined in equation 8 is

C = Spuin — @ <2§1 Pd) — 1) (170)

d=1

with the single Lagrange multiplier o to enforce the constraint on the prob-
ability sum. From this we obtain that the most likely probability distribution
is simply the prior P*(d) = q(d)/Q, where Q = > q(d), which is what we ex-
pected because a priori there is no reason why one route should be preferred
with respect to another, other than simply the multiplicity of a given route.

Now we assume that some dynamical quantity is known for a system like
this. For instance, let’s assume that we can measure the average time (7) that
a particle takes to complete a trajectory at steady state. If kg is the transition
rate from one site to the next, the time of a specific trajectory is 7(d) = d/k,
and the average can be written as

0= > ) )
As a consequence, the caliber is
2N—-1 P(d) 2N—-1 2N—-1
C=-> P(d)logm — (Z P(d) — 1) .y (Z dP(d) —k0<7>>
d=1 d=1 d=1

(172)
where we have chosen to constrain the dimensionless quantity ko(7) for sim-
plicity. In the large N limit we can obtain an analytical expression for the
probability of observing a trajectory of length d

P(d) = % (1 + k0<2m>) (173)

where (AT) = (Typae —7) = 2N/ ko — (1) is the difference between the maximum
and the average time.

Fig. 21 shows how the most likely probability distribution is modified
by the knowledge of the average transition rate. This simple example shows
how Span is the right type of entropy necessary to extract information for a
dynamical process. To extend to multiple particles we only need to express
the combinatorics of the multi-particle trajectories. We can also expand to
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m with bias
= without bias

P(d)
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Figure 21. Trajectory probability distribution with and without
bias. The bias given by the knowledge of the average transition time modifies
the most likely probability distribution into an asymmetrically shaped one.

describe a time-dependent rate, hence by lifting the steady state hypothe-
sis: in that case the constraint itself becomes time-dependent and so does
the Lagrange multiplier 3(¢). The general approach to the problem remains
unchanged: Spaen is still the quantity that correctly describes the process.

It is worth noting that the SJ argument is only a method for inferring prob-
ability distribution from partially known information, and nowhere it implies
that it can only be used for equilibrium probability distributions. As long as
the entropy function is well defined it is possible to extend its use to non-
equilibrium systems, with the important specification that the path entropy
is used instead of the state entropy.

Appendix A2: The equilibrium limit for physical systems

In order for Max Cal to correctly describe non-equilibrium systems it is re-
quired that if at any point, for a thermal system, we take the equilibrium
limit, we recover the well known equilibrium results. Since we already know
that Max Ent is successful to describe equilibrium system, it is sufficient that
the entropy Spamn is equivalent to the traditional state entropy, that we know
is maximized by the equilibrium distribution.

For this reason we consider a physical system specified by some Hamilto-
nian H({q,p}). In general, and of course including when the system is far
from equilibrium, the trajectory of every component of the system is governed
by Hamilton’s equations. Solving them for large systems is in general non
possible, but we can imagine that there is some high dimensional function
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a(t) ={q(t), @2(t), ..., qn(t), p1(t), p2(t), ..., pn (t) } representing the full trajec-
tory, or path. The path probability is therefore defined as P, = P[q(t)], and
the path entropy is

S=—Y_ Plq(t)]log Pla(t)] (174)

fa(®)}

However, for an Hamiltonian system as this, the trajectory at any time
t is uniquely defined by the initial conditions (result of Liouville’s theorem),
therefore we have

— Y Plq(0)]1og Plq(0)] (175)

Now we take the equilibrium limit, meaning that every initial condition
is basically correspondent to an equilibrium state. Finding the system with
initial condition q(0) is indeed equivalent to finding it in the equilibrium state
€ = {e1,€9,...} (for the canonical ensemble this would be the energy config-
uration of the specific microstate), therefore in the equilibrium limit we can
replace the path probability with the state probability P[q(0)] — p(€), and

S=- Z Plq(0)]log P[q Zp )log p(e (176)

{a(0)} {eo}

where we have used the lower case letter to indicate the state probability as
opposed to the path probability upper case letter.

