
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Detecting Smart Home Activity through Network Traffic Signatures

A Thesis presented

by

Sayali Anil Alatkar

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2020



Stony Brook University

The Graduate School

Sayali Anil Alatkar

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis

Samir R. Das
Professor and Chair, Department of Computer Science

Amir Rahmati
Assistant Professor, Department of Computer Science

Michalis Polychronakis
Associate Professor, Department of Computer Science

Vasudevan Nagendra
Head of Security, Plume Design Inc.

This thesis is accepted by the Graduate School

Eric Wertheimer
Dean of the Graduate School

ii



Abstract of the Thesis

Detecting Smart Home Activity through Network Traffic Signatures

by

Sayali Anil Alatkar

Master of Science

in

Computer Science

Stony Brook University

2020

The popularity of the Internet of Things (IoT), smart home devices specif-
ically, has been tremendous in the past couple of years. Devices like smart
speakers, smart fridge, etc. have integrated seamlessly with the lives of home-
owners. The main reasons being their accessibility, cost-effectiveness, and
energy-efficiency. These devices by nature, continuously communicate with
each other and their servers, to automate the day-to-day activities for their
owners and in the process generate huge amounts of network traffic. But at
the same time, this underlying automation can often occlude the operation
and communication between devices from their owners.

This thesis is a step towards understanding the causation of smart-home
activities, thereby increasing the visibility and transparency in a smart home.
In this thesis, we use the network traffic traces to generate packet-level traffic
signatures for device activities (change speaker volume, play music, turn ON
lights), which can help identify the triggering devices for an observed activity
in a smart home, without causing significant computational overhead or stor-
age constraints. By signature matching, we show how the triggering device
can be identified by the users. We present our results on our IoT testbed
(WINGS Lab in Stony Brook University) and publicly available datasets.
We demonstrate that our approach can identify activities and corresponding
sources with good accuracy.
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Chapter 1

Introduction

Smart home devices have been widely adopted by homeowners. Business
Insider reported up to 8 billion IoT devices in 2019 and has projected up
to 41 billion IoT devices by 2027 [21]. The advent of IoT has made the
lives of users not only comfortable but also efficient. Users can now control
electronic devices remotely through smart-apps. To accomplish their goals,
smart devices continuously communicate with respective cloud servers and/or
other smart devices. Despite the ease of operating these devices, the smart
home ecosystem offers little knowledge of the cause or source of an event
taking place. For example, if a smart lock was disabled during the day, it
could correspond to a normal activity performed by the user, an attack of
malicious intent, or device failure. By realizing the true cause, the user or
network administrator can better handle situations.

In this thesis, we take a step towards detecting the cause of an event
within a smart home by effectively analyzing the network-level traffic traces
to derive signatures out of them. The basic principle of such causal analysis
is to find the root cause for why something happens. Applying this mindset
to IoT infrastructures means identifying the source of triggers or actions we
observe in the network. The complexity of the problem increases with the
addition of new devices and functionalities. Studies [20] predict that the
number of IoT devices will exceed 25 billion by 2021, and in 2022 a single
“smart home” is likely to have over five hundred connected devices, while a
large scale “smart campus” or “smart city” might have hundreds of thousands
or even millions of devices attached to its IoT infrastructure including street
lamps, weather sensors, and traffic signals [18],[6].

The multitude of smart devices is accompanied by inherent vulnerabili-
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ties that persist and can be attributed to the resource-constrained nature of
the devices. In such a situation, compute-intensive security solutions may
not be feasible. Hence, it is important to address these vulnerabilities by
understanding their root-cause. We focus on a lightweight solution that can
be extended to all smart devices. Our approach uses the extensive net-
work traffic produced by these devices to generate packet-level signatures
for device-specific activities. Each smart device activity is represented by a
novel signature, that uniquely captures its traffic pattern. Further, by signa-
ture matching, we can identify the activity as well as the device that led to
the activity. We expect that our study: 1) provides visibility into the smart
home system; 2) detects any abnormal activities performed by the device; 3)
detects any device failures. Below we provide a brief introduction to the IoT
infrastructure.

1.1 IoT Architecture
The IoT infrastructure consists of four stages. First of all, it consists of the
devices (sensors and actuators) that are connected to the internet and send
the information they sense from the environment to IoT gateways. The next
stage consisting of the IoT data acquisition systems and gateways collect this
huge unprocessed data, convert it into digital streams, filter and pre-process
it so that it is ready for analysis. This is followed by edge devices that fur-
ther process and analyze the data, where they also apply visualization and
machine learning algorithms. Finally, the data is sent to data centers which
could be cloud servers or locally installed. The cloud servers perform pow-
erful analytics on the data and provide decisions that help humans interact,
control, and monitor the devices. The cloud servers communicate back with
the devices to inform of the decisions.

