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Abstract of the dissertation 

Optimal Signature Searching  

By 

Abdulaziz Alqarni 

Doctor of Philosophy  

in  

Electrical Engineering 

Stony Brook University 

2020 

 

Signature searching is the process of finding a signature “pattern” of interest in a data file. 

Signature searching can be found in many applications such as radar, sensor and data processing. 

The objective of this research is to provide approaches for optimal signature searching. The plan 

is to study the signature searching optimization problem from multiple aspects such as 

mathematical programming, divisible load scheduling and topology. The focus of this research is 

sensor applications. An active sensor emits signals for detection and information acquisition 

purposes. Optimal sensing means the best sensing quality with the least time and energy cost, 

which allow processing more data. Intuitively, optimal sensing leads to optimal signature 

searching. This dissertation presents novel work by using an integer linear programming 

“algorithm” to achieve the optimal sensing by selecting the best possible number of signals of a 
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type or a combination of multiple types to ensure the best sensing quality possible considering all 

given constraints. Then, a solution based on a heuristic algorithm is implemented to improve the 

performance. Finally, an optimal processing method is presented. The considered processing 

method is local computing, cloud computing or a combination of both methods. 

 

 

Key words  

Signature searching, Integer linear programming, Sensors, Divisible load scheduling, Local 

computing, Cloud computing. 
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Chapter 1 

Introduction 

1.1 Backgrounds and Related Work 

 

 

 A signature is a relatively small data pattern in a very large data file.  Signature searching 

is the process of finding a signature of interest in a large data file. Signature searching can be found 

in many applications such as radar, sensor data processing, signal processing, image processing, 

network security, DNA sequence analysis, large scientific experiments and speech recognition. 

Related to this is string matching and template matching. Ko and Robertazzi used divisible load 

scheduling theory to solve for the expected time for searching for both single and multiple 

signatures in certain multiple processor database architectures [1]. Ying and Robertazzi evaluated 

the performance of signatures searching in the nodes of parallel processors. The Authors studied 

networks configured as trees, two dimensional meshes and hypercubes [2]. Kyong and Robertazzi 

studied the optimal division of a linear file among the nodes in a network. The objective was 

minimizing the time of signatures searching in the file [3].  

 Wireless sensor networks are useful in diverse application areas. Monitoring applications, 

military applications, mobile commerce, smart offices and environmental science are examples of 

these application areas. Monitoring applications include medical health monitoring and structural 

health monitoring. Surveillance, target tracking, counter sniper, and battlefield monitoring are 

examples of military applications using wireless sensor networks. This developing technology 

reduces time and effort used in collecting data and monitoring events. It has advantages as well as 
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challenges and shortcomings. For example, it is convenient, flexible, and accurate. On the other 

hand, robustness, scalability, and security are examples of the challenges for this technology [4,5]. 

Sensing means the act of collecting information about an object. It may be split into passive sensors 

that gather radiation that is emitted or reflected by the object. Passive sensors mostly use reflected 

sunlight as the source of measured radiation. Examples of passive sensors include film 

photography, infrared and radiometers. Active sensing is when the sensor emits a signal and 

detects its reflection by the object. RADAR and LiDAR are examples of active sensing [6,7,8].  

 A sensor's sensitivity indicates how much the input quantity affects the sensor’s output. 

For instance, the temperature changes by 1 °C if the mercury in a thermometer moves 1 cm. The 

sensitivity in that example is 1 cm/°C. Optimal sensing means the best sensing quality with the 

least time and energy cost, which allow processing more data [7]. Intuitively, optimal sensing leads 

to optimal signature searching. Researchers have optimized signal waveforms using various 

criteria [9,10,11]. In this thesis, an integer linear programming “algorithm” is used to reach the 

optimal sensing by selecting the best possible number of signals of a type or a combination of 

multiple types to ensure the best sensing quality possible considering all given constraints. A 

mathematical optimization problem in which the variables are restricted to be integers is called 

integer programming. Integer linear programming (ILP) means the objective function and the 

constraint decision variables are linear. The main reason for using integer variables when modeling 

problems as a linear program: The integer variables represent quantities that can only be integer. 