For example we can consider a gas of N non-interacting particles in a
volume V'; the probability in this case factorizes into the product of single
particle probabilities, but if the particles are identical we need to include a
combinatory correction (known as Boltzmann correct counting), because if
particles are identical so are their trajectories

Plq(0)] = %Pl [41(0)] P2[g2(0)].-. Px[gn (0)] (177)

SO
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2o S PlaO)]-Palay(0)]log(Pln(0)]. Palav(0))

" q1(0),...

= 1 3 Pl (0)] log P (0)] .
a1(0)

== 3 Pula(0)log Pylay (0)

qn(0)

— _% ZP1[61] log pifer] — ... — % ZPN[GN] log pwlen]  (178)

€N

In the last line we have taken the equilibrium limit and assumed that the
particles are identical, so the states available to each particles are the same. If
the gas is in contact with a reservoir at temperature 7', the probability is just
Boltzmann distribution for a canonical ensemble, so we obtain the well known

Sackur-Tetrode formula
5 e [V rmhkgT\ ?
o TR\ N\ T 2

This shows how the path entropy is well defined in any regime, arbitrary far
from equilibrium, and it reduces to the state probability for physical systems
(hence Hamiltonian) in the equilibrium limit.

S = kgN (179)
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Appendix B: What are the mechanisms of non-genetic
inheritance of stress responses?

In a population of cells that all have identical genes, there are natural cell-
to-cell variations, such as in some protein concentrations. Remarkably, those
non-genetic variations can ultimately become genetically inherited through
mutations and selection. This is not a violation of any Darwinian precept, but
is a new and important addendum to those ideas, although the mechanism
is not yet understood. Our specific focus here is on how cells inherit their
stress responses. Isogenic cells that happen to handle stress well can duplicate
into daughter cells that are also better at handling stress. Inheriting stress
responses entail chaperones, and hence protein folding and aggregation. Our
question is: how do non-genetic fluctuations become genetically heritable in
cellular stress responses?

Normally, phenotypic traits evolve through mutations in the genes that are
passed from ancestors to descendants. But, some traits are heritable in ways
that do not involve genes, at least for a few generations. A well-known example
of non-genetic transmission is epigenetic changes: chemical modifications to
DNA that happen inside a mother cell can result in corresponding behaviors in
daughter cells [76-78]. These non-genetic fluctuations within cell populations
can sometimes ultimately become encoded in the genes. Of interest here is
how cell stress responses are transmitted this way [79, 80]. A population of
mother cells — even isogenic ones in the same environment — will have a natural
distribution of molecular concentrations, for example of chaperone complexes
(the cell’s main stress-response machinery [81, 82]. The mothers that best
respond to stress can pass that stress advantage to the daughter cells, first
non-genetically, and then that advantage can be captured in the genome of
the lineage [83, 84].

We seek the mechanism(s). We believe the following hypothesis is the best
initial starting point. Suppose a population of isogenic cells has a distribution
of chaperone concentrations. Different cells have different concentrations of
chaperone. Cell ¢ has chaperone concentration ¢;, which does not necessarily
equal the population average level, c,ys. Now, non-genetic inheritance means
there is some non-genetic form of ‘memory’ that transmits something from
mother to daughter. One source of memory is positive feedback loops. For
example, such loops are like ‘thermostats’ that hold chaperone concentrations
fixed. That is, mother cell 7 has a biochemical regulatory circuit that holds its
chaperone levels close to ¢;. The daughter will inherit that feedback circuit,
holding its own chaperone levels to around c¢;, plus noise, and that level can
survive for several generations [79, 85-87].
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How does this non-genetic memory become encodable in normal evolution-
ary mutation and selection? We believe it is a matter of timescales (Fig. 22).
If drug pulses hit the cells slowly, they will regrow back their initial popu-
lation: new mutations that confer resistance don’t take over. But, if drug
pulses hit the cell population rapidly, it kills the regrowth of cells lacking the
resistance-conferring mutation. This ultimately moves the population toward
higher chaperone concentrations, in a way that is preserved in genetic memory.