1.2 Motivation
A large number of smart devices have flooded the market, each one providing
new and better functionalities than the previous one. It doesn’t come as a
surprise that a majority of these devices have seamlessly integrated with our
day-to-day lives. Despite the ease of operation, a smart home ecosystem is
not as transparent. The inherent automation obstructs our understanding of
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how these devices operate or communicate.
With new devices, we have a new set of vulnerabilities that are exploited

by attackers to not only disrupt the functionality but also the safety of its
users. One of the most recent attacks involving the hijack of the Ring home
security system [19] shows how much a user can be compromised. Such
security concerns have led to several studies that focus on exposing existing
vulnerabilities and patching them.

Most recent works have focused on improving the security of IoT de-
vices by analyzing the network traffic and identifying malicious activities [9],
[1]. In this thesis, we take a fundamental approach where we characterize
the behaviors (responses to different triggers) of each smart device by cre-
ating activity-specific packet-level signatures. Such that each signature is
associated with an activity. By being able to identify device-activity, we can
determine the triggering device source. Root cause identification can be used
to alert the user or network administrator to detect unexpected behaviors.

Therefore, we aim to increase transparency within the smart home ecosys-
tem by exposing the associated triggers of an action performed by smart
devices.

1.3 Organization of this Thesis
• Chapter 2 discusses related work in the field of IoT traffic analysis and

device activity inference.

• Chapter 3 discusses briefly our work on IoT policies, their conflict de-
tection, and resolution; followed by presenting our problem formulation
and a case study for traffic analysis.

• Chapter 4 presents our methodology.

• Chapter 5 provides details on our testbed and data collection setup.

• Chapter 6 presents our evaluations on both public and our datasets.
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Chapter 2

Related Work

A recent work by Trimananda et al. [22] identifies the traffic activity of
smart devices by generating packet-level signatures by extracting request-
reply packet pairs in WiFi and Zigbee devices with a 97% recall. But their
approach is only limited to devices that communicate over TCP and several
IoT devices communicate over UDP (no request-response packets), which
limits their application. Our approach focuses on traffic volume characteris-
tics, and thus can be extended to different devices and IoT protocols.

Early works have focussed on Nest Thermostat and wired Nest Protect [5],
where they are able to infer the thermostat’s transition modes, i.e., Home and
Auto Away by analyzing the network traffic. On the other hand, HomeMatic
HAS [8] focuses on Zigbee/Z-Wave devices and compares the SmartApps’
activities inferred from the encrypted network traffic with their expected
behaviors prescribed in their source code or UI interfaces.

Sivanathan et al. [17], [15], [14] proposed clustering to identify IoT devices
using features from the network traffic generated by these devices in differ-
ent environments (smart campuses and smart cities). But their approach is
unable to distinguish between the device-activities. Specifically, their work
[14] reports an accuracy of up to 94% for IoT device identification, while, [16]
proposes a lightweight solution for device identification through TCP ports,
but this again does not extend to device activity inference.

Apthorpe at al. [2], [4], [3] have shown how passive monitoring of the
network traffic generated by smart devices can be used to user activities
in a smart home. However, these works cannot identify device activities.
Other works either use an ML-based approach that builds a Random Forest
classifier [9] to identify application behaviors like downloading the firmware,
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receiving a configuration change, and sending video to a remote user to learn
the traffic behavior of device activities or use a Hidden Markov Model [1] to
infer user activities by identifying the device actions with up to 90% accuracy.

Signature extraction has been used extensively for malware/anomaly de-
tection. Perdisci et al. [10] use structural similarities among malicious HTTP
traffic traces generated by executing HTTP-based malware to build signa-
tures while Zhang et al. [24] detect deviations in SmartApps by building a
DFA for each SmartApp and comparing the observed behavior to inferred
behavior with the expected DFA models.

Other works that analyze network traffic behavior use traffic activity
graphs (TAGs) [13] which capture the interactions among hosts engaging
in certain types of communications and their collective behavior.
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Chapter 3

Problem Formulation

We begin this section by briefly discussing about our work on IoT policy
conflict detection and resolution. Then, we present the problem statement
for this thesis. Later, we discuss about the key insights we obtained by
manually analyzing the network traffic from a smart speaker - Google home
mini. The traffic characteristics observed in Google home mini led us to
the approach. In this thesis, we use the words activity and interaction
interchangeably, and both refer to the functionalities/capabilities of smart
devices (for example, turn on/off, change brightness/color, move in front of
movement sensor, change temperature, etc).

3.1 IoT Policy Conflict Detection and Resolu-
tion

The goal of this work was to develop an IoT policy conflict detection and res-
olution engine for IoT policies in a smart environment (smart homes, smart
campuses, smart cities). To do so, we translated the IoT policies to Z3-based
SMT programs [11] which can automatically detect the violations between
the policies and resolve them using a precedence mechanism. IoT policies
are automation rules determined by a network administrator, to control de-
vice behavior according to specific requirements from smart devices within
a network. For example, the policy: "For Nest Cameras in building 1 allow
Web traffic only between 9 AM and 6 PM", controls the action of all Nest
Cameras in building 1.