For example, it is not possible to build 4.7 cars or in this proposal send 2.5 signals. Integer linear 

programming can be used in many applications areas such as production planning where a possible 

objective is to maximize the total production, without exceeding the available resources 

[12,13,14]. Another example is scheduling such as vehicle scheduling in transportation networks. 
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Also, an example is telecommunications networks where the goal of these problems is to design a 

network of lines to install so that a predefined set of communication requirements are met, and the 

total cost of the network is minimal. Finally, cellular networks is another application area such as 

The task of frequency planning in 5G mobile networks which involves distributing available 

frequencies across the antennas so that users can be served and interference is minimized between 

the antennas [15,16]. 
 In the second chapter, the solution is found using problem-based linear programming. In 

the third chapter, the solution is done using solver-based linear programming and a heuristic 

algorithm. Problem-based and solver-based are two approaches to solving optimization problems. 

The appropriate approach must be selected before solving a problem. First of all, Problem-Based 

Optimization Setup is easier to create and debug. The objective and constraints are represented 

symbolically. It requires translation from problem form to matrix form, resulting in a longer 

solution time. The second approach is solver-based optimization. The problem setup is harder to 

create and debug. The objective and constraints are represented as functions or matrices. It does 

not require translation from problem form to matrix form, resulting in a shorter solution time. It 

allows direct inclusion of a gradient or a Hessian. Also, it allows use of a Hessian multiply function 

or Jacobian multiply function to save memory in large problems [17].  The two approaches 

produce solution of the same quality. Theoretically, the solver-based solution can improve the 

performance. This is because the objective and constraints are represented as functions or matrices 

in solver-based solution. That representation eliminates the translation from problem form to 

matrix form which allow a shorter solution time. However, a heuristic algorithm can be a faster 

and more efficient method to solve a problem. Heuristic algorithms are useful to find approximate 

solutions when it is sufficient and exact solutions are computationally expensive. Heuristic 
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algorithms are commonly employed to solve the Knapsack Problem.  In the knapsack problem, 

heuristics are used to find the maximum value by grouping a given set of items while being under 

a certain limit and its known as the Greedy Approximation Algorithm. It starts by sorting the items 

based on their value per unit. Then, it adds the items with the highest value per unit as long as there 

is still space remaining [18]. In the third chapter, a heuristic algorithm will be used to find the 

maximum quality under a specific set of constraints.  
 Data processing is an important part of the fast-growing computer and communication 

technologies. The expanding multiple processor technologies requires effective and efficient data 

processing scheduling. There are two types of processing. The first one is serial processing, which 

cannot be divided and processed simultaneously. The second type and the focus of this thesis is 

parallel processing. Parallel processing means loads of data are divisible among processors, which 

allow efficient and effective parallel processing [19]. Divisible load scheduling also known as 

divisible load theory utilizes linear mathematical models. DLT has many advantages such as easy 

computation, a schematic language, equivalent network element modeling. DLT can be 

implemented in many applications such as intelligent sensors, image signal processing and large 

data bases. Given expanding sensor information collection abilities, there is a requirement for 

execution time prediction tools. DLT provides scalable and tractable models to be used as an 

accurate prediction tool [20].  
 Divisible load scheduling consists of two steps: load distribution and load processing. The 

data is usually distributed from one or more processors to multiple processors and processed in 

parallel. An optimal scheduling provides the minimum finish time. In DLT, there are no 

precedence relations between the data, which allow data to be divided among a number of 

processors and links. Also, network architectural issues related to parallel and distributed 
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computing can be solved implementing DLT. Dividing the load equally among the processors does 

not take different computer and communication link speeds, the scheduling policy and the 

interconnection network into account and that leads to suboptimal solutions. However, an optimal 

solution can be found using divisible load scheduling theory, which provides the required 

mathematical tools. Furthermore, the solution can be improved by integrating Amdahl’s and other 

speedup laws.   
 Amdahl's law is an accurate formula to calculate the speedup of the execution of a task 

with fixed data size [21,22]. For multiple processors networks, Amdahl's law can be used as a 

prediction tool for the theoretical speedup in parallel 

computing. For example, suppose a program finish time using a single processor is 10 hours. If 

the part of the program that cannot be parallelized takes one hour to execute and the part that can 

be parallelized takes the remaining 9 hours (p = 0.9) of execution, then the minimum execution 

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at most 

10 times  1
(1−𝑝)

 =10. Gustafson's law is similar to Amdahl’s law and used to calculate the speedup 

of a task but with a fixed execution time [23]. In other words, Amdahl’s law can be used to improve 

the execution time of a specific workload. However, Gustafson's law can be used to improve the 

executed workload during a specific period of time.  
 It is important to have a complete understanding to avoid economic waste, inaccurate future 

system designs and a lack of technological improvements. The motivation for this research is 

“intelligent” sensor networks doing measurements, communications, and computation to reach 

optimal signature searching. The fourth chapter compares local and cloud computing as well as 

combining both methods. Local computing simply means all the computation occurs on a local 
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network. However, cloud computing means all the data computation and storage happens in the 

cloud via the internet [24].  
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1.2 Motivations and Contribution 

 

 

 The objective of this research is to perform optimal signature searching. The plan is to 

study the signature searching optimization problem from multiple aspects such as topology, 

divisible load scheduling and mathematical programming. 