Two factors determine whether the higher chaperone concentration is prop-
agated to the next generation of cells: (1) the difference between the speed
(frequency) of fluctuations of chaperone concentrations and the speed of cell
duplication (doubling time) [87], and (2) the speed of the feedback mecha-
nism that maintains the concentration of chaperone [85]. Both of these factors
contribute to a cellular “memory” of how long the daughters cells remain sim-
ilar to the mother cell. We can introduce these two mechanisms, and their
rates, into Fokker-Planck and diffusional changes across generations. If ¢ is
the concentration of chaperone in a given mother cell, the concentration in the
daughter will be:

d = c+ (Aceny + Acnoise) (180)

where Acep, is the change in chaperone concentration from one generation to
the other due to the response to the environment and Acyie is the change
due to noise, hence the change due to stochastic fluctuations. Both of these
quantities are encoded in the genes of the organism: the first will determine the
mean value of the non-genetic distribution of ¢, the second will determine its
variance. If we assume that the partitioning of cellular contents proportional
to cell volume of the daughter cells, the daughters will have the same starting
concentration given by the baseline of the mother, with fluctuations from the
environment and noise.
We can express these dynamics in terms of the Langevin equation [87]

% = %[c — p] + DW, (181)
where t, and D are the relaxation time and the diffusion constant, respec-
tively; W, is Gaussian white noise. g is the mean value of the steady-state
distribution generated by this process, which will have a variance o2 = Dt, /2.
The value p corresponds to the response to the environment (it determines
the value of Acqny) whereas W, represents the non-genetic noise (it determines
the value of Acpeise); both these quantities (hence mean and variance of the
distribution) can be encoded in the DNA of the cell and are themselves sub-
ject to evolutionary pressures [88]. From this, we can derive a Fokker-Planck
equation that determines how the population of cells will behave over time.
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Figure 22. Hypothesis for how non-genetic fluctuations can become
subject to mutation and selection for long-term genome changes.
Depending upon the drug pulses frequency, a population with a higher mean
chaperone’s concentration, and hence resistant to drug, might become domi-
nant.

If an adaptive mutation happens, it will change the value of u, and thus the
direction in which the population moves, increasing the average chaperone’s
concentration and conferring long-term genetically heritable drug resistance to
the cell. There is nothing Lamarkian here. The mutations to P* are random
and Darwinian. In this way, cell-to-cell fluctuations could become subject to
genetic transmission by mutation and selection.
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Appendix C:Dissipative systems in biology: Molecular
motors

Proteins are biological machines that perform fundamental tasks in the cell.
Often such functions need to be cyclic; for instance, some proteins are designed
to drag other complexes across microtubules in the cell [89], for which they
need to repeat a series of conformational changes in a very specific cyclic
sequence, so the process can be repeated arbitrarily. The minimum number of
conformational changes you need in a protein to be able to perform work is 3,
since otherwise the entire process would be a simple transition back and forth
between two states.

So we imagine that a molecular motor can be represented by 3 states A,
B and C. We call Gy, the free energy of conformation k& = a, b, ¢ (see Fig. 23).
In order to transition between two conformations an energy barrier needs to
be overcome, so we call such energy barrier AGil = G,id — Gy, (G,il is the free
energy of the transition state between k and [) and the barrier for the reverse
process would therefore be AG;",c = Gil — G;. In order for this process to
happen it is necessary to transfer energy from the surrounding to the motor
itself, especially if the final energy. This happens actively in the cell through
ATP binding and hydrolysis, which creates a more convenient energy balance
for the process to happen. However, in general there is also the possibility
that this process could happen naturally by pure thermal fluctuations. Using
the same approach we described above we can calculate the probability that
a molecular motor can be run by pure thermal fluctuations.

Without specifying the details of the biochemistry of the process, we con-
sider such system and call P(T') = P} - P2 - P3 the probability of a rotation of
the motor through the transition a — b — ¢. Each step in the trajectory can
happen through different processes: intuitively, the most probable way would
be by absorbing chemical energy Ay from the molecules around it (ATP hy-
drolysis) and dissipating it through thermal energy Aq. However, as we have
seen above, the reverse process (absorbing thermal energy and synthesizing
ATP) needs to be taken into account, so we define the following probabilities:
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Figure 23. Schematic representation of a molecular motor. (a) The
three states of a molecular motor which rotates with constant velocity R and
constant energy input/dissipation Fi,. (b) The energy barrier for the transition
between states A and B.
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where 7% is the transition state between i and j; the sign of Ay and Aq deter-
mines whether energy is being absorbed or released by the molecular motor.
The path probability, normalized by the number of steps, in this case can
written as

Spath = — Z (K” lOg Klj + L” log L” —+ M,Lj lOg M,Lj + N” lOg N”) (186)
i#]
Now we follow the standard procedure and enforce the known constraints.