Policies are designed keeping in mind the security, privacy, and usage
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requirements of users. Often, policies conflict with each other thereby leav-
ing the devices in a confused state. Usually, for a campus as big as Stony
Brook University, there could be at least 10,000 policies. Manually identify-
ing the conflicting ones can be a daunting task for any network administrator.
Therefore, to automate such a situation, we built an engine that can identify
conflicts and resolve them using precedence based on policy context (security
policies, privacy policies, user-specific policies, etc.).

This work is divided into 2 parts: Conflict detection and Conflict resolu-
tion.

3.1.1 Conflict Detection

For this part, we used an SMT solver called Z3 [23]. Z3 is a high-performance
theorem prover developed by Microsoft Research with several applications
like software/hardware verification and testing, constraint solving, analysis of
hybrid systems, security, biology (in silicon analysis), and geometrical prob-
lems. We used Z3 as a constraint solver to identify overlapping/conflicting
policies. We converted each IoT policy into a constraint that was given as
input to the solver. Z3 constraints contain Binary or Integer values concate-
nated with operators (<, <=, >, >=, == and !=) for comparison. Since
IoT policies are defined as Strings, it is important to transform them into Z3
specific constraints first. If the solver flagged the constraints as overlapping,
then the corresponding policies are conflicting. We marked all such policies
as "conflicting" and proceeded towards their resolution.

3.1.2 Conflict Resolution

For policy conflict resolution, we used a precedence mechanism. This means
that if two policies are conflicting, the one with higher precedence overrules
the other. The precedence of a policy is determined on the basis of its context.
Therefore, higher precedence means a higher severity of the policy context.
For example, a policy: "Allow traffic from all Nest Cameras in building 1
after 5 PM" has a security context, whereas another policy: "Disable traffic
from all Nest Cameras on Floor 5 in Building 1 after 4 PM" was designed
by a user to prevent unnecessary traffic since floor 5 is shut down after 4
PM. Both these policies are at conflict for the Nest devices on Floor 5 after
4 PM. Also, both have different contexts, i.e., security and user-specific. To
resolve conflicts among them, we gave precedence based on context severity,
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such that until 5 PM, the second policy is in effect, but after 5 PM the first
policy comes into effect disabling the second policy.

3.2 Problem Statement
The goal of this thesis is to provide transparency in the trigger-action behav-
ior of IoT devices in a smart home ecosystem. As a step towards this goal, we
focus on device activity detection using minimal information obtained from
the network traffic traces.

Despite their encrypted communication [1], passive traffic monitoring can
reveal enough information about the IoT devices and their activities [2],
[3], [4]. We focus on attributes like packet magnitude, inter-packet arrival
times, DNS servers, and communication protocols that can be easily captured
through passive monitoring. We found that these attributes can be used to in-
fer the activity performed by the smart devices(lights ON/OFF/dim/change
color), and consequently used them to generate packet-level traffic signatures
specific to each device activity. Through these signatures, we want to identify
the device activity and infer the triggering device. This inference provides
visibility into the smart home ecosystem, thereby allowing the users and net-
work administrators to identify the source of activity (motion detected/smart
app).

3.3 Case Study: Traffic Analysis of Google Home
Mini

We illustrate through the example of a smart speaker: Google home mini, the
fundamental insights obtained by manually inspecting its traffic generated
over WiFi. Figure 3.1 shows the burstiness of traffic generated as a response
to four commands: 1) Lights ON 2) Lights OFF, 3) Tell the current time,
and 4) Play music.

Traffic generated by IoT devices can be categorized as autonomous and
user-generated. Autonomous traffic includes network configuration (DNS,
NTP) [15] as well as routine communication between devices and back-end
servers (keep-alive messages). Autonomous traffic repeats consistently and
is limited to constant traffic size. Whereas, user-generated traffic is asyn-
chronous and has a higher magnitude and frequency. Also, different IoT
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(a) Turn ON the lights (b) Turn OFF the lights

(c) Tell the current time (d) Play music

Figure 3.1: Traffic exhibited by a google home mini for 4 different commands.
The burstiness and packet sizes for all commands is distinct.

devices communicate with unique servers through diverse protocols.
By analyzing the traffic produced through the time command, we show

that the following four features can uniquely represent the activity of a device.

3.3.1 Magnitude

We observed a significant increase in traffic magnitude (packet size). Unlike
regular traffic which is limited to 500 bytes, the traffic for this activity went
up to and above 2,500 bytes (Figure 3.2).

3.3.2 Inter-Packet Arrival Time

Figure 3.3 shows how the inter-packet arrival time (IPA) suddenly decreases
for the duration of the interaction. Compared to an average communication
time of 1.5 seconds, the IPA went as low as 0.08 seconds.
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Figure 3.2: High magnitude traffic generated for the time command.

Figure 3.3: The reduced inter-packet arrival time for the time command.

3.3.3 DNS Servers

The google home mini is continuously communicating with its cloud servers
and other devices. But we observed that it communicates with the same
server each time for a given activity. Over two separate instances, it talked
to the servers: google.com and time.google.com. We use this as another
feature to identify traffic specific to a device activity.

