

Optimal Signature Searching

A Dissertation Presented

By

Abdulaziz Alqarni

To

The Graduate School

In Partial Fulfillment of The

Requirements

for

The Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

May 2020

 ii

Stony Brook University

The Graduate School

Abdulaziz Alqarni

We, the dissertation committee for the above candidate for the

Doctor of philosophy degree, hereby recommend

Acceptance of this dissertation

Thomas Robertazzi – Dissertation Advisor

Professor, Department of Electrical and Computer Engineering

Wendy Tang – Chairperson of Defense

Associate Professor, Department of Electrical and Computer Engineering

Sangjin Hong, Member

Professor, Department of Electrical and Computer Engineering

Steven Skiena, Member

Distinguished Teaching Professor, Department of Computer Science

This dissertation is accepted by the Graduate School

Dean of the Graduate School

 iii

Abstract of the dissertation

Optimal Signature Searching

By

Abdulaziz Alqarni

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2020

Signature searching is the process of finding a signature “pattern” of interest in a data file.

Signature searching can be found in many applications such as radar, sensor and data processing.

The objective of this research is to provide approaches for optimal signature searching. The plan

is to study the signature searching optimization problem from multiple aspects such as

mathematical programming, divisible load scheduling and topology. The focus of this research is

sensor applications. An active sensor emits signals for detection and information acquisition

purposes. Optimal sensing means the best sensing quality with the least time and energy cost,

which allow processing more data. Intuitively, optimal sensing leads to optimal signature

searching. This dissertation presents novel work by using an integer linear programming

“algorithm” to achieve the optimal sensing by selecting the best possible number of signals of a

 iv

type or a combination of multiple types to ensure the best sensing quality possible considering all

given constraints. Then, a solution based on a heuristic algorithm is implemented to improve the

performance. Finally, an optimal processing method is presented. The considered processing

method is local computing, cloud computing or a combination of both methods.

Key words

Signature searching, Integer linear programming, Sensors, Divisible load scheduling, Local

computing, Cloud computing.

 v

To my Parents and my loved ones

 vi

Contents

List of Tables ………………………………………………..………………………………... viii

List of Figures …………………………………………………………………………………... x

List of Abbreviation …………………………………………………………………………. xiii

Acknowledgment ……………………………………………………………………………… xv

1. Introduction …………………………………………………………………………………….. 1

1.1 Background and Related Work ………………………………………………………… 1

1.2 Motivation and Contribution …………………………………………………………… 7

1.3 Organization ……………………………………………………………………………. 9

2. Optimal Signature Searching Using Integer Linear Programming ……………………….. 10

2.1 Background …………………………………………………………………………… 10

2.2 Problem Formulation and Solution …………………………………………………… 12

2.3 Performance Evaluation ………………………………………………………………. 18

3. Optimization of Integer Linear Programming Solution …………………………………… 36

3.1 Background …………………………………………………………………………… 36

3.2 Solution ……………………………………………………………………………….. 39

3.2.1 Comparison between problem based and solver based linear programming...39

3.2.2 Heuristic algorithms solution ………………………………………………. 40

3.2.3 Problem formulation ……………………………………………………….. 41

3.2.4 Testing methodology ………………………………………………………. 45

3.3 Results and Analysis …………………………………………………………………. 46

 vii

4. Cloud versus local processing in distributed networks …………………………………..… 49

4.1 Background …………………………………………………………………………… 49

4.2 Solution ……………………………………………………………………………….. 53

4.2.1 Divisible load models speedup for local and cloud processing of single level

tree networks ……………………………………………………………….. 53

4.2.1.1 Sequential Load Distribution model ………………………………… 55

4.2.1.2 Simultaneous Distribution, Staggered Start model ………………….. 59

4.2.1.3 Simultaneous Distribution, Simultaneous Start model ……………… 63

4.2.2 Optimal finish time for local and cloud processing of single level tree

networks ……………………………………………………………………. 71

4.2.2.1 Sequential Load Distribution model ………………………………… 72

4.2.2.2 Simultaneous Distribution, Staggered Start model ………………….. 74

4.2.2.3 Simultaneous Distribution, Simultaneous Start model ……………… 76

4.3 Analysis …………………………………………………………………………….…. 78

5. Conclusion and Future Work …………………………………………………………….….. 81

5.1 Conclusion ………………………………………………………………………….… 81

5.2 Future Work …………………………………………………………………………... 85

Bibliography ……………………………………………………………………………………86

 viii

List of Tables

Table 2.1: Combination of five cases with linear relationship between energy and quality..23

Table 2.2: Number of selected signals per type and the total quality for each case ………. 24

Table 2.3: Combination of five cases with quadratic relationship between energy and

quality……………………………………………………………………………25

Table 2.4: Number of selected signals per type and the total quality for each case ………. 26

Table 2.5: Combination of five cases with linear relationship between Time and Quality .. 28

Table 2.6: Number of selected signals per type and the total quality for each case ………. 29

Table 2.7: Combination of five cases with quadratic relationship between Time and

Quality……………………………………………………………….………….. 30

Table 2.8: Number of selected signals per type and the total quality for each case ………. 31

Table 3.1: Values of parameters used for testing ………………………………………….. 43

Table 3.2: Comparison between I.L.P. solutions and heuristic algorithm results …………. 47

Table 4.1: Values of parameters used in the calculation ………………………...………… 54

Table 4.2: Heterogeneous processors testing results for sequential load distribution …….. 57

Table 4.3: Homogeneous processors results for sequential load distribution ……………... 58

Table 4.4: Heterogeneous processors results for simultaneous load distribution and staggered

start ……………………………………………………………………………. 61

 ix

Table 4.5: Homogeneous processors results for simultaneous load distribution and staggered

start ……………………………………………………………………………... 62

Table 4.6: Heterogeneous processors results for simultaneous load distribution and

simultaneous start ………………………………………………………………. 65

Table 4.7: Homogeneous processors results for simultaneous load distribution and

simultaneous start ………………………………………………………………. 66

Table 4.8: The finish time results for the Sequential load Distribution model ……………. 73

Table 4.9: The finish time results for the Simultaneous Distribution, Staggered Start

model………………………………………..……………………………………75

Table 4.10: The finish time results for the Simultaneous Distribution, Simultaneous Start

model……………………………………………………………………………..77

 x

List of Figures

Figure 2.1: Computational time vs. quality per signal ………………………………………14

Figure 2.2: Energy vs. quality per signal ………………………………….…………………14

Figure 2.3: The number of selected signals per type ………………………………………...15

Figure 2.4: Computational time vs. quality per signal ………………………………………16

Figure 2.5: Energy vs. quality per signal …………………………………………………….16

Figure 2.6: The number of selected signals per type ………………………………………...17

Figure 2.7: Computational time vs. quality per signal ………………………………………19

Figure 2.8: Energy vs. quality per signal …………………………………………………….19

Figure 2.9: The number of selected signals per type ………………………………………...20

Figure 2.10: Computational time vs. quality per signal ………………………………………21

Figure 2.11: Energy vs. quality per signal …………………………………………………….21

Figure 2.12: The number of selected signals per type ………………………………………...22

Figure 2.13: Combination of 5 cases with linear relationship between energy and quality per

signal …………………………………………………………………………….24

Figure 2.14: The number of selected signals per type for each case ………………………….24

Figure 2.15: Combination of 5 cases with quadratic relationship between energy and quality

per signal ………………………………………………………………………...26

Figure 2.16: The number of selected signals per type for each case ………………………….27

Figure 2.17: Combination of 5 cases with linear relationship between time and quality per

signal …………………………………………………………………………….28

Figure 2.18: The number of selected signals per type for each case ………………………….29

 xi

Figure 2.19: Combination of 5 cases with quadratic relationship between time and quality per

signal …………………………………………………………………………….30

Figure 2.20: The number of selected signals per type for each case ………………………….31

Figure 2.21: Energy vs. quality per signal …………………………………………………….32

Figure 2.22: Computation time vs. quality per signal ………………………………………...32

Figure 2.23: The number of selected signals per type ………………………………………...33

Figure 2.24: The number of selected signals per type ………………………………………...34

Figure 2.25: The number of selected signals per type ………………………………………...34

Figure 2.26: The number of selected signals per type ………………………………………...35

Figure 3.1: The relationship between the energy and quality per signal …………………….43

Figure 3.2: The relationship between the computation time and quality per signal …………44

Figure 3.3: The solution time results ………………………………………………………...48

Figure 3.4: The average solution time results ……………………………………………….48

Figure 4.1: Single level tree network ………………………………………………………..53

Figure 4.2: Timing Diagram for a single level tree network with a sequential load

distribution……………………………………………………………………….55

Figure 4.3: Heterogeneous processors results for sequential load distribution ……………...57

Figure 4.4: Homogeneous processors results for sequential load distribution ………………58

Figure 4.5: Timing Diagram for a single level tree network with a simultaneous load

distribution and staggered start ………………………………………………….59

 xii

Figure 4.6: Heterogeneous processors results for simultaneous load distribution and staggered

start ………………………………………………………………………………61

Figure 4.7: Homogeneous processors results for simultaneous load distribution and staggered

start ………………………………………………………………………………62

Figure 4.8: Timing diagram of a single level tree network with a simultaneous distribution,

simultaneous start ………………………………………………………………..63

Figure 4.9: Heterogeneous processors results for simultaneous load distribution and

simultaneous start ………………………………………………………………..65

Figure 4.10: Homogeneous processors results for simultaneous load distribution and

simultaneous start ………………………………………………………………..66

Figure 4.11: Local Processing results for all single level tree heterogeneous models ………..67

Figure 4.12: Cloud Processing results for all single level tree heterogeneous models ……….68

Figure 4.13: Combination of local and cloud Processing results for all single level tree

heterogeneous models …………………………………………………………...68

Figure 4.14: Local Processing results for all single level tree homogeneous models ………...69

Figure 4.15: Cloud Processing results for all single level tree homogeneous models ………..69

Figure 4.16: Combination of local and cloud Processing results for all single level tree

homogeneous models ……………………………………………………………70

 xiii

List of Abbreviation

i Type of signals.

ni Number of signals per type.

qi Quality per signal of type i.

ei Energy per signal of type i.

ti Time per signal of type i.

Q Total quality.

E Total energy.

T Total computation time.

Ec The energy constraint.

Tc The time constraint.

Sc The number of signals per type constraint.

𝑛: The number of processors.

𝜔0 The inverse of the computing speed of the source node.

𝜔𝑖 The inverse of the computing speed of the 𝑖th processor.

𝑧𝑖 The inverse of the link speed of 𝑖th link.

𝑇𝑐𝑚 Communication intensity constant: the entire load is transmitted in 𝑧𝑖𝑇𝑐𝑚

seconds over the 𝑖th link.

𝑇𝑐𝑝 Computing intensity constant: the entire load is processed in 𝜔𝑖𝑇𝑐𝑝 seconds by the

𝑖th processor.

SDLT (𝑛) The speedup with 𝑛 processors in the systems using a DLT model.

 xiv

SDLThomo (𝑛) The speedup with 𝑛 homogeneous processors in the systems using a DLT model.

T The clock period.

f The fraction of load that is parallelizable.

(1 – f) The fraction of load that is serial.

Sp The parallel system speedup.

SAmdahl The overall system speedup.

 xv

Acknowledgements

 I would like to express my sincere gratitude to the following people, without whom I would

not have been able to complete this research. First of all, I would like to thank Prof. Thomas

Robertazzi for providing insight and expertise that greatly assisted this research. I really appreciate

your support and patience. This research couldn’t have been done without his help and guidance.

I would like also to thank the defense committee Prof. Wendy Tang, Prof. Sangjin Hong and Prof.

Steven Skiena. Thank you for being a part of this journey. I would like to give my sincere gratitude

to my family. My parents and my sisters always support me and encourage me to do my best.

Thank you so much my family, I love you and I appreciate everything you do for me. Last but not

least, I thank all my friends and colleagues. Thank you very much for inspiring me to always do

my best.

 1

Chapter 1

Introduction

1.1 Backgrounds and Related Work

 A signature is a relatively small data pattern in a very large data file. Signature searching

is the process of finding a signature of interest in a large data file. Signature searching can be found

in many applications such as radar, sensor data processing, signal processing, image processing,

network security, DNA sequence analysis, large scientific experiments and speech recognition.