Assuming that the system is at steady state, we know that the total average
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chemical energy input (Au) (e.g. ATP usage per unit time) is constant and
equal and opposite to the total dissipation (Ag). Also the total rotational
velocity (r) is constant, so we have the following constraints:

(ry =Y [(Kij + Lij) rij + (Mij + Nij) 73] (187)
i

(Apy = D7 [(Ky + L) AGE = (Liy + M) AGY | (188)
i

(Ag) = —(Ap)=>_ [(Mij + Nij) AGY — (Kij + Nyj) AGL-] (189)
i

where we have distinguished the ATP-driven rotational velocity r;; from the
thermal fluctuation-driven one 7;;, because the latter is uniquely determined
by the energy landscape, whereas in the former the effective energy landscape
is modified by the enzymatic reaction which provides ATP. For instance, in
the case of Kinesin, the binding of ATP to the molecular motor head causes a
conformational change that catalyzes the reaction [90].

We therefore define 7;; = £7¢ exp(—Aij/kBT) and r;; = £79 exp(—(Aij—
dhi;)/kgT), where the sign is positive or negative whether the transition ¢ — j
is in the same or opposite direction of the overall rotation (r). dh;; is the change
in the transition barrier due to the enzymatic, ATP-driven reaction. The con-
straints above need to be completed by the proper normalization condition

> (Kij+Lij+ M+ Nij) =1 Vi # (190)
J
Maximizing the caliber subject to these constraints we obtain the following
probabilities

Ky = i‘ea”ﬁﬁAG%ﬂAGﬁi (191)
Lij = Zi:eaﬁﬁﬁ(Aij_AGii) (192)
My = Zearij—ﬂAGijﬂAGﬁz‘ (193)
N;; = ieaﬁjﬂ(AG%j_AGii) (194)

where Z; are normalization factors determined by the constraints in Eq. 190
and «, 8 and p are Lagrange Multipliers to be determined by imposing the
constraints 187, 188 and 189, respectively.
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From this, we can determine the probability that a single transition would
be completely determined by thermal fluctuations. As one can imagine, such
probability is not extremely small for a microscopic system; MaxCal allows us
to quantify the exact probability for an arbitrarily far-from-equilibrium system.
Considering the process K and its reverse M the ratio of the probabilities is:

(Shij
kT

where we have assumed a small enzymatic barrier so that r;;—r;; o~ —rodh;;/kT
and the fact that the energy and dissipation constraints are equal and op-
posite to set v = —f3. We have also introduced the free energy difference
AG;; = G; — G;. Note that without the enzymatic activity of the ATP burn-
ing reaction the ration only depends upon the free energy difference between
the two states (,7), which is what we expect: For a reaction between states
with very similar free energy AG ~ 0, thermal fluctuations and chemical en-
ergy have equal probability of causing a transition.

In general, the probability of observing phenomenon like this is exponen-
tially suppressed for all the trajectories which rotate oppositely to the average
rotation (r); If we consider a full rotation and assume that the barrier reduction
is independent on the specific transition (dh;; = 0h), the relative probability
that the entire process is driven by thermal fluctuations would be:

Mab Mbc Mca oh
“abhe Tea —3arg— 196
Kab Kbc Kca P < aro kT> ( )

because the total free energy change is zero after a full rotation. The relative
probability is completely determined by the enzymatic activity and the tem-
perature: the smaller the activity or the larger the temperature the higher the
probability that thermal fluctuation can drive the motor. A more quantita-
tive result can be easily obtained once the motor energy landscape G; is fully
specified so that the constraint equations can be solved numerically.

It is also worth noticing that this system breaks detail balance, as it should,
since it is an actively driven system with a constant rotational velocity (r), so
the steady state condition does not correspond to an equilibrium condition.
In order to restore microscopic reversibility it would be necessary to model
exactly the thermal bath in which the motor is immersed and the energy
source dynamics (hence the time-dependence of ATP concentration).

X~ exp (—O./T‘() - QBAG]Z) (195)
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