We also observed that for command "play music", the device talked to
youtube.com and googlevideo.com.

3.3.4 Network Protocols

Figure 3.4 demonstrates the protocols used by the smart device in two differ-
ent instances. The protocols: DNS, HTTP, TCP, TLSv1.3 are used during
both instances. Thus, we use the protocols used by the device during an
activity to uniquely represent the activity.
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(a)

(b)

Figure 3.4: Network protocols used by google home mini during interaction
(current time) at two separate instances.
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Chapter 4

Setup and Dataset Details

In this section, we present our IoT testbed and data collection steps.

4.1 IoT Testbed
We set up an IoT testbed with a few commercially available IoT devices, that
operate on WiFi, to collect traffic traces. Figure 4.1 shows our setup. The
WAN interface of the ethernet hub is connected to the public Internet via the
university network. We developed our approach by focusing on one test-case
which, we show through results, can be extended to different scenarios. We
tried to simulate a smart-lights system which can be controlled either through
voice commands given to Google home mini or through an app, within the
same network.

4.2 Data Collection
We captured the traffic for while continuously interacting with the devices.
Before beginning with the experiments, we waited for at least two minutes
for all the devices to power-on. To capture the traffic, we used the command-
line tool, tcpdump, on the NUC flashed with Ubuntu 16.04 placed between
the access point and the gateway. Tcpdump passive monitors, collects, and
stores the traffic as PCAP files on the disk.

Once the devices were ready, we began the packet capture and started
communicating with them. During our experiments, we actively interacted
with the devices and recorded the type and timestamp for each interaction.
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Figure 4.1: WINGS Lab IoT Testbed [1-Internet(cloud backend), 2-NUC,
3-Ethernet Hub, 4-Wireless AP, 5-Google Home Mini, 6-Philips Hue, 7-
Smartphone(google home app)]

After each interaction, we waited for 5 more seconds stopped the packet
capture. We conducted the same experiments 4 times for each activity to
collect enough traffic samples.

The types of interactions include 1) voice command, where we triggered
the Google mini using a voice command, to communicate with the smart
lights and turn them on/off; 2) cloud communication, by using a companion
app on the smartphone, in the same network, that communicates with the
device through its cloud end-point.

We interacted with the Google mini it through three commands 1) Lights
ON, 2) Lights OFF, and, 3) Tell current time.

Therefore, our collected data includes PCAP files of network traces ac-
companied by a text file containing device names, timestamps, and interaction-
types.
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Chapter 5

Methodology

In this section, we explain our signature generation and detection techniques.

5.1 Preprocessing
Before signature generation or detection, we preprocess the PCAP files by
dividing them into intervals.

5.1.1 Trace Feature Extraction

Given a PCAP file, we split it into equal time intervals of 5 seconds each i.e.
{[0-5),[5-10),[10-15),..}. For each interval, we extract a set of features, such
that each interval is represented by an 8D data point with following features:
1) Maximum packet size, 2) Mean packet size, 3) Standard deviation in packet
size, 4) total protocols, 5) total packets, 6) mean inter-packet arrival time, 7)
DNS Servers, 8) Unique Protocols. Therefore, each interval is a new data
point with 8 dimensions.

Additionally, for signature generation, we add two more features: 1)In-
terval start-time, 2)Interval end-time.
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5.2 Signature Generation

5.2.1 Attributes Clustering

We use the 8D data points for signature generation. Before further pro-
cessing, we standardize our data samples using z-scores. These data points,
although specific to an activity, can contain the additional periodic IoT traf-
fic. To separate the data points most relevant to the activity, we use an
unsupervised learning algorithm: K-Means, to cluster and determine them.
Using multidimensional clustering over the first 6 attributes, we single-out
the cluster that correctly represents the activity traffic. We used the elbow
method heuristic to determine the optimal value for k.

Every device activity requires a separate K-Means clustering.
Figures 5.1 and 5.2 show the clusters obtained for a smart speaker - Google

home mini for two different commands (volume change and voice command).
Since it is difficult to visualize more than three attributes, we used Principal
Component Analysis (PCA) to project the data points to a two-dimensional
space.

(a) The Elbow Method showing
the optimal k

(b) K-Means Clustering

Figure 5.1: Traffic clustering for volume change command.

Among the k clusters, we selected the one with the largest data points. We
found that the data points in such a cluster also have higher packet size values
and lower IPA values. Such a cluster best described the nature of traffic spike
observed when a smart device has been interacted with. Therefore, for each
activity, we have an associated cluster that we use to generate signatures.
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(a) The Elbow Method showing
the optimal k

(b) K-Means Clustering

Figure 5.2: Traffic clustering for voice command.