 A sensor's sensitivity indicates how much the input quantity affects the sensor’s output. 

Optimal sensing means the best sensing quality with the least time and energy cost, which allow 

processing more data [25,26]. Intuitively, optimal sensing leads to optimal signature searching. 

So, an integer linear programming “algorithm” is used to perform the optimal sensing by selecting 

the best possible number of signals of a type or a combination of multiple types to ensure the best 

sensing quality possible considering all given constraints.  

The objective of the third chapter is to optimize the proposed solution in the second chapter 

using linear programming and heuristic algorithm. Instead of using problem-based linear 

programming such as in the second chapter, a solver-based solution is used to optimize the solution 

time. Solver-based linear programming solution will be presented and tested in the third chapter. 

Then, a solution-based on a heuristic algorithm will be implemented to improve the performance.  

Divisible load modeling and speedup expressions have been developed for a variety of 

multi-processor interconnection topologies such as buses, stars, multi-level tree networks, meshes, 

hypercubes and other networks. Also, they have been developed for different load distribution 

policies such as sequential load distribution and concurrent load distribution with simultaneous or 

staggered start. Amdahl's Law can be modified and used to calculate the entire network speedup 

including serial and parallel data. The speedup of a divisible load model is implemented as the 
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parallel part of the system replacing the speedup in Amdahl’s law [20]. Other factors can now be 

included in Amdahl-like laws through the divisible load component of the modified laws such as 

interconnection topology, load distribution policy and the relative difference in computation and 

communication intensity and speeds. The divisible load speedup expressions will be included for 

three fundamental load distribution protocols in the single level tree network. Heterogeneous and 

homogenous networks will be analyzed for each protocol. Moreover, the integrated speedup 

formulas will be used for the cases of local and cloud computing. The analysis will lead to the 

optimal processing method between local, cloud or a combination of both. Finally, the finish time 

and the optimal load distribution will be calculated for each case.  
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1.3 Organization  

 

 

The rest of this thesis is organized as follows. An introduction to optimal signature 

searching using integer linear programming is given in the first section of chapter II. Then, the 

research problem and the proposed solution are described in the second section. The performance 

evaluation and experimental results are presented in the third section. A comparison between 

problem-based and solver-based linear programming is given in chapter III. Also, a heuristic 

algorithm solution is introduced. Then, the research problem and the proposed solution are 

described. The performance evaluation and experimental results are presented in the third section 

of the third chapter. In chapter IV, the divisible load speedup expressions are included for three 

fundamental load distribution protocols in the single level tree network [19]. Heterogeneous and 

homogenous networks are included for each protocol. Moreover, the integrated speedup formulas 

will be used for the cases of local and cloud computing. A combination of local and cloud 

computing will be tested and compared to the results of using only one computing method. Then, 

the finish time and the optimal load distribution will be calculated for each case. Finally, 

conclusions and future work will be presented in chapter V. 
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Chapter 2 

Optimal Signature Searching Using Integer Linear Programming 

2.1 Background 

  

 

 Wireless sensor networks are useful in diverse application areas. Monitoring applications, 

military applications, mobile commerce, smart offices and environmental science are examples of 

these application areas. Monitoring applications include medical health monitoring and structural 

health monitoring. Surveillance, target tracking, counter sniper, and battlefield monitoring are 

examples of military applications using wireless sensor networks. This developing technology 

reduces time and effort used in collecting data and monitoring events. Also, it is useful for long-

term research databases. It has advantages as well as challenges and shortcomings. For example, 

it is convenient, flexible, and accurate. On the other hand, robustness, scalability, and security are 

examples of the challenges for this technology. Sensing means the act of collecting information 

about an object. It may be split into passive sensors that gather radiation that is emitted or reflected 

by the object. Passive sensors mostly use reflected sunlight as the source of measured radiation. 

Examples of passive sensors include film photography, infrared and radiometers. Active sensing 

is when the sensor emits a signal and detects its reflection by the object. RADAR and LiDAR are 

examples of active sensing. 
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 A sensor's sensitivity indicates how much the input quantity affects the sensor’s output. 