Related to this is string matching and template matching. Ko and Robertazzi used divisible load

scheduling theory to solve for the expected time for searching for both single and multiple

signatures in certain multiple processor database architectures [1]. Ying and Robertazzi evaluated

the performance of signatures searching in the nodes of parallel processors. The Authors studied

networks configured as trees, two dimensional meshes and hypercubes [2]. Kyong and Robertazzi

studied the optimal division of a linear file among the nodes in a network. The objective was

minimizing the time of signatures searching in the file [3].

 Wireless sensor networks are useful in diverse application areas. Monitoring applications,

military applications, mobile commerce, smart offices and environmental science are examples of

these application areas. Monitoring applications include medical health monitoring and structural

health monitoring. Surveillance, target tracking, counter sniper, and battlefield monitoring are

examples of military applications using wireless sensor networks. This developing technology

reduces time and effort used in collecting data and monitoring events. It has advantages as well as

 2

challenges and shortcomings. For example, it is convenient, flexible, and accurate. On the other

hand, robustness, scalability, and security are examples of the challenges for this technology [4,5].

Sensing means the act of collecting information about an object. It may be split into passive sensors

that gather radiation that is emitted or reflected by the object. Passive sensors mostly use reflected

sunlight as the source of measured radiation. Examples of passive sensors include film

photography, infrared and radiometers. Active sensing is when the sensor emits a signal and

detects its reflection by the object. RADAR and LiDAR are examples of active sensing [6,7,8].

 A sensor's sensitivity indicates how much the input quantity affects the sensor’s output.

For instance, the temperature changes by 1 °C if the mercury in a thermometer moves 1 cm. The

sensitivity in that example is 1 cm/°C. Optimal sensing means the best sensing quality with the

least time and energy cost, which allow processing more data [7]. Intuitively, optimal sensing leads

to optimal signature searching. Researchers have optimized signal waveforms using various

criteria [9,10,11]. In this thesis, an integer linear programming “algorithm” is used to reach the

optimal sensing by selecting the best possible number of signals of a type or a combination of

multiple types to ensure the best sensing quality possible considering all given constraints. A

mathematical optimization problem in which the variables are restricted to be integers is called

integer programming. Integer linear programming (ILP) means the objective function and the

constraint decision variables are linear. The main reason for using integer variables when modeling

problems as a linear program: The integer variables represent quantities that can only be integer.

For example, it is not possible to build 4.7 cars or in this proposal send 2.5 signals. Integer linear

programming can be used in many applications areas such as production planning where a possible

objective is to maximize the total production, without exceeding the available resources

[12,13,14]. Another example is scheduling such as vehicle scheduling in transportation networks.

 3

Also, an example is telecommunications networks where the goal of these problems is to design a

network of lines to install so that a predefined set of communication requirements are met, and the

total cost of the network is minimal. Finally, cellular networks is another application area such as

The task of frequency planning in 5G mobile networks which involves distributing available

frequencies across the antennas so that users can be served and interference is minimized between

the antennas [15,16].
 In the second chapter, the solution is found using problem-based linear programming. In

the third chapter, the solution is done using solver-based linear programming and a heuristic

algorithm. Problem-based and solver-based are two approaches to solving optimization problems.

The appropriate approach must be selected before solving a problem. First of all, Problem-Based

Optimization Setup is easier to create and debug. The objective and constraints are represented

symbolically. It requires translation from problem form to matrix form, resulting in a longer

solution time. The second approach is solver-based optimization. The problem setup is harder to

create and debug. The objective and constraints are represented as functions or matrices. It does

not require translation from problem form to matrix form, resulting in a shorter solution time. It

allows direct inclusion of a gradient or a Hessian. Also, it allows use of a Hessian multiply function

or Jacobian multiply function to save memory in large problems [17]. The two approaches

produce solution of the same quality. Theoretically, the solver-based solution can improve the

performance. This is because the objective and constraints are represented as functions or matrices

in solver-based solution. That representation eliminates the translation from problem form to

matrix form which allow a shorter solution time. However, a heuristic algorithm can be a faster

and more efficient method to solve a problem. Heuristic algorithms are useful to find approximate

solutions when it is sufficient and exact solutions are computationally expensive. Heuristic

 4

algorithms are commonly employed to solve the Knapsack Problem. In the knapsack problem,

heuristics are used to find the maximum value by grouping a given set of items while being under

a certain limit and its known as the Greedy Approximation Algorithm. It starts by sorting the items

based on their value per unit. Then, it adds the items with the highest value per unit as long as there

is still space remaining [18]. In the third chapter, a heuristic algorithm will be used to find the

maximum quality under a specific set of constraints.
 Data processing is an important part of the fast-growing computer and communication

technologies. The expanding multiple processor technologies requires effective and efficient data

processing scheduling. There are two types of processing. The first one is serial processing, which

cannot be divided and processed simultaneously. The second type and the focus of this thesis is

parallel processing. Parallel processing means loads of data are divisible among processors, which

allow efficient and effective parallel processing [19]. Divisible load scheduling also known as

divisible load theory utilizes linear mathematical models. DLT has many advantages such as easy

computation, a schematic language, equivalent network element modeling. DLT can be

implemented in many applications such as intelligent sensors, image signal processing and large

data bases. Given expanding sensor information collection abilities, there is a requirement for

execution time prediction tools. DLT provides scalable and tractable models to be used as an

accurate prediction tool [20].
 Divisible load scheduling consists of two steps: load distribution and load processing. The

data is usually distributed from one or more processors to multiple processors and processed in

parallel. An optimal scheduling provides the minimum finish time. In DLT, there are no

precedence relations between the data, which allow data to be divided among a number of

processors and links. Also, network architectural issues related to parallel and distributed

 5

computing can be solved implementing DLT. Dividing the load equally among the processors does

not take different computer and communication link speeds, the scheduling policy and the

interconnection network into account and that leads to suboptimal solutions. However, an optimal

solution can be found using divisible load scheduling theory, which provides the required

mathematical tools. Furthermore, the solution can be improved by integrating Amdahl’s and other

speedup laws.
 Amdahl's law is an accurate formula to calculate the speedup of the execution of a task

with fixed data size [21,22]. For multiple processors networks, Amdahl's law can be used as a

prediction tool for the theoretical speedup in parallel

computing. For example, suppose a program finish time using a single processor is 10 hours. If

the part of the program that cannot be parallelized takes one hour to execute and the part that can

be parallelized takes the remaining 9 hours (p = 0.9) of execution, then the minimum execution

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at most

10 times 1
(1−𝑝)

 =10. Gustafson's law is similar to Amdahl’s law and used to calculate the speedup

of a task but with a fixed execution time [23]. In other words, Amdahl’s law can be used to improve

the execution time of a specific workload. However, Gustafson's law can be used to improve the

executed workload during a specific period of time.
 It is important to have a complete understanding to avoid economic waste, inaccurate future

system designs and a lack of technological improvements. The motivation for this research is

“intelligent” sensor networks doing measurements, communications, and computation to reach

optimal signature searching. The fourth chapter compares local and cloud computing as well as

combining both methods. Local computing simply means all the computation occurs on a local

 6

network. However, cloud computing means all the data computation and storage happens in the

cloud via the internet [24].

 7

1.2 Motivations and Contribution

 The objective of this research is to perform optimal signature searching. The plan is to

study the signature searching optimization problem from multiple aspects such as topology,

divisible load scheduling and mathematical programming.

 A sensor's sensitivity indicates how much the input quantity affects the sensor’s output.

Optimal sensing means the best sensing quality with the least time and energy cost, which allow

processing more data [25,26]. Intuitively, optimal sensing leads to optimal signature searching.

So, an integer linear programming “algorithm” is used to perform the optimal sensing by selecting

the best possible number of signals of a type or a combination of multiple types to ensure the best

sensing quality possible considering all given constraints.

The objective of the third chapter is to optimize the proposed solution in the second chapter

using linear programming and heuristic algorithm. Instead of using problem-based linear

programming such as in the second chapter, a solver-based solution is used to optimize the solution

time. Solver-based linear programming solution will be presented and tested in the third chapter.

Then, a solution-based on a heuristic algorithm will be implemented to improve the performance.

Divisible load modeling and speedup expressions have been developed for a variety of

multi-processor interconnection topologies such as buses, stars, multi-level tree networks, meshes,

hypercubes and other networks. Also, they have been developed for different load distribution

policies such as sequential load distribution and concurrent load distribution with simultaneous or

staggered start. Amdahl's Law can be modified and used to calculate the entire network speedup

including serial and parallel data. The speedup of a divisible load model is implemented as the

 8

parallel part of the system replacing the speedup in Amdahl’s law [20]. Other factors can now be

included in Amdahl-like laws through the divisible load component of the modified laws such as

interconnection topology, load distribution policy and the relative difference in computation and

communication intensity and speeds. The divisible load speedup expressions will be included for

three fundamental load distribution protocols in the single level tree network. Heterogeneous and

homogenous networks will be analyzed for each protocol. Moreover, the integrated speedup

formulas will be used for the cases of local and cloud computing. The analysis will lead to the

optimal processing method between local, cloud or a combination of both. Finally, the finish time

and the optimal load distribution will be calculated for each case.

 9

1.3 Organization

The rest of this thesis is organized as follows. An introduction to optimal signature

searching using integer linear programming is given in the first section of chapter II. Then, the

research problem and the proposed solution are described in the second section. The performance

evaluation and experimental results are presented in the third section. A comparison between

problem-based and solver-based linear programming is given in chapter III. Also, a heuristic

algorithm solution is introduced. Then, the research problem and the proposed solution are

described. The performance evaluation and experimental results are presented in the third section

of the third chapter. In chapter IV, the divisible load speedup expressions are included for three

fundamental load distribution protocols in the single level tree network [19]. Heterogeneous and

homogenous networks are included for each protocol. Moreover, the integrated speedup formulas

will be used for the cases of local and cloud computing. A combination of local and cloud

computing will be tested and compared to the results of using only one computing method. Then,

the finish time and the optimal load distribution will be calculated for each case. Finally,

conclusions and future work will be presented in chapter V.

 10

Chapter 2

Optimal Signature Searching Using Integer Linear Programming

2.1 Background

 Wireless sensor networks are useful in diverse application areas. Monitoring applications,

military applications, mobile commerce, smart offices and environmental science are examples of

these application areas. Monitoring applications include medical health monitoring and structural

health monitoring. Surveillance, target tracking, counter sniper, and battlefield monitoring are

examples of military applications using wireless sensor networks. This developing technology

reduces time and effort used in collecting data and monitoring events. Also, it is useful for long-

term research databases. It has advantages as well as challenges and shortcomings. For example,

it is convenient, flexible, and accurate. On the other hand, robustness, scalability, and security are

examples of the challenges for this technology. Sensing means the act of collecting information

about an object. It may be split into passive sensors that gather radiation that is emitted or reflected

by the object. Passive sensors mostly use reflected sunlight as the source of measured radiation.

Examples of passive sensors include film photography, infrared and radiometers. Active sensing

is when the sensor emits a signal and detects its reflection by the object. RADAR and LiDAR are

examples of active sensing.

 11

 A sensor's sensitivity indicates how much the input quantity affects the sensor’s output.

For instance, the temperature changes by 1 °C if the mercury in a thermometer moves 1 cm. The

sensitivity in that example is 1 cm/°C. Optimal sensing means the best sensing quality with the

least time and energy cost, which allow processing more data. Intuitively, optimal sensing leads to

optimal signature searching. So, integer linear programming “algorithm” is used to reach the

optimal sensing by selecting the best possible number of signals of a type or a combination of

multiple types to ensure the best sensing quality possible considering all given constraints. A

mathematical optimization problem in which the variables are restricted to be integers is called

integer programming. Integer linear programming (ILP) means the objective function and the

constraints are linear. The main reason for using integer variables when modeling problems as a

linear program: The integer variables represent quantities that can only be integer. For example, it

is not possible to build 4.7 cars or in this proposal send 2.5 signals. Integer linear programming

can be used in many applications areas such as Production planning where a possible objective is

to maximize the total production, without exceeding the available resources. Another example is

scheduling such as vehicle scheduling in transportation networks. Also, another example is

telecommunications networks where the goal of these problems is to design a network of links to

install so that a predefined set of communication requirements are met, and the total cost of the

network is minimal. Finally, cellular networks is another application area such as the task of

frequency planning in 5G mobile networks which involves distributing available frequencies

across the antennas so that users can be served and interference is minimized between the antennas.