5.2.2 Generation

For a device D let A1,A2,A3 be the activities it performs. Let Ai be the ith

activity for the device where Ai = [d1i , d
2
i , d

3
i , ...], and dj is a data point(5-

second interval) from the largest cluster identified for Ai. Also, as mentioned
earlier, we have ten features for each data point (see Table 5.1).

ts Interval start-time
te Interval end-time
pktmax Maximum packet size
pktmean Mean packet size
pktstd Standard deviation packet size
pkttotal Total packets
protototal Total unique protocols
protounique Unique protocols
dnsunique Unique dns servers
ipamean Mean inter-packet arrival time

Table 5.1: Features used for traffic signature creation

An entire communication between the smart device and its cloud server
or other devices may not always be captured within a single interval, with
part of it occurring before or after the interval’s start or end times. To make
sure that we are not losing important traffic details about the protocols and
DNS servers, we expand every data point by considering traffic 1 second
before the start time and 1 second after the end-time of the data sample.
For convenience, we represent a data point simply as di. Therefore, for the
data point di, we expand its interval by looking into additional traffic between
(tis − 1,tie − 1) and (tis + 1,tie + 1) and append any additional protocols and
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DNS servers to protounique and dnsunique respectively. We do this for all the
points (intervals) in the cluster.

For device D, given the associated PCAP traces Dtraces for activity Ai,
and, n data points for ith activity i.e., d = [d1, d2, d3, ..., dn] , we calculate the
signature for this activity using algorithm 1.

Algorithm 1 Generate activity-specific traffic signatures
1: procedure Add-Data-Points(Dtraces, d)
2: d_new = []
3: for i ← 1 to n do
4: protocols ← ∅
5: dnsServers ← ∅
6: dCurr ← ∅
7: Iterate over packets 1 second before the data-point interval
8: x0 ← tis − 1
9: x1 ← tie − 1

10: j ← 0
11: while Dj

traces[time] ≥ x0 & Dj
traces[time] ≤ x1 do

12: protocols ← protocols ∪ Dj
traces[protocols]

13: dnsServers ← dnsServers ∪ Dj
traces[dns]

14: j ← j + 1

15: Iterate over packets 1 second after the data-point interval
16: x0 ← tis + 1
17: x1 ← tie + 1
18: j ← 0
19: while Dj

traces[time] ≥ x0 & Dj
traces[time] ≤ x1 do

20: protocols ← protocols ∪ Dj
traces[protocols]

21: dnsServers ← dnsServers ∪ Dj
traces[dns]

22: j ← j + 1

23: dCurr[maxPktSize,meanPktSize] = [pktimax, pktimean]
24: dCurr[stdPktSize, totalPkt, meanIpa] = [pktistd, pkt

i
total, ipa

i
mean]

25: dCurr[proto] = protounique ∪ protocols
26: dCurr[dnsServers] = dnsunique ∪ dnsServers
27: d_new[i] = dCurr
28: signature ← Generate-Signatures(d_new)
29: return signature

From the new dataset dnew, we define the signature by properties like
maximum packet size, mean packet size, std packet, mean inter-packet arrival
time by taking the mean of each attribute. Along with the mean value, we
also store the standard deviation of each attribute. This standard is used
during signature detection stage.
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We take the intersection of the unique protocols and dns servers from all
the datapoints and add them to the signature.

30: procedure Generate-Signatures(d_new)
31: maxPkt ← 0
32: meanPkt ← 0 stdPkt ← 0
33: totalPkt ← 0 meanIpa ← 0
34: protocols ← ∅ dnsServers ← ∅
35: for i ← 1 to n do
36: maxPkt ← maxPkt + d_new[i][maxPktSize]
37: meanPkt ← meanPkt + d_new[i][meanPktSize]
38: stdPkt ← stdPkt + d_new[i][stdPktSize]
39: totalPkt ← totalPkt + d_new[i][totalPkt]
40: meanIpa ← meanIpa + d_new[i][meanIpa]
41: protocols ← protocols ∩ d_new[i][protocols]
42: dnsServers ← dnsServers ∩ d_new[i][dnsServers]
43: signature ← ∅
44: signature[maxPkt, meanPkt] ← [maxPkt, meanPkt]
45: signature[stdPkt, totalPkt, meanIpa] ← [stdPkt, totalPkt, totalPkt]
46: signature[protocols] ← protocols
47: signature[dnsServers] ← dnsServers
48: return signature

Signature File: Each signature is created and stored as a dictionary.
Collectively, a signature file of a device stores all the relevant signature dic-
tionaries of a device. During signature detection, we retrieve the stored
signatures and match them with the newly observed network traffic traces.

5.3 Signature Detection
Given a set of traffic traces from a smart home, we want to be able to identify
the underlying activity. To do this, we perform signature detection over this
traffic.

For signature detection, we first preprocess the PCAP network traces by
dividing them into 5-second intervals, such that each interval is a new data
point with 8 dimensions.

Then, we match these data points against the already-generated signa-
tures to detect the device activity. As explained above, our signature contains
7 features. The first 5 features are quantitative, where we use a relaxed match-
ing strategy. This is because devices do not always exhibit the exact traffic
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patterns in terms of packet lengths or inter-packet arrival times, and there
are always slight variations. In relaxed matching, we check if the quantitative
attributes of the new data points are within a single standard deviation of
the corresponding attribute value of the signature. Specifically, we check if
the observed traffic has value between (attr − delta) and (attr + delta).