For instance, the temperature changes by 1 °C if the mercury in a thermometer moves 1 cm. The 

sensitivity in that example is 1 cm/°C. Optimal sensing means the best sensing quality with the 

least time and energy cost, which allow processing more data. Intuitively, optimal sensing leads to 

optimal signature searching. So, integer linear programming “algorithm” is used to reach the 

optimal sensing by selecting the best possible number of signals of a type or a combination of 

multiple types to ensure the best sensing quality possible considering all given constraints. A 

mathematical optimization problem in which the variables are restricted to be integers is called 

integer programming. Integer linear programming (ILP) means the objective function and the 

constraints are linear. The main reason for using integer variables when modeling problems as a 

linear program: The integer variables represent quantities that can only be integer. For example, it 

is not possible to build 4.7 cars or in this proposal send 2.5 signals. Integer linear programming 

can be used in many applications areas such as Production planning where a possible objective is 

to maximize the total production, without exceeding the available resources. Another example is 

scheduling such as vehicle scheduling in transportation networks. Also, another example is 

telecommunications networks where the goal of these problems is to design a network of links to 

install so that a predefined set of communication requirements are met, and the total cost of the 

network is minimal. Finally, cellular networks is another application area such as the task of 

frequency planning in 5G mobile networks which involves distributing available frequencies 

across the antennas so that users can be served and interference is minimized between the antennas. 
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2.2 Problem Formulation and Solution 

 

 

 The goal is to select the signals that provide the maximum quality “Q” in order to have 

optimal signature searching as shown in equation (1) [27]. We assumed that there are i types of 

signals. The question is if a sensor is sending out N signals altogether, how many n signals of each 

type i summing to N give the best solution? Our problem formulation process starts by creating 

three types of signals “i”. Then, the quality “qi”, computation time “ti” and energy “ei” 

specifications per signal were provided for each type. Then, the overall computation time and 

energy constraints were set as shown in equations (2) and (3) below. The constraints were set so 

the total energy does not exceed the energy constraint “Ec” and the total computation time does 

not exceed the time constraint “Tc”. The sum of the computation time per signals for each type 

multiplied by the number of signals from that type “ni” for all three types gives the total 

computation time “T”. Similarly, the sum of the energy per signals for each type multiplied by the 

number of signals from that type for all three types gives the total energy “E”. Four different cases 

were created to study basic sets of constraints. Two cases will be discussed in this section and the 

other two will be used in the following section. Finally, the objective function of the algorithm is 

created to find the optimal number of signals of each type that would result in the maximum total 

quality. The maximum total quality can be calculated be multiplying the number of selected signals 

of each type by the quality per signal for that type then summing the results of all types as shown 

in equation (1). 
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i = 1,2,3     

ni  ,  ti
  ,  ei

  , Q , ni , qi  ,Ec , E, T , Tc   are positive integers 0,1,2,3…. 

Max Q = ∑i ni qi    (1) 

∑i ni ti
 ≤  Tc          (2) 

∑i ni ei
 ≤  Ec     (3) 

 

For the first case, the quality per signal for the first, second and third type are two, five and 

ten and the computation time per signal are three, two and a half and two microseconds as shown 

in Figure 2.1 below. Figure 2.2 shows the relationship between the energy and quality per signal. 

The energy per signal values for the three types are one hundred, two hundred and three hundreds. 

Then, two constraints were set for the maximum energy and time cost. The constraints were set so 

the total energy does not exceed one thousand and the total computation time does not exceed 

twenty five microseconds. If only one type was chosen to for the solution the maximum quality 

would be thirty and the selected signals are three signals of the third type. The result shown in 

Figure 2.3 is one signal of the first type and three signals of the third type. The selected signals 

energy cost is one thousand and the total computation time equals nine microseconds. Finally, the 

maximum total quality for this case equals thirty two. 
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 Figure 2.1: Computational time vs. quality per signal 
 

 
Figure 2.2: Energy vs. quality per signal 
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Figure 2.3: The number of selected signals per type 
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of each type. Also, the organization of the code controls the prioritization of the constraints. The 

performance will be evaluated in detail in the following section. 