 12

2.2 Problem Formulation and Solution

 The goal is to select the signals that provide the maximum quality “Q” in order to have

optimal signature searching as shown in equation (1) [27]. We assumed that there are i types of

signals. The question is if a sensor is sending out N signals altogether, how many n signals of each

type i summing to N give the best solution? Our problem formulation process starts by creating

three types of signals “i”. Then, the quality “qi”, computation time “ti” and energy “ei”

specifications per signal were provided for each type. Then, the overall computation time and

energy constraints were set as shown in equations (2) and (3) below. The constraints were set so

the total energy does not exceed the energy constraint “Ec” and the total computation time does

not exceed the time constraint “Tc”. The sum of the computation time per signals for each type

multiplied by the number of signals from that type “ni” for all three types gives the total

computation time “T”. Similarly, the sum of the energy per signals for each type multiplied by the

number of signals from that type for all three types gives the total energy “E”. Four different cases

were created to study basic sets of constraints. Two cases will be discussed in this section and the

other two will be used in the following section. Finally, the objective function of the algorithm is

created to find the optimal number of signals of each type that would result in the maximum total

quality. The maximum total quality can be calculated be multiplying the number of selected signals

of each type by the quality per signal for that type then summing the results of all types as shown

in equation (1).

 13

i = 1,2,3

ni , ti
 , ei

 , Q , ni , qi ,Ec , E, T , Tc are positive integers 0,1,2,3….

Max Q = ∑i ni qi (1)

∑i ni ti
 ≤ Tc (2)

∑i ni ei
 ≤ Ec (3)

For the first case, the quality per signal for the first, second and third type are two, five and

ten and the computation time per signal are three, two and a half and two microseconds as shown

in Figure 2.1 below. Figure 2.2 shows the relationship between the energy and quality per signal.

The energy per signal values for the three types are one hundred, two hundred and three hundreds.

Then, two constraints were set for the maximum energy and time cost. The constraints were set so

the total energy does not exceed one thousand and the total computation time does not exceed

twenty five microseconds. If only one type was chosen to for the solution the maximum quality

would be thirty and the selected signals are three signals of the third type. The result shown in

Figure 2.3 is one signal of the first type and three signals of the third type. The selected signals

energy cost is one thousand and the total computation time equals nine microseconds. Finally, the

maximum total quality for this case equals thirty two.

 14

 Figure 2.1: Computational time vs. quality per signal

Figure 2.2: Energy vs. quality per signal

0
0.5

1
1.5

2
2.5

3
3.5

0 2 4 6 8 10 12

Co
m

pu
ta

tio
n

tim
e

pe
r s

ig
na

l
(m

ic
ro

se
co

nd
s)

quality per signal

Time vs Quality (per signal)

0
50

100
150
200
250
300
350

0 2 4 6 8 10 12

En
er

gy
 p

er
 si

gn
al

quality per signal

Energy vs Quality (per signal)

 15

Figure 2.3: The number of selected signals per type

For the second case, the quality per signal for the first, second and third type are two, five

and ten and the computation time per signal are three, two and a half and two microseconds as

shown in Figure 2.4 below. Figure 2.5 shows the relationship between the energy and quality per

signal, which is the difference between this case and the previous one. The energy per signal values

for the three types are one hundred, one hundred and fifty and four hundred. Then, the two

constraints are the same as the previous case for the maximum energy and time cost. The

constraints were set so the total energy does not exceed one thousand and the total computation

time does not exceed twenty five microseconds. If only one type was chosen to for the solution the

maximum quality would be thirty and the selected signals are six signals of the second type. The

result shown in Figure 2.6 is one signal of the first type and six signals of the second type. The

selected signals energy cost is one thousand and the total computation time equals eighteen

microseconds. Finally, the maximum total quality for this case equals thirty two. Clearly,

modifications in the specifications and/or constraints result in different optimal number of signals

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3

N
um

be
r o

f S
ig

na
ls

Signals Type

Number of Selected Signals of
each type

 16

of each type. Also, the organization of the code controls the prioritization of the constraints. The

performance will be evaluated in detail in the following section.

Figure 2.4: Computational time vs. quality per signal

Figure 2.5: Energy vs. quality per signal

0
0.5

1
1.5

2
2.5

3
3.5

0 2 4 6 8 10 12

Co
m

pu
ta

tio
n

tim
e

pe
r s

ig
na

l
(m

ic
ro

se
co

nd
s)

quality per signal

Time vs Quality (per signal)

0
50

100
150
200
250
300
350
400
450

0 2 4 6 8 10 12

En
er

gy
 p

er
 si

gn
al

quality per signal

E vs Q per signal

 17

Figure 2.6: The number of selected signals per type

0

1

2

3

4

5

6

7

1 2 3

nu
m

be
r o

f s
ig

na
ls

types

Signals per Type

 18

2.3 Performance Evaluation

 The performance evaluation portion of this solution was done in three stages. The first

stage is studying basic cases of constraints. Four different cases were created for testing. Two cases

were discussed in the previous section and the other two will be used in this section. In every case

the quality time and energy specifications per signal were provided for each type. Three types of

signals were created for this problem. Then, the overall time and energy constraints were set.

Finally, the objective of the algorithm is to find the optimal number of signals of each type that

would result in the maximum total quality.
For the first case, the quality per signal for the first, second and third type are two, five and

ten and the computation time per signal are three, two and a half and two microseconds as shown

in Figure 2.7 below. Figure 2.8 shows the relationship between the energy and quality per signal.

The energy per signal values for the three types are respectively one hundred, two hundred and

fifty, and one thousand. Then, two constraints were set for the maximum energy and time cost.

The constraints were set so the total energy does not exceed one thousand and the total computation

time does not exceed twenty five microseconds. If only one type was chosen to for the solution the

maximum quality would be twenty and the selected signals are four signals of the second type.

The result shown in Figure 2.9 is five signals of the first type and two signals of the second type,

which allows emitting more signals. The selected signals energy cost is one thousand and the total

computation time equals twenty microseconds. Finally, the maximum total quality for this case

equals twenty.

 19

Figure 2.7: Computational time vs. quality per signal

Figure 2.8: Energy vs. quality per signal

0
0.5

1
1.5

2
2.5

3
3.5

0 2 4 6 8 10 12

Co
m

pu
ta

tio
n

tim
e

pe
r s

ig
na

l
(m

ic
ro

se
co

nd
s)

quality per signal

Time vs Quality (per signal)

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12

En
er

gy
 p

er
 si

gn
al

quality per signal

Energy vs Quality Per signal

 20

Figure 2.9: The number of selected signals per type

For the second case, the quality per signal for the first, second and third type are two, five

and ten and the computation time per signal are three, two and a half and two microseconds as

shown in Figure 2.10 below. Figure 2.11 shows the relationship between the energy and quality

per signal. The energy for the three types are one hundred, two hundreds and five hundreds. Then,

the two constraints are the same as the previous case for the maximum energy and time cost. The

constraints were set so the total energy does not exceed one thousand and the total computation

time does not exceed twenty five microseconds. If only one type was chosen to for the solution the

maximum quality would be twenty five and the selected signals are five signals of the second type.

The result shown in Figure 2.12 is five signals of the second type, which used only one type. The

selected signals energy cost is one thousand and the total computation time equals twelve and a

half microseconds. Finally, the maximum total quality for this case equals twenty five. It was

concluded that the maximum total quality and the optimal number of signals of each type change

whenever the specifications and/or constraints change. Also, the algorithm prioritizes the

constraints following the order of the code.

0

1

2

3

4

5

6

1 2 3

nu
m

be
r o

f s
ig

na
ls

types of signals

Number of selected signals per
type

 21

Figure 2.10: Computational time vs. quality per signal

Figure 2.11: Energy vs. quality per signal

0
0.5

1
1.5

2
2.5

3
3.5

0 2 4 6 8 10 12

Co
m

pu
ta

tio
n

tim
e

pe
r s

ig
na

l
(m

ic
ro

se
co

nd
s)

quality per signal

Time vs Quality (per signal)

0

100

200

300

400

500

600

0 2 4 6 8 10 12

En
er

gy

quality

E vs Q per signal

 22

Figure 2.12: The number of selected signals per type

The second stage is studying complex cases of linear and quadratic relationship between

energy/computation time and quality per signal. This stage consists of two parts. The first part is

combinations of five cases to study the relationship between the energy and quality per signal with

constant computation time specifications. Secondly, studying combinations of five cases to find

the relationship between the computation time and quality per signal with constant energy

specifications.

The first part is a combination of five cases with linear or quadratic relationship between

energy and quality per signal when the computation time is constant. The first case is the linear

relationship between the energy and quality when the computation time is constant. The quality

per signal for the first, second and third type are two, five and ten and the computation time per

signal are three, two and a half and two microseconds as shown in Table 2.1 below. Figure 2.13

shows the linear relationship between the energy and quality per signal. The energy is increased

in each case. Then, two constraints were set for the maximum energy and time cost. The constraints

were set so the total energy does not exceed one thousand and the total computation time does not

0

1

2

3

4

5

6

1 2 3

nu
m

be
r o

f s
ig

na
ls

types

number of selected signals per
type

 23

exceed twenty five microseconds. The selected signals energy cost and the total computation time

vary for each case. For the first case, the energy cost is six hundred and the computation time

equals twenty four microseconds. The energy cost for the second case is one thousand and the

computation time equals twenty microseconds. The third case energy cost equals one thousand

and the computation time is twenty four microseconds. In the fourth case, nine hundred and ninety

is the energy cost and the computation time is eighteen and a half microseconds. Finally, the energy

cost for the fifth case equals a thousand and the computation time is six and a half microseconds.

The results in Table 2.2 and Figure 2.14 show that increasing the energy cost leads to a drop in the

maximum total quality.

Signal
type

Computation
time Quality/Energy

Case1

E=5Q

Case 2

E=10Q

Case 3

E=20Q

Case 4

E=30Q

Case 5

E=40Q

1 3 2 10 20 40 60 80

2 2.5 5 25 50 100 150 200

3 2 10 50 100 200 300 400

Table 2.1: combination of five cases with linear relationship between energy and quality

 24

Figure 2.13: Combination of 5 cases with linear relationship between energy and quality

Type/case 1 2 3 4 5

1 0 0 5 4 0

2 0 0 0 1 1

3 12 10 4 2 2

Quality 120 100 50 33 25

Table 2.2: number of selected signals per type and the total quality for each case

Figure 2.14: The number of selected signals per type for each case

0
50

100
150
200
250
300
350
400
450

0 2 4 6 8 10 12

En
er

gy

quality

Energy vs. quality per signal

e=5q

e=10q

e=20q

e=30q

e=40q

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0 1 2 3 4 5 6

nu
m

be
r o

f s
ig

na
ls

slopes

Selected signals per type for each
Case

Type 1

Type 2

Type 3

 25

The second case is the quadratic relationship between the energy and quality when the

computation time is constant. The quality per signal for the first, second and third type are two,

five and ten and the computation time per signal are three, two and a half and two microseconds

as shown in Table 2.3 below. Figure 2.15 shows the quadratic relationship between the energy and

quality per signal. The energy is increased in each case. Then, two constraints were set for the

maximum energy and time cost. The constraints were set so the total energy does not exceed one

thousand and the total computation time does not exceed twenty five microseconds. The selected

signals energy cost and the total computation time vary for each case. For the first case, the energy

cost is one thousand and the computation time equals twenty microseconds. The energy cost for

the second case is nine hundred and fifty and the computation time equals twenty two and a half

microseconds. The third case energy cost equals nine hundred and eighty and the computation time

is twenty and a half microseconds. In the fourth case, nine hundred and sixty is the energy cost

and the computation time is twenty four microseconds. Finally, the energy cost for the fifth case

equals nine hundred and sixty and the computation time is sixteen microseconds. The results in

Table 2.4 and Figure 2.16 show that increasing the energy cost leads to a drop in the maximum

total quality.