The remaining two attributes are categorical, where we implemented an
exact matching strategy. The two attributes, protocols and DNS servers, are
sets consisting of relevant values. In exact matching, we make sure that values
for these attributes within the data points match exactly with signature.
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Chapter 6

Evaluations

In this section, we provide our evaluations on two datasets: our own IoT
testbed in the WINGS Lab at Stony Brook University, and, on a publicly
dataset - the Mon(IoT)r dataset [12]. We divide our evaluations into two cat-
egories, where we first present the unique signatures on our dataset, followed
by the detection accuracy on the Mon(IoT)r dataset.

We have conducted all our evaluations on a 64-bit Dell Insipron-5559,
memory 15.6 GiB and Intel R© CoreTM i7-6500U CPU @ 2.50GHz 4 with
Ubuntu 16.04 LTS.

6.1 WINGS Lab Testbed

6.1.1 Unique Signatures

In order to perform evaluations on our testbed, we collected upto 4 traffic
traces for each command that we interacted with the Google Home Mini. We
used the setup in Chapter 6 to capture the traces, where we manually inter-
acted with the device through 3 commands: 1) Turn ON lights, 2) Turn OFF
lights, 3) Tell current time. Tables 6.1 and 6.2 show the unique signatures
and computational characteristics for the commands.

6.2 Public Dataset: Mon(IoT)r dataset
We apply our technique to a state-of-the-art publicly available dataset, the
Mon(IoT)r dataset [12], which contains traffic traces for 55 devices. It is
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Signature Attributes ON OFF Time
pktmax 2592.0 1986.88 2000.16
pktmean 451.28 311.66 370.8
pktstd 623.23 461.10 356.46
pkttotal 204 46 117.16
ipamean 0.0427 0.1485 0.1170

protounique DNS,TCP,TLSv1,TLSv1.3 TCP,TLSv1.3 TCP,TLSv1.3
dnsunique - - -

Table 6.1: Signatures extracted for 3 commands given to Google Home Mini

ON OFF Time
Computation Time (seconds) 10.7 9.4 9.9
Size (bytes) 275 235 258

Table 6.2: Computation time and size for 3 commands given to Google Home
Mini

a labeled dataset, containing PCAP files for each device, divided according
to event/interactions conducted. The interaction experiments conducted by
the authors include 1) Local-Device, which consists of physically interacting
with the device, or using voice commands (without using a voice assistant
from a separate device); 2) Phone-Device, by using a companion app on a
phone connected to the same network as the IoT device, thus allowing direct
communication between the phone and the IoT device; 3) Alex-Device, by
using voice commands to trigger the Echo Spot’s Alexa voice assistant, which
subsequently interacted with the device according to the voice command; 4)
Cloud-Device, by using a companion app on a phone connected to a different
network than the IoT device, to force the IoT device to use cloud infrastruc-
ture to communicate. We tested our approach on only a subset of the 55
devices due to a limitation of the dataset and our approach. The dataset
does not contain enough samples for Local-Device interactions for certain
devices, and thus cannot produce reliable signatures using our approach.

We show two types of evaluations: matching and detection.
Inmatching, we demonstrate the ability of our technique to extract signa-

tures and affirm to them, through matching accuracy, by dividing the traffic
traces into train and test samples.

In detection, we show the precision and recall scores of our technique on
mixed traffic (combining traces of multiple devices) to inform of its perfor-
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mance in a real-time scenario.

6.2.1 Matching

To generate signatures for each device activity, we merged all the PCAP
files and extracted 5-seconds from them as described in Chapter 4. After
extracting the intervals, we divided the dataset into training (60%) and test-
ing(40%) sets. We used the training set to generate signatures and performed
signature detection on the testing set. Tables 6.3, 6.4, 6.5, 6.6 summarize
the results and accuracy.

We observed that for device events with matching accuracy less than
100%, the network traffic was more scattered, and so their clusters could
not accurately capture the expected details. Figures 6.1 and 6.2 show the
difference in traffic generated by two devices from Table 6.3: Blink Security
Hub and Lefun Cam.