 

 
Figure 2.4: Computational time vs. quality per signal 
 

 
Figure 2.5: Energy vs. quality per signal 
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Figure 2.6: The number of selected signals per type 
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2.3 Performance Evaluation  

 

 

 The performance evaluation portion of this solution was done in three stages. The first 

stage is studying basic cases of constraints. Four different cases were created for testing. Two cases 

were discussed in the previous section and the other two will be used in this section. In every case 

the quality time and energy specifications per signal were provided for each type. Three types of 

signals were created for this problem. Then, the overall time and energy constraints were set. 

Finally, the objective of the algorithm is to find the optimal number of signals of each type that 

would result in the maximum total quality. 
For the first case, the quality per signal for the first, second and third type are two, five and 

ten and the computation time per signal are three, two and a half and two microseconds as shown 

in Figure 2.7 below. Figure 2.8 shows the relationship between the energy and quality per signal. 

The energy per signal values for the three types are respectively one hundred, two hundred and 

fifty, and one thousand. Then, two constraints were set for the maximum energy and time cost. 

The constraints were set so the total energy does not exceed one thousand and the total computation 

time does not exceed twenty five microseconds. If only one type was chosen to for the solution the 

maximum quality would be twenty and the selected signals are four signals of the second type. 

The result shown in Figure 2.9 is five signals of the first type and two signals of the second type, 

which allows emitting more signals. The selected signals energy cost is one thousand and the total 

computation time equals twenty microseconds. Finally, the maximum total quality for this case 

equals twenty. 
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Figure 2.7: Computational time vs. quality per signal 
 

 

Figure 2.8: Energy vs. quality per signal 
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Figure 2.9: The number of selected signals per type 
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Figure 2.10: Computational time vs. quality per signal 
 

 

Figure 2.11: Energy vs. quality per signal 
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Figure 2.12: The number of selected signals per type 
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exceed twenty five microseconds. The selected signals energy cost and the total computation time 

vary for each case. For the first case, the energy cost is six hundred and the computation time 

equals twenty four microseconds. The energy cost for the second case is one thousand and the 

computation time equals twenty microseconds. The third case energy cost equals one thousand 

and the computation time is twenty four microseconds. In the fourth case, nine hundred and ninety 

is the energy cost and the computation time is eighteen and a half microseconds. Finally, the energy 

cost for the fifth case equals a thousand and the computation time is six and a half microseconds. 

The results in Table 2.2 and Figure 2.14 show that increasing the energy cost leads to a drop in the 

maximum total quality.  

Signal 
type 

Computation 
time Quality/Energy 

Case1 

E=5Q 

Case 2 

E=10Q 

Case 3 

E=20Q 

Case 4 

E=30Q 

Case 5 

E=40Q 

1 3 2 10 20 40 60 80 

2 2.5 5 25 50 100 150 200 

3 2 10 50 100 200 300 400 

Table 2.1: combination of five cases with linear relationship between energy and quality  
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Figure 2.13: Combination of 5 cases with linear relationship between energy and quality  
 

Type/case 1 2 3 4 5 

1 0 0 5 4 0 

2 0 0 0 1 1 

3 12 10 4 2 2 

Quality 120 100 50 33 25 

Table 2.2: number of selected signals per type and the total quality for each case 
 

 
Figure 2.14: The number of selected signals per type for each case 

0
50

100
150
200
250
300
350
400
450

0 2 4 6 8 10 12

En
er

gy

quality 

Energy vs. quality per signal

e=5q

e=10q

e=20q

e=30q

e=40q

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0 1 2 3 4 5 6

nu
m

be
r o

f s
ig

na
ls

slopes

Selected signals per type for each 
Case

Type 1

Type 2

Type 3



 25 
 

The second case is the quadratic relationship between the energy and quality when the 

computation time is constant. The quality per signal for the first, second and third type are two, 

five and ten and the computation time per signal are three, two and a half and two microseconds 

as shown in Table 2.3 below. Figure 2.15 shows the quadratic relationship between the energy and 

quality per signal. The energy is increased in each case. Then, two constraints were set for the 

maximum energy and time cost. The constraints were set so the total energy does not exceed one 

thousand and the total computation time does not exceed twenty five microseconds. The selected 

signals energy cost and the total computation time vary for each case. For the first case, the energy 

cost is one thousand and the computation time equals twenty microseconds. The energy cost for 

the second case is nine hundred and fifty and the computation time equals twenty two and a half 

microseconds. The third case energy cost equals nine hundred and eighty and the computation time 

is twenty and a half microseconds. In the fourth case, nine hundred and sixty is the energy cost 

and the computation time is twenty four microseconds. Finally, the energy cost for the fifth case 

equals nine hundred and sixty and the computation time is sixteen microseconds. The results in 

Table 2.4 and Figure 2.16 show that increasing the energy cost leads to a drop in the maximum 

total quality. 