Signal
type

Computation
time Quality/Energy

Case1

E=5Q^2

Case 2

E=10Q^2

Case 3

E=20Q^2

Case 4

E=30Q^2

Case 5

E=40Q^2

1 3 2 20 40 80 120 160

2 2.5 5 125 250 500 750 2000

3 2 10 500 1000 2000 3000 4000

Table 2.3: combination of five cases with quadratic relationship between energy and quality

 26

Figure 2.15: Combination of 5 cases with quadratic relationship between energy and quality per
signal

Table 2.4: number of selected signals per type and the total quality for each case

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2 4 6 8 10 12

En
er

gy

quality

Energy vs. Quality per signal

e=5q^2

e=10q^2

e=20q^2

e=30q^2

e=40q^2

Type/case e=5q^2 e=10q^2 e=20q^2 e=30q^2 e=40q^2

1 0 5 6 8 6

2 8 3 1 0 0

3 0 0 0 0 0

Q 40 25 17 16 12

 27

Figure 2.16: The number of selected signals per type for each case

The second part is a combination of five cases with linear or quadratic relationship between

computation time and quality per signal when the energy is constant. The first case is the linear

relationship between computation time and quality when the energy is constant. The quality per

signal for the first, second and third type are two, five and ten and the energy per signal are one

hundred, two hundred and three hundred as shown in Table 2.5 below. Figure 2.17 shows the linear

relationship between computation time and quality per signal. The computation time is increased

in each case. Then, two constraints were set for the maximum energy and time cost. The constraints

were set so the total energy does not exceed one thousand and the total computation time does not

exceed twenty five microseconds. The selected signals energy cost and the total computation time

vary for each case. For the first case, the energy cost is one thousand and the computation time

equals twenty microseconds. The energy cost for the second case is nine hundred and the

computation time equals fifteen microseconds. The third case energy cost equals six hundred and

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

nu
m

be
r o

f s
ig

na
ls

Cases

Type of selected signals for each case

Type 1

Type 2

Type 3

 28

the computation time is twenty microseconds. In the fourth case, three hundred is the energy cost

and the computation time is fifteen microseconds. Finally, the energy cost for the fifth case equals

one hundred and the computation time is twenty microseconds. The results in Table 2.6 and Figure

2.16 show that increasing the computation time results in a drop in the maximum total quality.

Signal
type Energy Quality/ time

Case1

t=25/Q

Case 2

t=50/Q

Case 3

t=100/Q

Case 4

t=150/Q

Case 5

t=200/Q

1 100 2 12.5 25 50 75 100

2 200 5 5 10 20 30 40

3 300 10 2.5 5 10 15 20

Table 2.5: Combination of five cases with linear relationship between Time and Quality

Figure 2.17: Combination of 5 cases with linear relationship between time and quality per signal

0

20

40

60

80

100

120

0 2 4 6 8 10 12

T
m

ic
ro

se
co

nd
s

Q

T vs. Q per signal

t=25/q

t=50/q

t=100/q

t=150/q

t=200/q

 29

Type/case 1 2 3 4 5

1 1 0 0 0 0

2 0 0 0 0 0

3 3 3 2 1 1

Q 32 30 20 10 10

Table 2.6: number of selected signals per type and the total quality for each case

Figure 2.18: The number of selected signals per type for each case

The second case is the quadratic relationship between computation time and quality when

the energy is constant. The quality per signal for the first, second and third type are two, five and

ten and the energy per signal are one hundred, two hundred and three hundred as shown in Table

2.7 below. Figure 2.19 shows the quadratic relationship between computation time and quality per

signal. The computation time is increased in each case. Then, two constraints were set for the

maximum energy and time cost. The constraints were set so the total energy does not exceed one

thousand and the total computation time does not exceed twenty five microseconds. The selected

signals energy cost and the total computation time vary for each case. For the first case, the energy

cost is one thousand and the computation time equals seven microseconds. The energy cost for the

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5

nu
m

be
r o

f s
ig

na
ls

cases

selected signals per type for each
case

type 1

type 2

type 3

 30

second case is one thousand and the computation time equals fourteen microseconds. The third

case energy cost equals nine hundred and the computation time is three microseconds. In the fourth

case, nine hundred is the energy cost and the computation time is four and a half microseconds.

Finally, the energy cost for the fifth case equals nine hundred and the computation time is six

microseconds. The results in Table 2.8 and Figure 2.20 show that increasing the computation time

results in a drop in the maximum total quality.

Signal
type Energy Quality/ time

Case1

t=25/Q^2

Case 2

t=50/Q^2

Case 3

t=100/Q^2

Case 4

t=150/Q^2

Case 5

t=200/Q^2

1 100 2 6.25 12.5 25 37.5 50

2 200 5 1 2 4 6 8

3 300 10 0.25 0.5 1 1.5 2

Table 2.7: Combination of five cases with quadratic relationship between Time and Quality

Figure 2.19: Combination of 5 cases with quadratic relationship between time and quality per
signal

0

10

20

30

40

50

60

0 5 10 15

T
in

 m
ic

ro
se

co
nd

s

Q

Q vs. T per signal

t=25/q^2

t=50/q^2

t=100/q^2

t=150/q^2

t=200/q^2

 31

Table 2.8: number of selected signals per type and the total quality for each case

Figure 2.20: The number of selected signals per type for each case

The third stage is studying the effect of restricting the number of signals per type. In this

part the energy and the computation time per signal are constant for each type. The quality per

signal for the first, second and third type are two, five and ten and the energy per signal are one

hundred, two hundred and three hundred as shown in Figure 2.21. Figure 2.22 shows that the

computation time per signal are five, two and one microseconds. Then, two constraints were set

for the maximum energy and time cost. The constraints were set so the total energy does not exceed

ten thousand and the total computation time does not exceed one thousand microseconds. Figure

2.23 shows the number of selected signals per type before restricting the number of signals per

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5

nu
m

be
r o

f s
ig

na
ls

cases

Selected signals per type for each
case

type 1

type 2

type 3

Type/case 1 2 3 4 5

1 1 1 0 0 0

2 0 0 0 0 0

3 3 3 3 3 3

Q 32 32 30 30 30

 32

type. The total Quality equals three hundred and thirty two and the selected signals are one signal

of the first type and thirty three signals of the third type.

Figure 2.21: Energy vs. quality per signal

Figure 2.22: Computation time vs. quality per signal

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

En
er

gy

quality

E vs Q per signal

0

1

2

3

4

5

6

0 2 4 6 8 10 12

tim
e

quality

Time vs Quality per signal

 33

Figure 2.23: The number of selected signals per type

 The next step is to restrict the number of signals per type as shown in equation (4). Figure

2.24 shows the number of selected signals per type after adding the constraint “Sc”, thirty signals

per type. The total quality equals three hundred and twenty five and the selected signals are five

signals of the second type and thirty signals of the third type as shown in Figure 2.24. Then, the

number of signals per type constraint is modified to twenty signals per type. For this case, the total

quality equals three hundred and the selected signals are twenty signals of the second type and

twenty signals of the third type as shown Figure 2.25. The selected signals per type vary for each

case. To verify the changes in results, a third case is done where the number of signals per type

constraint is set to ten signals per type. The total quality equals one hundred and seventy and the

selected signals are ten signals of each type as shown in Figure 2.26. In conclusion, restricting the

number of signals per type affect the maximum total quality.

Ni
 ≤ Sc (4)

Sc is a positive integer 0,1,2,3….

0

5

10

15

20

25

30

35

1 2 3

nu
m

be
r o

f s
ig

na
ls

signals type

number of signals per type

 34

Figure 2.24: The number of selected signals per type

Figure 2.25: The number of selected signals per type

0

5

10

15

20

25

30

35

1 2 3

nu
m

be
r o

f s
ig

na
ls

signals type

number of signals per type

0

5

10

15

20

25

1 2 3

nu
m

be
r o

f s
ig

na
ls

signals type

number of signals per type

 35

Figure 2.26: The number of selected signals per type

0

2

4

6

8

10

12

1 2 3

nu
m

be
r o

f s
ig

na
ls

signals type

number of signals per type

 36

Chapter 3

Optimization of Integer Linear Programming Solution

3.1 Background

 Wireless sensor networks are useful in diverse application areas. This developing

technology provides efficient data collecting and monitoring. It is used in applications such as

monitoring applications, military applications, mobile commerce, smart offices, long-term

research databases and environmental science [4,5]. The focus of this research is signature

searching using intelligent sensor applications. An active sensor emits signals for detection and

information acquisition purposes. An intelligent sensor means the sensor can collect data and

process it [6,7,8]. Optimal sensing means the best sensing quality with the least time and energy

cost, which allow processing more data. Intuitively, optimal sensing leads to optimal signature

searching.

Integer programming program is a mathematical optimization solution with integer

variables. Integer linear programming (ILP) means the objective function and the constraints are

linear [6,7,8]. The main reason for using integer variables is to represent decision quantities that

can only be integer. So, an integer linear programming “algorithm” is used to perform the optimal

sensing by selecting the best possible number of signals of a type or a combination of multiple

 37

types to ensure the best sensing quality possible considering all given constraints. In the previous

chapter, the solution was done using problem based linear programming. In this chapter, the

performance evaluation is done in three stages and the results show improvements using solver-

based linear programming and a heuristic algorithm.

The objective of this chapter is to optimize the proposed solution in the previous chapter

using linear programming and heuristic algorithm. Instead of using problem based linear

programming such as in the previous chapter, a solver-based solution is used to optimize the

solution. Solver based linear programming will be introduced in the following section and all the

results will be represented. Then, a solution based on a heuristic algorithm is implemented which

shows improvements in the performance.

Heuristic algorithms can provide faster and more efficient method to solve a problem.

Heuristic algorithms are useful to find approximate solutions when it is sufficient and exact

solutions are computationally expensive. Heuristic algorithms are commonly employed to solve

the Knapsack Problem. In the knapsack problem, heuristics are used to find the maximum value

by grouping a given set of items while being under a certain limit and its known as the Greedy

Approximation Algorithm. It starts by sorting the items based on their value per unit. Then, it adds

the items with the highest value per unit as long as there is still space remaining [18]. In this

chapter, a heuristic algorithm will be used to find the maximum quality under a specific set of

constraints.

The rest of this chapter is organized as follows. A comparison between problem based and

solver based linear programming is given in the following section. After that, a heuristic algorithm

solution is introduced. Then, the research problem and the proposed solution are described. The

 38

performance evaluation and experimental results are presented in the third section. Finally,

conclusions and future work are presented at the end of this chapter.

 39

3.2 Solution

3.2.1 Comparison between problem based and solver based linear programming

Problem-based and solver-based are two approaches to solving optimization problems. The

appropriate approach must be selected before solving a problem. The differences between the two

approaches are covered in the following part.

First of all, Problem-Based Optimization Setup is easier to create and debug. The objective

and constraints are represented symbolically. It requires translation from problem form to matrix

form, resulting in a longer solution time. It does not allow direct inclusion of the gradient or

Hessian.

The second approach is solver-based optimization. The problem setup is harder to create

and debug. The objective and constraints are represented as functions or matrices. It does not

require translation from problem form to matrix form, resulting in a shorter solution time. It allows

direct inclusion of gradient or Hessian. Also, it allows use of a Hessian multiply function or

Jacobian multiply function to save memory in large problems [17].

The two approaches produce solution of the same quality. Theoretically, the solver-based

solution can improve the performance. This is because the objective and constraints are

represented as functions or matrices in solver-based solution. That representation eliminates the

translation from problem form to matrix form which allow a shorter solution time.

 40

3.2.2 Heuristic algorithms solution

Solving a given problem using heuristic could have a trade-off such as optimality,

completeness and accuracy. That leads to question if the heuristic solution is good enough. When

multiple solutions exist for a given problem, the following questions can be used to evaluate the

solution found by heuristic algorithm; does the heuristic give the best solution? Can the heuristic

find all possible solutions? Is this the fastest method for solving this type of problem? A heuristic

algorithm was implemented and compared to the previous approaches to answer these questions.

The first step is to sorts the signal types. To determine the order of signal types the following

expression was used to calculate the quality of a certain signal type

Type quality = qi/(ei*ti) (1)

After the signal types are sorted, the algorithm will calculate the best number of signals of each

type to find the maximum quality achieved under a specific set of constraints.

 41

3.2.3 Problem formulation

The goal is to select the signals that provide the maximum quality “Q” in order to have

optimal signature searching as shown in equation (2) [27]. We assumed that there are i types of

signals. The question is if a sensor is sending out N signals altogether, how many ni signals of each

type i summing to N give the best solution? Our problem formulation process starts by creating

four types of signals “i”. Then, the quality “qi”, computation time “ti” and energy “ei”

specifications per signal were provided for each type. Then, the overall computation time and

energy constraints were set as shown in equations (3) and (4) below. The constraints were set so

the total energy does not exceed the energy constraint “Ec” and the total computation time does

not exceed the time constraint “Tc”. The sum of the computation time per signals for each type

multiplied by the number of signals from that type “ni” for all three types gives the total

computation time “T”. Similarly, the sum of the energy per signals for each type multiplied by the

number of signals from that type for all three types gives the total energy “E”. The objective

function of the algorithm is created to find the optimal number of signals of each type that would

result in the maximum total quality. The maximum total quality can be calculated be multiplying

the number of selected signals of each type by the quality per signal for that type then summing

the results of all types as shown in equation (2). Finally, the program run time will be used to

compare problem-based and solver-based solutions.

i = 1,2,3

ni , ti
 , ei

 , Q , ni , qi ,Ec , E, T , Tc are positive integers 0,1,2,3….