(a) Event:Stop; Interaction
type:Alexa-Device

(b) Event:Watch; Interaction
type:Alexa-Device

(c) Event:Watch; Interaction
type:Phone-Device

(d) Event:Photo; Interaction
type:Phone-Device

Figure 6.1: Traffic distribution for Blink Security Hub
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(a) Event:Recording; Interaction
type:Phone-Device

(b) Event:Watch; Interaction
type:Phone-Device

(c) Event:Photo; Interaction
type:Phone-Device

Figure 6.2: Traffic distribution for Lefun Cam

6.2.2 Detection

To demonstrate detection accuracy, we merged the PCAP files of different
devices in two different combinations. First, we chose all the devices with
the capability to directly(smart lights) or indirectly(smart hubs) turn lights
on (see Table 6.7). We did this to show if our technique can identify the
right source within potential sources. Second, we selected 5 commonly used
devices: Amazon Echo Spot, Roku TV, Xiaomi Strip, Luohe Spy Cam, and
Smartthings Hub and arbitrary interaction events for each (see Table 6.8).
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Device Event Interaction type Matching Accuracy

Flux Blub

ON Alexa-Device 100%
OFF Alexa-Device 87.5%
Dim Alexa-Device 87.5%
Color Alexa-Device 100%

Amcrest Camera
Photo Phone-Device 100%

Recording Phone-Device 100%
Watch Phone-Device 100%

Fire TV Change Menu Phone-Device 87.5%

Samsung Fridge

View inside Local Device 100%
Voice command Local Device 68.75%

Volume Local Device 100%
Set Phone-Device 100%

view inside Phone-Device 100%

Xiaomi Hub OFF Phone-Device 75%
ON Phone-Device 75%

Blink Security Hub

Stop Alexa-Device 75%
Watch Alexa-Device 50%
Photo Phone-Device 56.25%
Watch Phone-Device 68.75%

Amazon Cloudcam
Stop Alexa-Device 56.25%

Watch Alexa-Device 50%
Watch Phone-Device 50%

Amazon Echo Spot

Audio OFF Phone-Device 100%
Audio ON Phone-Device 100%

Voice Local Device 81.25%
Volume Local Device 62.5%

Insteon Hub

OFF Alexa-Device 81.25%
ON Alexa-Device 100%
OFF Phone-Device 100%
ON Phone-Device 85.7%

Invoke with Cortana Volume Local Device 62.5%
Voice Local Device 75%

Lefun Cam
Photo Phone-Device 100%

Recording Phone-Device 100%
Watch Phone-Device 100%

LG TV Change Menu Phone-Device 100%

TP-Link Plug

OFF Alexa-Device 100%
ON Alexa-Device 93.75%
OFF Phone-Device 100%
ON Phone-Device 93.75%

Ring Doorbell
Stop Alexa-Device 25%

Watch Alexa-Device 68.75%
Watch Phone-Device 81.25%

Table 6.3: Signature matching accuracy: Trained and tested on the
Mon(IoT)r dataset
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Device Event Interaction type Matching Accuracy

Blink Cam

Stop Alexa-Device 42.85%
Watch Alexa-Device 64.28%
Photo Phone-Device 87.5%
Watch Alexa-Device 100%

Smarter iKettle

ON Alexa-Device 31.25%
OFF Alexa-Device 37.5%
Set Alexa-Device 75%

Color Phone-Device 62.5%
Dim Phone-Device 93.75%

Luohe Cam
Photo Phone-Device 100%

Recording Phone-Device 100%
Watch Phone-Device 87.5%

Philips Bulb

ON Phone-Device 62.5%
OFF Phone-Device 62.5%
Color Phone-Device 68.75%
Dim Phone-Device 75%

Lightify

ON Alexa-Device 56.25%
OFF Alexa-Device 84.6%
Color Alexa-Device 62.5%
Dim Alexa-Device 75%
ON Phone-Device 87.5%
OFF Phone-Device 87.5%
Color Phone-Device 93.75%
Dim Phone-Device 62.5%

Xiaomi Strip

ON Alexa-Device 68.75%
OFF Alexa-Device 50%
Color Alexa-Device 75%
Dim Alexa-Device 93.75%
ON Phone-Device 93.75%
OFF Phone-Device 0%
Color Phone-Device 100%
Dim Phone-Device 25%

Wansview Cam
Photo Phone-Device 100%

Recording Phone-Device 100%
Watch Phone-Device 100%

Yi Cam
Photo Phone-Device 100%

Recording Phone-Device 100%
Watch Phone-Device 100%

ZModo Doorbell
Photo Phone-Device 100%

Recording Phone-Device 100%
Watch Phone-Device 100%

Table 6.4: Signature matching accuracy: Trained and tested on the
Mon(IoT)r dataset
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Device Event Interaction type Matching Accuracy

Amazon Echo Plus

ON Alexa-Device 25%
OFF Alexa-Device 75%
Color Alexa-Device 37.5%
Dim Alexa-Device 62.5%
ON Phone-Device 100%
OFF Phone-Device 0%
Color Phone-Device 100%
Dim Phone-Device 87.5%

Audio ON Phone-Device 50%
Audio OFF Phone-Device 100%

Voice command Local Device 18.75%
Volume Local Device 56.25%

Sengled Hub

ON Alexa-Device 50%
OFF Alexa-Device 68.75%
Color Alexa-Device 0%
Dim Alexa-Device 25%
ON Phone-Device 56.25%
OFF Phone-Device 81.25%
Color Phone-Device 100%
Dim Phone-Device 68.75%

Smartthings Hub

ON Alexa-Device 67.85%
OFF Alexa-Device 78.57%
Color Alexa-Device 75%
Dim Alexa-Device 67.85%
Lock Alexa-Device 75%