 

Signal 
type 

Computation 
time Quality/Energy 

Case1 

E=5Q^2 

Case 2 

E=10Q^2 

Case 3 

E=20Q^2 

Case 4 

E=30Q^2 

Case 5 

E=40Q^2 

1 3 2 20 40 80 120 160 

2 2.5 5 125 250 500 750 2000 

3 2 10 500 1000 2000 3000 4000 

Table 2.3: combination of five cases with quadratic relationship between energy and quality 
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Figure 2.15: Combination of 5 cases with quadratic relationship between energy and quality per 
signal 
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Figure 2.16: The number of selected signals per type for each case 
 

The second part is a combination of five cases with linear or quadratic relationship between 

computation time and quality per signal when the energy is constant. The first case is the linear 

relationship between computation time and quality when the energy is constant. The quality per 

signal for the first, second and third type are two, five and ten and the energy per signal are one 

hundred, two hundred and three hundred as shown in Table 2.5 below. Figure 2.17 shows the linear 

relationship between computation time and quality per signal. The computation time is increased 

in each case. Then, two constraints were set for the maximum energy and time cost. The constraints 

were set so the total energy does not exceed one thousand and the total computation time does not 

exceed twenty five microseconds. The selected signals energy cost and the total computation time 

vary for each case. For the first case, the energy cost is one thousand and the computation time 

equals twenty microseconds. The energy cost for the second case is nine hundred and the 

computation time equals fifteen microseconds. The third case energy cost equals six hundred and 

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

nu
m

be
r o

f s
ig

na
ls

Cases

Type of selected signals for each case

Type 1

Type 2

Type 3



 28 

the computation time is twenty microseconds. In the fourth case, three hundred is the energy cost 

and the computation time is fifteen microseconds. Finally, the energy cost for the fifth case equals 

one hundred and the computation time is twenty microseconds. The results in Table 2.6 and Figure 

2.16 show that increasing the computation time results in a drop in the maximum total quality. 

Signal 
type Energy Quality/ time 

Case1 

t=25/Q 

Case 2 

t=50/Q 

Case 3 

t=100/Q 

Case 4 

t=150/Q 

Case 5 

t=200/Q 

1 100 2 12.5 25 50 75 100 

2 200 5 5 10 20 30 40 

3 300 10 2.5 5 10 15 20 

Table 2.5: Combination of five cases with linear relationship between Time and Quality 
 

 
Figure 2.17: Combination of 5 cases with linear relationship between time and quality per signal 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

120

0 2 4 6 8 10 12

T 
m

ic
ro

se
co

nd
s

Q

T vs. Q per signal

t=25/q

t=50/q

t=100/q

t=150/q

t=200/q



 29 
 

Type/case 1 2 3 4 5 

1 1 0 0 0 0 

2 0 0 0 0 0 

3 3 3 2 1 1 

Q 32 30 20 10 10 

Table 2.6: number of selected signals per type and the total quality for each case 
 

 
Figure 2.18: The number of selected signals per type for each case 
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second case is one thousand and the computation time equals fourteen microseconds. The third 

case energy cost equals nine hundred and the computation time is three microseconds. In the fourth 

case, nine hundred is the energy cost and the computation time is four and a half microseconds. 

Finally, the energy cost for the fifth case equals nine hundred and the computation time is six 

microseconds. The results in Table 2.8 and Figure 2.20 show that increasing the computation time 

results in a drop in the maximum total quality. 

 

Signal 
type Energy Quality/ time 

Case1 

t=25/Q^2 

Case 2 

t=50/Q^2 

Case 3 

t=100/Q^2 

Case 4 

t=150/Q^2 

Case 5 

t=200/Q^2 

1 100 2 6.25 12.5 25 37.5 50 

2 200 5 1 2 4 6 8 

3 300 10 0.25 0.5 1 1.5 2 

Table 2.7: Combination of five cases with quadratic relationship between Time and Quality 

 

 
Figure 2.19: Combination of 5 cases with quadratic relationship between time and quality per 
signal 
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Table 2.8: number of selected signals per type and the total quality for each case 

 

 
Figure 2.20: The number of selected signals per type for each case 
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type. The total Quality equals three hundred and thirty two and the selected signals are one signal 

of the first type and thirty three signals of the third type.  