Max Q = ∑i ni qi (2)

 42

∑i ni ti
 ≤ Tc (3)

∑i ni ei
 ≤ Ec (4)

Two different cases were created to study the run time for each program. The first case will

be done utilizing four signal types and the other case will be done utilizing seven signal types.

Problem-based, solver-based and heuristic algorithm solutions will be used to find the maximum

quality utilizing four different signal types. The quality per signal, the energy per signal and the

computation time per signal for each signal type are shown in Table 3.1 below.

For the first case, the quality per signal for each type are five, two, ten and seven. The

energy per signal for the utilized four types are two hundred, one hundred, three hundred and two

hundred and fifty. Figure 3.1 shows the relationship between the energy and quality per signal.

The computation time per signal are two and five tenths, three, two, and two and three tenths

microseconds. The relationship between the computation time and the quality per signal is shown

in Figure 3.2 below.

For the second case, each solution will be done using seven signal types. Three more types

of signals were created for this problem. All the parameters for signals types 5, 6 and 7 are provided

in Table 3.1. The quality per signal for each type are twelve, six and one. ten and seven. The energy

per signal for the new three types are three hundred and fifty, two hundred and twenty five and

fifty. Figure 3.1 shows the relationship between the energy and quality per signal. The computation

time per signal are one and a half, two and four tenths and three and a half microseconds. The

relationship between the computation time and the quality per signal is shown in Figure 2 below.

 43

Signal Type Quality per signal Energy per signal Computation time per
signal

1 5 200 2.5

2 2 100 3

3 10 300 2

4 7 250 2.3

5 12 350 1.5

6 6 225 2.4

7 1 50 3.5

Table 3.1. Values of parameters used for testing

Figure 3.1. The relationship between the energy and quality per signal

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14

En
er

gy
 p

er
 si

gn
al

Quality per signal

E. vs. Q.

 44

Figure 3.2. The relationship between the computation time and quality per signal

Then, three constraints were set for the maximum energy, time cost and the number of

signals per type. The constraints were set so the total energy does not exceed ten thousand and the

total computation time does not exceed two hundred and fifty microseconds. The programs were

set so the number of signals per type doesn’t exceed twenty. In other words, the program cannot

select more than twenty signals from a certain type to find the maximum quality.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

Co
m

pu
ta

tio
n

tim
e

pe
r s

ig
na

l

Quality per signal

T. vs. Q.

 45

3.2.4 Testing methodology

The performance evaluation portion of this solution was done in three stages. The first

stage is studying basic cases of parameters and constraints to find the maximum quality using the

problem based, solver based and heuristic algorithm. In the first stage, only four different types of

signals were created for testing. In every case the quality, time and energy specifications per signal

were provided for each type. Then, the constraints were set. Finally, the objective of the algorithm

is to find the optimal number of signals of each type that would result in the maximum total quality.

Once all three solutions are running and providing the correct solution which is the same

for all of them. The second stage is to test and compare the running time for all three solutions.

The programs were tested twenty times and the solution time for all the trials can be found in Table

3.2 below. All the results will be analyzed in the following section.

The third and final stage is to test the running time for all three proposed solution and

compare them using more signal types. Three more types of signals were created for this problem.

All the parameters for signals types 5, 6 and 7 are provided in Table 3.1. The programs were tested

to find the maximum quality utilizing seven types of signals. Once they were running correctly,

they were tested for the running time. The programs were again tested twenty times and the

solution time for all the trials can be found in Table 3.2 below. All the results will be analyzed in

the following section.

 46

3.3 Results and Analysis

Linear programming was used in two approaches problem based and solver based. The

problem-based solution was introduced in the previous chapter. Solver-based solution was

implemented and tested for the case with four signal types. The test was done twenty times and

the results show improvement in the performance. As shown in Table 3.2, the performance was

enhanced from 0.64 to 0.238 seconds. Then, the heuristic algorithm was implemented and tested.

The solution time was improved to 0.178 seconds as shown in Table 3.2.

 To test the solutions on a larger problem, they were tested again using seven signal types.

The running time for the problem-based, solver-based and the heuristic algorithm were

respectively 0.667, 0.271 and 0.183 seconds. The running time for each solution was more than

the result for the first case. This is because it takes more time to solve a larger computational

problem. A comparison the results of twenty different trials for each solution utilizing four or seven

signals types are represented in Table 3.2 and Figure 3.3. Finally, the average of all the solution

time results is shown in Table 3.2 and Figure 3.4.

 47

Trial

L.P. 4
types

Problem
based

L.P. 4
types
Solver
based

H.A. 4
types

L.P. 7
types

Problem
based

L.P. 7
types
Solver
based

H.A. 7
types

1 0.548 0.111 0.100 0.668 0.197 0.193
2 0.642 0.165 0.204 0.649 0.279 0.189
3 0.601 0.130 0.156 0.564 0.438 0.178
4 0.685 0.265 0.184 0.824 0.289 0.171
5 0.617 0.232 0.189 0.624 0.236 0.182
6 0.600 0.251 0.192 0.676 0.267 0.178
7 0.675 0.243 0.170 0.713 0.296 0.172
8 0.632 0.249 0.168 0.635 0.276 0.186
9 0.649 0.229 0.189 0.648 0.265 0.178

10 0.651 0.243 0.169 0.619 0.293 0.224
11 0.659 0.254 0.189 0.667 0.283 0.186
12 0.621 0.265 0.182 0.667 0.339 0.175
13 0.661 0.270 0.188 0.658 0.259 0.192
14 0.646 0.256 0.179 0.647 0.228 0.179
15 0.629 0.264 0.183 0.661 0.258 0.182
16 0.629 0.300 0.173 0.678 0.235 0.184
17 0.658 0.261 0.192 0.762 0.253 0.186
18 0.695 0.261 0.204 0.690 0.238 0.177
19 0.661 0.257 0.175 0.644 0.242 0.165
20 0.645 0.252 0.177 0.649 0.245 0.175

Avg.

0.640

0.238

0.178

0.667

0.271

0.183

Table 3.2. Comparison between I.L.P. solutions and heuristic algorithm solution time results

 48

Figure 3.3. The solution time results

Figure 3.4. The average solution time results

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

Trial

Running Time

L.P. Problem-based 4 types L.P. Solver-based 4 types H.A. 4 types

L.P. Problem-based 7 types L.P. Solver-based 7 types H.A. 7 types

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

Ti
m

e

Average Running Time

L.P Problem-based 4 types L.P Solver-based 4 types H.A. 4 types

L.P Problem-based 7 types L.P Solver-based 7 types H.A. 7 types

 49

Chapter 4

Cloud versus local processing in distributed networks

4.1 Background

Data processing is an important part of the fast-growing computer and communication

technologies. The expanding multiple processor technologies requires effective and efficient data

processing scheduling. There are two types of processing. The first one is serial processing, which

cannot be divided and processed simultaneously. The second type and the focus of this thesis is

parallel processing. Parallel processing means loads of data are divisible among processors, which

allow efficient and effective parallel processing [19]. Divisible load scheduling also known as

divisible load theory utilizes linear mathematical models. DLT has many advantages such as easy

computation, a schematic language, equivalent network element modeling. DLT can be

implemented in many applications such as intelligent sensors, image signal processing and large

data bases. Given expanding sensor information collection abilities, there is a requirement for

execution time prediction tools. DLT provides scalable and tractable models to be used as an

accurate prediction tool [20].

Divisible load scheduling consists of two steps: load distribution and load processing. The

data is usually distributed from one or more processors to multiple processors and processed in

parallel. An optimal scheduling provides the minimum finish time. In DLT, there are no

 50

precedence relations between the data, which allow data to be divided among a number of

processors and links. Also, network architectural issues related to parallel and distributed

computing can be solved implementing DLT. Dividing the load equally among the processors does

not take different computer and communication link speeds, the scheduling policy and the

interconnection network into account and that leads to suboptimal solutions. However, an optimal

solution can be found using divisible load scheduling theory, which provides the required

mathematical tools. Furthermore, the solution can be improved by integrating Amdahl’s and other

speedup laws.

Amdahl's law is an accurate formula to calculate the speedup of the execution of a task

with fixed data size [21,22]. For multiple processors networks, Amdahl's law can be used as a

prediction tool for the theoretical speedup in parallel

computing. For example, suppose a program finish time using a single processor is 10 hours. If

the part of the program that cannot be parallelized takes one hour to execute and the part that can

be parallelized takes the remaining 9 hours (p = 0.9) of execution, then the minimum execution

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at most

10 times 1
(1−𝑝)

 =10.

A task can be split up into two parts: a part that cannot be parallelized (1-p) and a parallelized part

p. If the execution time of the whole task including both parts of the system is denoted as T, then

T can be calculated using the following formula

T=(1-p) T + pT (1)

 51

The parallelized part execution time can be improved by the factor s which is the speedup of the

parallelized part. Consequently, the theoretical execution time T(s) of the whole task after the

improvement can be calculated using the following formula:

T(s)=(1-p) T+𝑝
𝑠

𝑇 (2)

Amdahl's law gives the theoretical speedup of the execution of the whole task at fixed workload

W, which yields

𝑆𝐴𝑚𝑑𝑎ℎ𝑙(s)= 𝑇𝑊
𝑇(𝑠)𝑊

= 𝑇
𝑇(𝑠)

= 1
(1−𝑝)+𝑝

𝑠
 (3)

Gustafson's law is similar to Amdahl’s law and used to calculate the speedup of a task but

with a fixed execution time [23]. As shown in Equation (4), the execution workload of the whole

task before the improvement of the resources of the system “W” includes the execution workload

of the part that cannot be parallelized and the execution workload of the parallelized part. In

Equation (4), p is the fraction of the parallelized workload and 1-p is the fraction of the part that

cannot be parallelized.

W=(1-p) W +pW (4)

It is the execution of the parallelized part that is improved by a factor s after the improvement of

the resources. Consequently, the execution of the part that cannot be parallelized remains the same.

After the improvement of the resources of the system, the theoretical execution workload W(s) of

the whole task can be calculated using the following equation:

W(s)=(1-p) W + spW (5)

 52

The theoretical speedup of the execution of the whole task at fixed time T can be calculated using

Gustafson's law as shown in the following equation:

𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 (s)=𝑇𝑊(𝑠)
𝑇𝑊

= 𝑊(𝑠)
𝑊

= (1 − 𝑝) + 𝑠𝑝 (6)

It is important to have a complete understanding to avoid economic waste, inaccurate future

system designs and a lack of technological improvements. The motivation for this research is

“intelligent” sensor networks doing measurements, communications, and computation to reach

optimal signature searching. The following section of this chapter compares local and cloud

computing as well as combining both methods. Local computing simply means all the computation

occurs on a local network. However, cloud computing means all the data computation and storage

happens in the cloud via internet [24].

The problem formulation, solution and results are discussed in the following section of this

chapter. The divisible load speedup expressions are included for three fundamental load

distribution protocols in the single level tree network [19]. Heterogeneous and homogenous

networks are included for each protocol. Moreover, the integrated speedup formulas will be used

for the cases of local and cloud computing. A combination of local and cloud computing will be

tested and compared to the results of using only one computing method. Finally, the finish time

and the optimal load distribution will be calculated for each case.

 53

4.2 Solution

4.2.1 Divisible load speedup for local and cloud processing of single level tree networks

Divisible load modeling and speedup expressions have been developed for a variety of

multi-processor interconnection topologies such as buses, stars, multi-level tree networks, meshes,

hypercubes and other networks. Also, they have been developed for different load distribution

policies such as sequential load distribution and concurrent load distribution with simultaneous or

staggered start. Amdahl's Law can be modified and used to calculate the entire network speedup

including serial and parallel data. The speedup of a divisible load model is implemented as the

parallel part of the system replacing the “s” in Amdahl’s law [20]. Other factors can now be

included in Amdahl-like Laws such as interconnection topology, load distribution policy and the

relative difference in computation and communication intensity and speeds.

Figure 4.1. Single level tree network

 54

Figure 4.1 shows a single level tree network [20]. The load is distributed from the root

node to the children nodes. As shown in the figure above, 𝜔𝑖 is the 𝑖th processor’s inverse

computing speed and 𝑧𝑖 is the 𝑖th link’s inverse link speed. Intuitively the processors with faster

link speeds will receive load prior to the ones with slower link speeds to achieve the shortest

finishing time. It is assumed that computation takes more time than communication which means

the inverse link speed and the communication intensity constant is smaller than the inverse

computing speed and computation intensity constant. All the values used in this section are

included in Table 4.1. The problem formulation, solution and results are discussed in the following

section of this chapter. Also, the divisible load speedup expressions are included for three different

single level tree networks. Heterogeneous and homogenous networks are included for each

protocol. Moreover, the integrated speedup formulas will be used for the cases of local and cloud

computing. Finally, the finish time and the optimal load distribution will be calculated for each

case.