Unlock Alexa-Device 87.5%
ON Phone-Device 35.71%
OFF Phone-Device 85.71%
Color Phone-Device 85.71%
Dim Phone-Device 100%
Lock Phone-Device 100%

Unlock Phone-Device 92.85%

TP-Link Bulb

ON Alexa-Device 50%
OFF Alexa-Device 50%
Color Alexa-Device 0%
Dim Alexa-Device 75%
ON Phone-Device 75%
OFF Phone-Device 37.5%
Color Phone-Device 100%
Dim Phone-Device 100%

Table 6.5: Signature matching accuracy: Trained and tested on the
Mon(IoT)r dataset
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Device Event Interaction type Matching Accuracy
Roku TV Remote Phone-Device 100%

Samsung TV Browse Menu Phone-Device 92.85%

Magichome Strip

ON Alexa-Device 93.75%
OFF Alexa-Device 100%
Color Alexa-Device 100%
Dim Alexa-Device 93.75%
ON Phone-Device 75%
OFF Phone-Device 100%
Color Phone-Device 100%
Dim Phone-Device 100%

Microseven Cam Watch Phone-Device 87.5%

Nest T-stat

Set Alexa-Device 50%
ON Phone-Device 68.5%
OFF Phone-Device 75%
Set Phone-Device 50%

Philips Hue

ON Alexa-Device 6.25%
OFF Alexa-Device 43.75%
Color Alexa-Device 18.75%
Dim Alexa-Device 56.25%
ON Phone-Device 100%
OFF Phone-Device 100%
Color Phone-Device 92.85%
Dim Phone-Device 92.3%

TP-Link

ON Alexa-Device 93.75%
OFF Alexa-Device 100%
ON Phone-Device 93.75%
OFF Phone-Device 50%

WeMo Plug

ON Alexa-Device 80%
OFF Alexa-Device 78.5%
ON Phone-Device 100%
OFF Phone-Device 50%

Wink 2

ON Alexa-Device 85%
OFF Alexa-Device 78.5%
ON Phone-Device 100%
OFF Phone-Device 50%

Table 6.6: Signature matching accuracy: Trained and tested on the
Mon(IoT)r dataset
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Device Matching
Accuracy Precision Recall

Insteon Hub 100% 100% 100%
Lightify 56.25% 100% 41.1%
Sengled 37.5% 100% 36.5%
Smartthings Hub 67.8% 89.7% 67.8%
Wink 2 43.75% 100% 48.9%
Magichome Strip 93.75% 100% 92.5%
TP-Link Bulb 56.25% 100% 63.2%

Table 6.7: Signature detection accuracy: devices triggered by voice command
"Lights ON" given to Alexa.

Device Event Interaction
type

Matching
Accuracy Precision Recall

Smartthings Hub Unlock Alexa-
Device

85.7% 100% 87.5%

Luohe Spy Cam Watch Phone-
Device

87.5% 100% 36.2%

Xiaomi Strip ON Phone-
Device

87.5% 100% 86.17%

Roku TV Remote Phone-
Device

100% 67.5% 100%

Amazon Echo Spot Audio ON Phone-
Device

100% 46.25% 58.11%

Table 6.8: Signature detection accuracy: Smart Home simulated.
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Chapter 7

Conclusion

Through this work, we have taken a step towards causal inference of IoT
device activity in a smart home by creating activity-specific traffic signatures.
We identified key characteristics of the IoT traffic that distinguish between
routine (firmware updates, NTP queries) and interactive activities of the
devices. Using these characteristics, we define a unique signature for each
activity of a device. By comparing the signatures to the observed traffic,
we are able to identify the device-activity and thus causality of the observed
event.

We created our own dataset for the technique, and our method only re-
quires prior preprocessing of the raw traces. In fact, the signatures can be
created and stored beforehand. We showed that their computation and stor-
age does not cause significant overhead. We also showed that our approach
works with good accuracy on a public dataset. Through this work, we aim to
provide visibility into the smart home ecosystem which can further be used
to detect any system failures or abnormal activities in the smart house by
identifying the cause of observed events.

Limitations: We discuss the limitations of our technique.
First, as the devices undergo firmware updates, the traffic pattern could

change with it. As a result, these signatures would be required to calculate
again. Second, for devices with little or scattered network traffic, the match-
ing accuracy for our technique is not very high. We want to improve this in
our future scope. Third, traffic shaping techniques [2] can make it harder to
identify the activity as unexpected traffic is added to the network.
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7.1 Future Work
As a future scope, we want to make our signature more exclusive and robust
by incorporating more sources of information like network traffic from other
IoT protocols (Zigbee, Z-Wave, BLE), device power consumption informa-
tion, EM emanation records and IoT app automation-rules that are unique
to devices. By incorporating more information and features, the signatures
can be made more robust. Also, we want to test our approach extensively
on datasets like the UNSW IoT traces [7].
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