 

 
Figure 2.21: Energy vs. quality per signal 
 
 

 
Figure 2.22: Computation time vs. quality per signal 
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Figure 2.23: The number of selected signals per type  
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Ni
 ≤  Sc     (4) 

Sc   is a positive integer 0,1,2,3…. 
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Figure 2.24: The number of selected signals per type  
 

 
Figure 2.25: The number of selected signals per type  
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Figure 2.26: The number of selected signals per type  
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Chapter 3 

Optimization of Integer Linear Programming Solution 

3.1 Background 

 

 

 Wireless sensor networks are useful in diverse application areas. This developing 

technology provides efficient data collecting and monitoring. It is used in applications such as 

monitoring applications, military applications, mobile commerce, smart offices, long-term 

research databases and environmental science [4,5]. The focus of this research is signature 

searching using intelligent sensor applications. An active sensor emits signals for detection and 

information acquisition purposes. An intelligent sensor means the sensor can collect data and 

process it [6,7,8]. Optimal sensing means the best sensing quality with the least time and energy 

cost, which allow processing more data. Intuitively, optimal sensing leads to optimal signature 

searching.  

Integer programming program is a mathematical optimization solution with integer 

variables. Integer linear programming (ILP) means the objective function and the constraints are 

linear [6,7,8]. The main reason for using integer variables is to represent decision quantities that 

can only be integer. So, an integer linear programming “algorithm” is used to perform the optimal 

sensing by selecting the best possible number of signals of a type or a combination of multiple 
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types to ensure the best sensing quality possible considering all given constraints. In the previous 

chapter, the solution was done using problem based linear programming. In this chapter, the 

performance evaluation is done in three stages and the results show improvements using solver-

based linear programming and a heuristic algorithm.   

The objective of this chapter is to optimize the proposed solution in the previous chapter 

using linear programming and heuristic algorithm. Instead of using problem based linear 

programming such as in the previous chapter, a solver-based solution is used to optimize the 

solution. Solver based linear programming will be introduced in the following section and all the 

results will be represented. Then, a solution based on a heuristic algorithm is implemented which 

shows improvements in the performance.  

Heuristic algorithms can provide faster and more efficient method to solve a problem. 

Heuristic algorithms are useful to find approximate solutions when it is sufficient and exact 

solutions are computationally expensive. Heuristic algorithms are commonly employed to solve 

the Knapsack Problem.  In the knapsack problem, heuristics are used to find the maximum value 

by grouping a given set of items while being under a certain limit and its known as the Greedy 

Approximation Algorithm. It starts by sorting the items based on their value per unit. Then, it adds 

the items with the highest value per unit as long as there is still space remaining [18]. In this 

chapter, a heuristic algorithm will be used to find the maximum quality under a specific set of 

constraints.  

The rest of this chapter is organized as follows. A comparison between problem based and 

solver based linear programming is given in the following section. After that, a heuristic algorithm 

solution is introduced. Then, the research problem and the proposed solution are described. The 
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performance evaluation and experimental results are presented in the third section. Finally, 

conclusions and future work are presented at the end of this chapter.  
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3.2 Solution 

3.2.1  Comparison between problem based and solver based linear programming 

 

 

Problem-based and solver-based are two approaches to solving optimization problems. The 

appropriate approach must be selected before solving a problem. The differences between the two 

approaches are covered in the following part. 

First of all, Problem-Based Optimization Setup is easier to create and debug. The objective 

and constraints are represented symbolically. It requires translation from problem form to matrix 

form, resulting in a longer solution time. It does not allow direct inclusion of the gradient or 

Hessian. 

The second approach is solver-based optimization. The problem setup is harder to create 

and debug. The objective and constraints are represented as functions or matrices. It does not 

require translation from problem form to matrix form, resulting in a shorter solution time. It allows 

direct inclusion of gradient or Hessian. Also, it allows use of a Hessian multiply function or 

Jacobian multiply function to save memory in large problems [17].  

The two approaches produce solution of the same quality. Theoretically, the solver-based 

solution can improve the performance. This is because the objective and constraints are 

represented as functions or matrices in solver-based solution. That representation eliminates the 

translation from problem form to matrix form which allow a shorter solution time. 
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3.2.2 Heuristic algorithms solution  

 

 

Solving a given problem using heuristic could have a trade-off such as optimality, 

completeness and accuracy. That leads to question if the heuristic solution is good enough. When 

multiple solutions exist for a given problem, the following questions can be used to evaluate the 

solution found by heuristic algorithm; does the heuristic give the best solution? Can the heuristic 

find all possible solutions? Is this the fastest method for solving this type of problem? A heuristic 

algorithm was implemented and compared to the previous approaches to answer these questions. 