Network Type 𝑛 𝜔0 𝜔𝑐 𝜔1, 𝜔2, 𝜔3, 𝜔4 𝑧𝑐, 𝑧1, 𝑧2, 𝑧3, 𝑧4 𝑇𝑐𝑝 𝑇𝑐𝑚

Heterogeneous
system 4 2 0.3 4,5,6,7 0.1,1.5,2,2.5,3 2 1

Homogeneous
system 4 3 0.3 3,3,3,3 0.1,0.1,0.1,0.1,0.1 2 1

Table 4.1. Values of parameters used in the calculation

 55

4.2.1.1 Sequential Load Distribution model

The timing diagram for a single level tree network with a sequential load distribution is

shown in Figure 4.2 [20]. It explains the communication and computation parts of this protocol.

Sequential load distribution means the source node distributes load to one child node at a time.

The child node starts processing as soon as receiving the assigned load. In other words, the child

node does not have to wait until the assigned load is completely received to start computing. To

achieve the optimal speedup, all the nodes have to finish processing at the same time.

Figure 4.2. Timing Diagram for a single level tree network with a sequential load distribution

 56

 The speedup of a divisible load model of a single level tree network with a sequential load

distribution parallel facility with 𝑛 processors is 𝑆𝐷𝐿𝑇 (𝑛). 𝑆𝐷𝐿𝑇 (𝑛) can be calculated using the

following equation [19]:

𝑆𝐷𝐿𝑇 (𝑛)=1+ 𝑘1 [1+∑ (∏ 𝑞𝑙
𝑛
𝑙=2)𝑛

𝑖=2] (7)

where q𝑖 = (ω𝑖−1 𝑇𝑐𝑝− 𝑧𝑖−1 𝑇𝑐𝑚)/ω𝑖 𝑇𝑐𝑝 and k1 = ω0/ω1

For the system with homogeneous processors, the inverse processing speed and link speed of each

processor is the same. In this case, 𝑆𝐷𝐿𝑇 (𝑛) in Equation (7) can be modified and simplified to

calculate the homogeneous network speedup S𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (𝑛) using the following equation:

S𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (n)=1+𝛚𝟎
𝛚

 [𝟏−(𝟏−𝛔)𝐧

𝛔
] (8)

where: σ = z𝑇𝑐𝑚 /𝜔𝑇𝑐𝑝

Amdahl's Law can be modified to calculate the speedup of the entire network including both serial

and parallel facilities using the following equation [20]:

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 = 𝟏
(𝟏−𝒇)+ 𝒇

𝑺𝐷𝐿𝑇(𝑛)
 (9)

To test and compare the speedup levels for different networks, Equations (7) and (8) were inserted

into Equation (9). The values used are listed in Table 4.1. Heterogeneous processors are tested,

and the results are shown in Table 4.2 and Figure 4.3. Also, homogeneous processors are tested,

and the results are shown in Table 4.3 and Figure 4.4.

 57

Heterogeneous Network

f 1-f f/sp local f/sp cloud f/sp
comb. Ss local Ss cloud Ss comb.

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

0.100 0.900 0.046 0.013 0.012 1.057 1.095 1.097

0.200 0.800 0.092 0.026 0.023 1.121 1.211 1.215

0.300 0.700 0.138 0.039 0.035 1.193 1.353 1.361

0.400 0.600 0.184 0.052 0.046 1.275 1.533 1.547

0.500 0.500 0.230 0.065 0.058 1.369 1.769 1.793

0.600 0.400 0.276 0.078 0.069 1.479 2.091 2.130

0.700 0.300 0.322 0.091 0.081 1.607 2.556 2.625

0.800 0.200 0.368 0.104 0.093 1.760 3.286 3.418

0.900 0.100 0.414 0.117 0.104 1.944 4.600 4.899

1.000 0.000 0.460 0.130 0.116 2.172 7.667 8.643

Table 4.2. Heterogeneous processors testing results for sequential load distribution

Figure 4.3. Heterogeneous processors results for sequential load distribution

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp cloud

Sp comb.

 58

Homogeneous Network

f 1-f f/sp local f/sp
cloud

f/sp
comb. Ss local Ss cloud Ss comb.

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

0.100 0.900 0.020 0.009 0.007 1.086 1.100 1.103

0.200 0.800 0.041 0.018 0.014 1.189 1.222 1.228

0.300 0.700 0.061 0.027 0.021 1.314 1.375 1.387

0.400 0.600 0.082 0.036 0.028 1.467 1.571 1.592

0.500 0.500 0.102 0.045 0.035 1.661 1.833 1.869

0.600 0.400 0.122 0.055 0.042 1.914 2.200 2.262

0.700 0.300 0.143 0.064 0.049 2.258 2.750 2.864

0.800 0.200 0.163 0.073 0.056 2.753 3.667 3.904

0.900 0.100 0.184 0.082 0.063 3.525 5.500 6.129

1.000 0.000 0.204 0.091 0.070 4.900 11.000 14.248
Table 4.3. Homogeneous processors results for sequential load distribution

Figure 4.4. Homogeneous processors results for sequential load distribution

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp cloud

Sp Comb.

 59

4.2.1.2 Simultaneous Distribution, Staggered Start model

The timing diagram for a single level tree network with a simultaneous distribution,

staggered start is shown in Figure 4.5 [20]. The communication and computation parts of this

protocol are included in the figure. The second model involves simultaneous distribution of load

which means the source node distributes the divisible load to all children nodes simultaneously. In

this model, a child node can start load processing only after receiving the entire assigned load from

the source node. To achieve the optimal speedup, all the nodes have to finish processing at the

same time.

Figure 4.5. Timing Diagram for a single level tree network with a simultaneous load distribution
and staggered start

 60

The speedup of a divisible load model of a single level tree network with a simultaneous

load distribution and staggered start parallel facility with 𝑛 processors is 𝑆𝐷𝐿𝑇 (𝑛). 𝑆𝐷𝐿𝑇 (𝑛) can be

calculated using the following equation [19]:

𝑺𝐷𝐿𝑇(𝑛)=1+ω0𝑇𝑐𝑝 ∑ 1
(ω𝑖

 𝑇𝑐𝑝 + 𝑧𝑖 𝑇𝑐𝑚)𝑛
𝑖=1 (13)

 For the system with homogeneous processors, the inverse processing speed and link speed

of each processor is the same. In this case, 𝑆𝐷𝐿𝑇 (𝑛) in Equation (13) can be modified and simplified

to calculate the homogeneous network speedup S𝐷𝐿𝑇ℎ𝑜𝑚𝑜(𝑛) using the following equation:

𝑆𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (𝑛) = 1 + 𝑘 × 𝑛 (14)

where: 𝑘=ω0𝑇𝑐𝑝 / (ω𝑇𝑐𝑝 +𝑧𝑇𝑐𝑚)

 Amdahl's Law can be modified to calculate the speedup of the entire network including

both serial and parallel facilities using Equation (9). To test and compare the speedup levels for

different networks, Equations 13 and 14 were inserted into Equation (9). The values used are listed

in Table 4.1. The testing results of heterogeneous networks are shown in Table 4.4 and Figure 4.6.

Also, Homogeneous processors are tested, and the results are shown in Table 4.5 and Figure 4.7.

 61

Heterogeneous Network

f 1-f f/sp local f/sp
cloud

f/sp
comb. Ss local Ss cloud Ss comb.

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

0.100 0.900 0.044 0.015 0.013 1.059 1.093 1.096

0.200 0.800 0.088 0.030 0.025 1.126 1.205 1.212

0.300 0.700 0.132 0.045 0.038 1.201 1.343 1.356

0.400 0.600 0.177 0.060 0.050 1.288 1.516 1.538

0.500 0.500 0.221 0.074 0.063 1.387 1.741 1.777

0.600 0.400 0.265 0.089 0.075 1.504 2.043 2.104

0.700 0.300 0.309 0.104 0.088 1.642 2.474 2.579

0.800 0.200 0.353 0.119 0.100 1.808 3.133 3.330

0.900 0.100 0.397 0.134 0.113 2.011 4.273 4.699

1.000 0.000 0.442 0.149 0.125 2.265 6.714 7.979
Table 4.4. Heterogeneous processors results for simultaneous load distribution and staggered
start

Figure 4.6. Heterogeneous processors results for simultaneous load distribution and staggered
start

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp cloud

Sp comb.

 62

Homogeneous Network

f 1-f f/sp local f/sp cloud f/sp
comb. Ss local Ss cloud Ss comb.

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000
0.100 0.900 0.020 0.010 0.007 1.087 1.098 1.102
0.200 0.800 0.041 0.021 0.015 1.190 1.218 1.227
0.300 0.700 0.061 0.031 0.022 1.314 1.367 1.385
0.400 0.600 0.081 0.042 0.030 1.468 1.558 1.588
0.500 0.500 0.101 0.052 0.037 1.663 1.811 1.862
0.600 0.400 0.122 0.063 0.044 1.917 2.161 2.250
0.700 0.300 0.142 0.073 0.052 2.263 2.680 2.842
0.800 0.200 0.162 0.084 0.059 2.762 3.526 3.858
0.900 0.100 0.182 0.094 0.067 3.542 5.154 6.001
1.000 0.000 0.203 0.104 0.074 4.936 9.571 13.507

Table 4.5. Homogeneous processors results for simultaneous load distribution and staggered start

Figure 4.7. Homogeneous processors results for simultaneous load distribution and staggered
start

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp Cloud

Sp comb.

 63

4.2.1.3 Simultaneous Distribution, Simultaneous Start model

The timing diagram for a single level tree network with a simultaneous distribution,

simultaneous start is shown in Figure 4.8 [20]. The figure includes communication and

computation parts of this protocol. This model involves simultaneous distribution of load which

means the source node distributes the divisible load to all children nodes simultaneously. In this

model, a child node can start load processing as soon as it begins to receive its assigned load from

the source node. In other words, the child node does not have to wait until the assigned load is

completely received to start computing. All the nodes have to finish processing at the same time

to achieve the optimal speedup.

Figure 4.8. Timing diagram of a single level tree network with a simultaneous distribution,
simultaneous start

 64

The speedup of a divisible load model of a single level tree network with a simultaneous

distribution, simultaneous start parallel facility with 𝑛 processors is 𝑆𝐷𝐿𝑇 (𝑛). 𝑆𝐷𝐿𝑇 (𝑛) can be

calculated using the following equation [19]:

𝑆𝐷𝐿𝑇 (𝑛)=1+𝜔0 ∑ (1
𝜔𝑖

)𝑛
𝑖=1 (15)

 For the system with homogeneous processors, the inverse processing speed and link speed

of each processor is the same. In this case, 𝑆𝐷𝐿𝑇 (𝑛) in Equation 15 can be modified and simplified

to calculate the homogeneous network speedup S𝐷𝐿𝑇ℎ𝑜𝑚𝑜(𝑛) using the following equation:

𝑆𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (𝑛) = 1 + 𝑘 × 𝑛 (16)

where 𝑘 = 𝜔0/𝜔

 Amdahl's Law can be modified to calculate the speedup of the entire network including

both serial and parallel facilities using Equation (9). To test and compare the speedup levels for

different networks, Equations (15) and (16) were inserted into Equation (9). The values used are

listed in Table 4.1. The testing results of heterogeneous networks are shown in Table 4.6 and

Figure 4.9. Also, Homogeneous processors are tested, and the results are shown in Table 4.7 and

Figure 4.10.

 65

Heterogeneous Network

f 1-f f/sp local f/sp cloud f/sp
comb. Ss local Ss cloud Ss comb.

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

0.100 0.900 0.040 0.013 0.011 1.064 1.095 1.097

0.200 0.800 0.079 0.026 0.023 1.137 1.211 1.216

0.300 0.700 0.119 0.039 0.034 1.221 1.353 1.362

0.400 0.600 0.159 0.052 0.045 1.318 1.533 1.550

0.500 0.500 0.198 0.065 0.057 1.432 1.769 1.796

0.600 0.400 0.238 0.078 0.068 1.567 2.091 2.137

0.700 0.300 0.278 0.091 0.079 1.730 2.556 2.636

0.800 0.200 0.318 0.104 0.091 1.932 3.286 3.441

0.900 0.100 0.357 0.117 0.102 2.187 4.600 4.951

1.000 0.000 0.397 0.130 0.113 2.519 7.667 8.826
Table 4.6. Heterogeneous processors results for simultaneous load distribution and simultaneous
start

Figure 4.9. Heterogeneous processors results for simultaneous load distribution and simultaneous
start

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp cloud

Sp comb.

 66

Homogeneous Network

f 1-f f/sp local f/sp
cloud

f/sp
comb. Ss local Ss cloud Ss comb.

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000
0.100 0.900 0.020 0.009 0.007 1.087 1.100 1.103
0.200 0.800 0.040 0.018 0.013 1.190 1.222 1.230
0.300 0.700 0.060 0.027 0.020 1.316 1.375 1.389
0.400 0.600 0.080 0.036 0.027 1.471 1.571 1.596
0.500 0.500 0.100 0.045 0.033 1.667 1.833 1.875
0.600 0.400 0.120 0.055 0.040 1.923 2.200 2.273
0.700 0.300 0.140 0.064 0.047 2.273 2.750 2.885
0.800 0.200 0.160 0.073 0.053 2.778 3.667 3.947
0.900 0.100 0.180 0.082 0.060 3.571 5.500 6.250
1.000 0.000 0.200 0.091 0.067 5.000 11.000 15.000

Table 4.7. Homogeneous processors results for simultaneous load distribution and simultaneous
start

Figure 4.10. Homogeneous processors results for simultaneous load distribution and
simultaneous start

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp cloud

Sp comb.

 67

Heterogeneous Network Comparison

The previous models will be used to compare local and cloud processing. Also, a

combination of both processing methods will be compared to find the best processing method.

Heterogeneous systems comparison will be shown in Figure 4.11, 4.12 and 4.13. Homogeneous

systems comparison will be shown in Figure 4.14, 4.15 and 4.16.

Figure 4.11. Local Processing results for all single level tree models

Figure 4.12 and 4.15. compares the results of cloud processing for all single level tree

models. In Figure 4.12, 4.15 the speedup values for the sequential load distribution model and the

simultaneous distribution simultaneous start model are slightly higher than the simultaneous

distribution staggered start model. This is because the processor in the simultaneous distribution

staggered start model cannot start processing until it receives the entire assigned load. All the

0.000

0.500

1.000

1.500

2.000

2.500

3.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sequential Load
Distribution

Simultaneous
Distribution,
Staggered Start

Simultaneous
Distribution,
Simultaneous
Start

 68

following Figures show very close results for all three single level tree models because of the same

processing method being used. In other words, every figure compares all three models using one

processing method.

Figure 4.12. Cloud Processing results for all single level tree models

Figure 4.13. Combination of Local and Cloud Processing results for all single level tree models

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sequential Load
Distribution

Simultaneous
Distribution,
Staggered Start

Simultaneous
Distribution,
Simultaneous
Start

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sequential Load
Distribution

Simultaneous
Distribution,
Staggered Start

Simultaneous
Distribution,
Simultaneous
Start

 69

Homogeneous Network Comparison

Figure 4.14. Local Processing results for all single level tree models

Figure 4.15. Cloud Processing results for all single level tree models

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sequential Load
Distribution

Simultaneous
Distribution,
Staggered Start

Simultaneous
Distribution,
Simultaneous
Start

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sequential Load
Distribution

Simultaneous
Distribution,
Staggered Start

Simultaneous
Distribution,
Simultaneous
Start

 70

Figure 4.16. Combination of Local and Cloud Processing results for all single level tree models

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sequntial load
distribution

Simultaneous
distribution
staggered start

Simultaneous
distribution
simultaneous
start

 71

4.2.2 Optimal finish time for local and cloud processing of single level tree networks

Optimal load distribution is a key to calculate an accurate finish time 𝑇𝑓,𝑚. 𝑇𝑓,𝑚 indicates

the time it takes for a single level tree consisted of the source node and m nodes to finish processing

the entire load. The finish time in this section will be used as a measurement tool to compare local

and cloud processing. Also, a combination of both processing methods will be tested and

compared. The calculation will be done on the single level tree models used previously. All the

results are included in Table 4.8, 4.9 and 4.10.

 72

4.2.2.1 Sequential Load Distribution

𝛼0𝜔0𝑇𝑐𝑝 = 𝛼1𝜔1𝑇𝑐𝑝 (17)

𝛼0 = 𝜔1
𝜔0

𝛼1 = 1
𝑘1

𝛼1 where, 𝑘1 = 𝜔0
𝜔1

𝛼𝑖−1𝜔𝑖−1𝑇𝑐𝑝 = 𝛼𝑖−1𝑧𝑖−1𝑇𝑐𝑚 + 𝛼𝑖𝜔𝑖𝑇𝑐𝑝 (18)

𝛼𝑖 = 𝜔𝑖−1𝑇𝑐𝑝− 𝑧𝑖−1𝑇𝑐𝑚
𝜔𝑖𝑇𝑐𝑝

 𝛼𝑖−1 = 𝑞𝑖𝛼𝑖−1 = (∏ 𝑞𝑙
𝑖
𝑙=2) × 𝛼1 where, 𝑞𝑖 = 𝜔𝑖−1𝑇𝑐𝑝− 𝑧𝑖−1𝑇𝑐𝑚

𝜔𝑖𝑇𝑐𝑝

𝛼0 + 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚=1 (19)

Using Equations (17, 18) and (19) provides the following equation:

[1
𝑘1

+ 1 + ∑ (∏ 𝑞𝑙
𝑖
𝑙=2)𝑚

2]𝛼1 = 1

𝛼1 = 1
[1
𝑘1

+1+∑ (∏ 𝑞𝑙
𝑖
𝑙=2)𝑚

2]
 (20)

Using Equation (20) and the values in table 4.1 to find the finish time using the following

equation:

𝑇𝑓,𝑚= 𝛼0𝜔0𝑇𝑐𝑝 = 1
𝑘1

𝛼1𝜔0𝑇𝑐𝑝= 1
1+𝑘1[1+∑ (∏ 𝑞𝑙

𝑖
𝑙=2)𝑚

2]
 𝜔0𝑇𝑐𝑝 (21)

 73

All the results for the Sequential Load Distribution model are shown in table 4.8

Sequential Load
Distribution

Local
Processing

Cloud
Processing

Combination of
Local and Cloud

Processing

Heterogeneous
Network 1.84 0.522 0.463

Homogeneous
Network 1.2 0.546 0.42

Table 4.8. The finish time results for the Sequential Load Distribution model

 74

4.2.2.2 Simultaneous Distribution, Staggered Start

𝛼0𝜔0𝑇𝑐𝑝 = 𝛼1𝜔1𝑇𝑐𝑝 + 𝛼1𝑧1𝑇𝑐𝑚 (22)

𝛼0 = 𝜔1𝑇𝑐𝑝+ 𝑧1𝑇𝑐𝑚
𝜔0𝑇𝑐𝑝

 𝛼1 = 1
𝑘1

𝛼1 where, 𝑘1 = 𝜔0𝑇𝑐𝑝
𝜔1𝑇𝑐𝑝+ 𝑧1𝑇𝑐𝑚

𝛼𝑖−1𝜔𝑖−1𝑇𝑐𝑝 + 𝛼𝑖−1𝑧𝑖−1𝑇𝑐𝑚 = 𝛼𝑖𝜔𝑖𝑇𝑐𝑝 + 𝛼𝑖𝑧𝑖𝑇𝑐𝑚 (23)

𝛼𝑖 = 𝜔𝑖−1𝑇𝑐𝑝+ 𝑧𝑖−1𝑇𝑐𝑚
𝜔𝑖𝑇𝑐𝑝 + 𝑧𝑖𝑇𝑐𝑚

 𝛼𝑖−1 = 𝑞𝑖𝛼𝑖−1 = (∏ 𝑞𝑙
𝑖
𝑙=2) × 𝛼1 where, 𝑞𝑖 = 𝜔𝑖−1𝑇𝑐𝑝+ 𝑧𝑖−1𝑇𝑐𝑚

𝜔𝑖𝑇𝑐𝑝+ 𝑧𝑖𝑇𝑐𝑚

𝛼0 + 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚=1 (24)

Using Equations (22, 23) and (24) provides the following equation:

[1
𝑘1

+ 1 + ∑ (∏ 𝑞𝑙
𝑖
𝑙=2)𝑚

2]𝛼1 = 1

𝛼1 = 1
[1
𝑘1

+1+∑ (∏ 𝑞𝑙
𝑖
𝑙=2)𝑚

2]
 (25)

Using Equation (25) and the values in table 4.1 to find the finish time using the following

equation:

𝑇𝑓,𝑚= 𝛼0𝜔0𝑇𝑐𝑝 = 1
𝑘1

𝛼1𝜔0𝑇𝑐𝑝= 1
1+𝑘1[1+∑ (∏ 𝑞𝑙

𝑖
𝑙=2)𝑚

2]
 𝜔0𝑇𝑐𝑝 (26)

All the results for the Simultaneous Distribution, staggered start model are shown in table 4.9

below.

 75

Simultaneous
Distribution,

Staggered Start
Local Processing Cloud

Processing

Combination of
Local and Cloud

Processing

Heterogeneous
Network 1.767 0.596 0.501

Homogeneous
Network 1.213 0.628 0.445

Table 4.9. The finish time results for the Simultaneous Distribution, Staggered Start model

 76

4.2.2.3 Simultaneous Distribution, Simultaneous Start

𝛼0𝜔0𝑇𝑐𝑝 = 𝛼1𝜔1𝑇𝑐𝑝 (27)

𝛼0 = 𝜔1
𝜔0

𝛼1 = 1
𝑘1

𝛼1 where, 𝑘1 = 𝜔0
𝜔1

𝛼𝑖−1𝜔𝑖−1𝑇𝑐𝑝 = 𝛼𝑖𝜔𝑖𝑇𝑐𝑝 (28)

𝛼𝑖 = 𝜔𝑖−1𝑇𝑐𝑝
𝜔𝑖𝑇𝑐𝑝

 𝛼𝑖−1 = 𝑞𝑖𝛼𝑖−1 = (∏ 𝑞𝑙
𝑖
𝑙=2) × 𝛼1 where, 𝑞𝑖 = 𝜔𝑖−1

𝜔𝑖

𝛼0 + 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚=1 (29)

Using Equations (27, 28) and (29) provides the following equation:

[1
𝑘1

+ 1 + ∑ (∏ 𝑞𝑙
𝑖
𝑙=2)𝑚

2]𝛼1 = 1

𝛼1 = 1
[1
𝑘1

+1+∑ (∏ 𝑞𝑙
𝑖
𝑙=2)𝑚

2]
 (30)

Using Equation (30) and the values in table 4.1 to find the finish time using the following

equation:

𝑇𝑓,𝑚= 𝛼0𝜔0𝑇𝑐𝑝 = 1
𝑘1

𝛼1𝜔0𝑇𝑐𝑝= 1
1+𝑘1[1+∑ (∏ 𝑞𝑙

𝑖
𝑙=2)𝑚

2]
 𝜔0𝑇𝑐𝑝 (31)

All the results for the Simultaneous Distribution, simultaneous start model are shown in table

4.10.

 77

Simultaneous
Distribution,

Simultaneous Start

Local
Processing

Cloud
Processing

Combination of
Local and Cloud

Processing

Heterogeneous
Network 1.584 0.522 0.436

Homogeneous
Network 1.2 0.546 0.4

Table 4.10. The finish time results for the Simultaneous Distribution, Simultaneous Start model

 78

4.3 Analysis

After finishing all the calculation, all the results were analytically reviewed. Throughout

working on this chapter, it became clear that the results depend on the parameters used. In other

words, a certain set of parameters will provide a specific answer that a different set of parameters

wouldn’t provide. Based on the previous statement all the following analysis are based on the work

and results mentioned in the previous section of this chapter.

The results of the first model sequential load distribution in table 4.2 and table 4.3 shows

clearly that the speedup values for the system with homogeneous processors are higher than the

values of the system with heterogeneous processors for the set of parameters in table 4.1. The

reason is the processing speed for the homogeneous processors equals the highest processing speed

among the heterogenous processors in the specified parameters. In other words, the homogenous

system has higher computation power than the heterogeneous system. The results of the second

model Simultaneous Distribution, Staggered Start and the third model Simultaneous Distribution,

Simultaneous Start proved this statement. Moreover, the results of the second part of the solution

which was about the optimal load distribution and the finish time support this statement. The finish

time results for all three models are in Table 4.8, 4.9 and 4.10. For all three models, systems with

homogeneous processors have a smaller finish time results than system with heterogeneous

processors.

 79

Analyzing the results of local processing speedup for different network topologies shows

clearly that simultaneous distribution models have higher speedup values than the sequential

distribution model. This is because the source node in the sequential distribution model send the

assigned divisible loads to the children nodes one at a time. In other words, the children nodes

ranked lower in the sequence must wait for a considerable length of time. However, the children

nodes can all start receiving load near the starting time in the simultaneous distribution model. The

local processing speedup results in Table 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 support this analysis.

After comparing sequential load distribution with the simultaneous distribution topologies,

the next step is to compare the simultaneous distribution topologies. The simultaneous distribution

topologies are simultaneous distribution, staggered start model and simultaneous distribution,

simultaneous start model. The simultaneous start model results in Table 4.6 and 4.7 shows higher

speedup values than the staggered start model. The reason is all the nodes can start processing as

soon as they begin receiving their assigned load. Unlike the staggered start model, children nodes

do not have to wait for the assigned load to be completely received to start processing.

All the results in the first part of the solution section shows the influence of the size of the

parallelizable load (𝑓) on the speedup values of different network topologies used in this chapter.

Overall, the model has a higher speedup values when the value of (f) increases. That can be seen

clearly in Figures 4.3, 4.4, 4.6, 4.7, 4.9 and 4.10.

Finally, the results were analyzed to find the best processing method. Local, cloud and a

combination of both processing methods were compared in this chapter. Based on the results and

implementing the parameters in Table 4.1, the best processing method is combining Local and

 80

cloud processing. Incorporating both Local and cloud processing provides higher computation

power and minimize communication delays.

 81

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Integer linear programming was used in this paper to optimize active sensing. Active

sensors emit signals to detect information about an object. Integer linear programming is a

mathematical method to achieve the best outcome and it was used to select the best signals to be

emitted. Optimal sensing means acquiring more information with least energy and time costs

which leads to processing more data. Intuitively, optimal sensing results in optimal signature

searching. A signature is a pattern of interest and signature searching is a process to find that

pattern in a data file.

The second chapter presented an algorithm to reach the optimal sensing by selecting the

best possible number of signals of a type or a combination of multiple types to ensure the best

sensing quality possible considering all given constraints. There were three types of constraints,

which are energy, computation time and the number of signals per type. Also, we assumed three

types of signals with different energy, quality and computation time specifications.

The performance evaluation was done in three stages. The first stage is studying basic

cases of constraints. Four different cases were created for testing. The objective of the algorithm

is to find the optimal number of signals of each type that would result in the maximum total quality.

The second stage is studying complex cases of linear and quadratic relationship between

energy/computation time and quality per signal. This stage consists of two parts. The first part is

 82

combinations of five cases to study the relationship between the energy and quality per signal with

constant computation time specifications. The results in Table 2.2 and 2.4 and Figure 2.14 and

2.16 show that increasing the energy cost leads to a drop in the maximum total quality. Secondly,

studying combinations of five cases to find the relationship between the computation time and

quality per signal with constant energy specifications. The results in Table 2.6 and 2.8 and Figure

2.16 and 2.20 show that increasing the computation time results in a drop in the maximum total

quality. The third stage is studying the effect of restricting the number of signals per type.

Restricting the number of signals per type affect the maximum total quality. The results show

improvements using integer linear programming. Integer linear programming ability to optimize

any set of parameters and constraints makes it a very useful tool. The technique proposed is

promising in its ability to automate signal selection for remote sensing.

New approaches were presented in the third chapter to optimize the solution in the second

chapter using linear programming and heuristic algorithm. Instead of using problem based linear

programming such as in the second chapter, a solver-based program is used to optimize the

solution. Then, a solution based on heuristic algorithm is implemented which shows improvements

in the performance. The results show improvements using solver-based linear programming and a

heuristic algorithm. The performance evaluation portion of this solution was done in three stages.

The first stage is studying basic cases of parameters and constraints to find the maximum quality

using the problem based, solver based and heuristic algorithm. The first stage purpose is to verify

that all programs run properly. The second stage is to test and compare the running time for all

three solutions using four signal types. the performance was enhanced from 0.64 to 0.238 seconds

using solver-based linear programming. Then, the heuristic algorithm was implemented and tested.

The average running time was improved to 0.178. The third and final stage is to test the running

 83

time for all three proposed solution and compare them using seven signal types. The average

running time for the problem-based, solver-based and the heuristic algorithm were respectively

0.667, 0.271 and 0.183 seconds. Linear programming and heuristic algorithm ability to optimize

any set of parameters with specific constraints make them very useful tools for optimization

problem.

Amdahl's law is an effective tool to evaluate the performance of parallel systems by

calculating the speedup. The speedup value can be utilized to compare the performances of

different system topologies. In the fourth chapter, Amdahl's law and divisible load modeling were

integrated to evaluate different single level tree topologies. divisible load modeling was used

because it provides tractable and realistic models. Also, it allows precise mathematical analysis.

The fourth chapter compared local and cloud computing for different single level tree

topologies. Also, it evaluated the performance of combining both methods. The performance

evaluation was done in two parts. The first part was using Amdahl's law and divisible load

modeling to calculate the speedup for three single level tree models. The models are sequential

load distribution, simultaneous distribution with staggered start and simultaneous distribution with

simultaneous start. Homogeneous and heterogeneous systems were analyzed for each model. The

second part was done to find the finish time “makespan”. The finish time was calculated and used

to compare the performance of all the previous models.

The results of the analysis show clearly that simultaneous distribution models have higher

speedup values than the sequential distribution model. This is because the children nodes can all

start receiving load near the starting time in the simultaneous distribution model. However, the

children nodes ranked lower in the sequence must wait for a considerable length of time in the

sequential distribution model. The simultaneous start model results show higher speedup values

 84

than the staggered start model. The reason is all the nodes can start processing as soon as they

begin receiving their assigned load unlike the staggered start model. Moreover, the speedup values

increase when the value of (f) increases. Finally, the best processing method is combining Local

and cloud processing because it provides higher computation power and minimizes

communication delays.

 85

5.2 Future Work

For future work, the algorithm presented in the second chapter could be applied to actual

applications. The collected results can be compared to previous results. A comparison will show

the improvement of optimization of signature searching. Finally, modifications should be applied

if results show a need for this.

The proposed algorithms in the third chapter could be applied to actual applications too.

Also, new approaches could be implemented and tested. The results can be compared to presented

results. A comparison may show improvement of optimization of signature searching. Finally,

modifications should be applied if results show a need for this.

Efficient scheduling is highly required in sensors network applications and multiprocessors

systems. This requirement drives consistent improvement and development. For future work,

divisible load scheduling theory can be incorporated with Gustafson’s law, a variant of Amdahl’s

law. Also, a different set of parameters for computing and computation speed can be utilized.

moreover, the results can be tested and compared with a larger number of processors.

Modifications should be applied if results show a need for that. Finally, other types of network

topologies can be studied.

Other aspects of signature searching optimization problem can be studied such as different

network topology, memory inclusion, multi installments scheduling, and queueing. The optimal

solution could be using a certain method or a combination of multiple methods.

 86

Bibliography

[1] K. Ko and T. G. Robertazzi, “Signature Search Time Evaluation in Flat File Databases”.
IEEE Transactions on Aerospace and Electronic Systems, VOL. 44, NO. 2, APRIL 2008.

[2] Z. Ying and T. G. Robertazzi, “Signature Searching in a Networked Collection of Files”.

IEEE Transactions on Parallel and Distributed Systems, VOL. 25, NO. 5, MAY 2014.

[3] Y. Kyong and T. G. Robertazzi. “Greedy Signature Processing with Arbitrary Location

Distributions: A Divisible Load Framework”. IEEE Transactions on Aerospace and
Electronic Systems VOL. 48, NO. 4, OCTOBER 2012.

[4] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a survey”, Network,

IEEE In Network, IEEE, Vol. 18, No.4. (2004), pp. 45-50.

[5] H. U. Yildiz, B. Tavli and H. Yanikomeroglu, "Transmission Power Control for Link-Level

Handshaking in Wireless Sensor Networks," in IEEE Sensors Journal, vol. 16, no. 2, pp.
561-576, Jan.15, 2016.

[6] O. Avecilla. “Sensors: Different Types of Sensors”. Engineering Garage. March 2011.

[7] J. Moon and T. Basar. “Static Optimal Sensor Selection via Linear Integer Programming:
The Orthogonal Case”. IEEE Signal Processing Letters, VOL. 24, NO. 7. JULY 2017.

[8] U. Rashid, H. D. Tuan, H. H. Kha and H. H. Nguyen, "Semi-definite programming for
distributed tracking of dynamic objects by nonlinear sensor network," 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague,
2011, pp. 3532-3535.

[9] S. M. Sowelam and A. H. Tewfik, "Optimal waveform selection for radar target
classification," Proceedings of International Conference on Image Processing, Santa
Barbara, CA, 1997, pp. 476-479 vol.3.

[10] D. J. Kershaw and R. J. Evans, "Optimal waveform selection for tracking systems,"
in IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1536-1550, Sept. 1994.

 87

[11] B. F. La Scala and B. Moran, "Measures of effectiveness for waveform selection," 2004
International Waveform Diversity & Design Conference, Edinburgh, 2004, pp. 1-5.

[12] K. Guo, X. Chen, Y. Zuo, A. Xue, Y. Hu and Yajun Zheng. A New Programming Algorithm
for Multi-sensor Task Assignment under Energy Constraints. International Conference on
Mechatronics and Control (ICMC). July 2014.

[13] A. Richards, T. Schouwenaars, J. How, and E. Feron. “Spacecraft Trajectory Planning

with Avoidance Constraints Using Mixed-Integer Linear Programming”. Journal of
Guidance, Control, and Dynamics, 25(4), pp.755-764. 2002.

[14] X. Liu, W. Hu and H. Zheng, "Fuzzy linear programming based radar subset selection for
target localization in UAV system," 2016 CIE International Conference on Radar
(RADAR), Guangzhou, 2016, pp. 1-5.

[15] M. Holender, Rakesh Nagi, M. Sudit and J. Terry Rickard, "Information fusion using
conceptual spaces: Mathematical programming models and methods," 2007 10th
International Conference on Information Fusion, Quebec, Que., 2007, pp. 1-8.

[16] N. Atay and B. Bayazit. “Mixed-Integer Linear Programming Solution to Multi-robot Task
Allocation Problem”. Report Number: WUCSE-2006-54 (2006). All Computer Science
and Engineering Research. https://openscholarship.wustl.edu/cse_research/205

[17] MATLAB. (2020). Retrieved from https://www.mathworks.com/products/matlab.html

[18] Kenny, V., Nathal, M., & Saldana S., “Heuristic algorithms”, May 25, 2014. Retrieve
 from:
 https://optimization.mccormick.northwestern.edu/index.php?title=Heuristic_algorithms&
 oldid=981

[19] T.G. Robertazzi, “Networks and Grids: Technology and Theory,” Germany, Springer New
York, 2007.

https://optimization.mccormick.northwestern.edu/index.php?title=Heuristic_algorithms&
https://optimization.mccormick.northwestern.edu/index.php?title=Heuristic_algorithms&

 88

[20] F. Wu, T. Robertazzi and Y. Cao, “Integrating Amdahl-like Laws and Divisible Load
Theory,” arXiv 1902.01899, Feb. 5, 2019.

[21] G.M. Amdahl, “Computer Architecture and Amdahl's Law," Computer, 2013, pp. 38-46.

[22] G.M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities," Proceedings of the AFIPS Conference, AFIPS Press, 1967, pp.
483-485.

[23] J.J. Gustafson, “Reevaluating Amdahl's Law," Communications of the ACM, vol. 31, no.
5, May 1988, pp. 532-533.

[24] F. Diaz-del-Rio, J. Salmeron-Garcia and J. Luis Sevillano, “Extending Amdahl's Law for
the Cloud Computing Era," Computer, Feb. 2016, pp. 14-22.

[25] M. Holzrichter. “An Application of the Constraint Programming to the Design and
Operation of Synthetic Aperture Radars”. IEEE 978-1-4673-1576-0/12. 2012.

[26] E. Winter and L. Lupinski, "On Scheduling the Dwells of a Multifunction Radar," 2006
CIE International Conference on Radar, Shanghai, 2006, pp. 1-4.

[27] T. G. Robertazzi. “Planning Telecommunication Network”. 1999.