The first step is to sorts the signal types. To determine the order of signal types the following 

expression was used to calculate the quality of a certain signal type  

Type quality = qi/(ei*ti)    (1) 

After the signal types are sorted, the algorithm will calculate the best number of signals of each 

type to find the maximum quality achieved under a specific set of constraints.  
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3.2.3 Problem formulation 

  

 

The goal is to select the signals that provide the maximum quality “Q” in order to have 

optimal signature searching as shown in equation (2) [27]. We assumed that there are i types of 

signals. The question is if a sensor is sending out N signals altogether, how many ni signals of each 

type i summing to N give the best solution? Our problem formulation process starts by creating 

four types of signals “i”. Then, the quality “qi”, computation time “ti” and energy “ei” 

specifications per signal were provided for each type. Then, the overall computation time and 

energy constraints were set as shown in equations (3) and (4) below. The constraints were set so 

the total energy does not exceed the energy constraint “Ec” and the total computation time does 

not exceed the time constraint “Tc”. The sum of the computation time per signals for each type 

multiplied by the number of signals from that type “ni” for all three types gives the total 

computation time “T”. Similarly, the sum of the energy per signals for each type multiplied by the 

number of signals from that type for all three types gives the total energy “E”. The objective 

function of the algorithm is created to find the optimal number of signals of each type that would 

result in the maximum total quality. The maximum total quality can be calculated be multiplying 

the number of selected signals of each type by the quality per signal for that type then summing 

the results of all types as shown in equation (2). Finally, the program run time will be used to 

compare problem-based and solver-based solutions. 

i = 1,2,3     

ni ,  ti
  ,  ei

  , Q , ni , qi  ,Ec , E, T , Tc   are positive integers 0,1,2,3…. 

Max Q = ∑i ni qi    (2) 



 42 

∑i ni ti
 ≤  Tc          (3) 

∑i ni ei
 ≤  Ec     (4) 

 

Two different cases were created to study the run time for each program. The first case will 

be done utilizing four signal types and the other case will be done utilizing seven signal types. 

Problem-based, solver-based and heuristic algorithm solutions will be used to find the maximum 

quality utilizing four different signal types. The quality per signal, the energy per signal and the 

computation time per signal for each signal type are shown in Table 3.1 below.  

For the first case, the quality per signal for each type are five, two, ten and seven. The 

energy per signal for the utilized four types are two hundred, one hundred, three hundred and two 

hundred and fifty. Figure 3.1 shows the relationship between the energy and quality per signal. 

The computation time per signal are two and five tenths, three, two, and two and three tenths 

microseconds. The relationship between the computation time and the quality per signal is shown 

in Figure 3.2 below.  

For the second case, each solution will be done using seven signal types. Three more types 

of signals were created for this problem. All the parameters for signals types 5, 6 and 7 are provided 

in Table 3.1. The quality per signal for each type are twelve, six and one. ten and seven. The energy 

per signal for the new three types are three hundred and fifty, two hundred and twenty five and 

fifty. Figure 3.1 shows the relationship between the energy and quality per signal. The computation 

time per signal are one and a half, two and four tenths and three and a half microseconds. The 

relationship between the computation time and the quality per signal is shown in Figure 2 below.  
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Signal Type Quality per signal Energy per signal Computation time per 
signal 

1 5 200 2.5 

2 2 100 3 

3 10 300 2 

4 7 250 2.3 

5 12 350 1.5 

6 6 225 2.4 

7 1 50 3.5 

Table 3.1. Values of parameters used for testing  

 

 

Figure 3.1. The relationship between the energy and quality per signal 

 

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14

En
er

gy
 p

er
 si

gn
al

Quality per signal

E. vs. Q.



 44 

 

Figure 3.2. The relationship between the computation time and quality per signal 

 

Then, three constraints were set for the maximum energy, time cost and the number of 

signals per type. The constraints were set so the total energy does not exceed ten thousand and the 

total computation time does not exceed two hundred and fifty microseconds. The programs were 

set so the number of signals per type doesn’t exceed twenty. In other words, the program cannot 

select more than twenty signals from a certain type to find the maximum quality. 
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3.2.4 Testing methodology 

 

 

The performance evaluation portion of this solution was done in three stages. The first 

stage is studying basic cases of parameters and constraints to find the maximum quality using the 

problem based, solver based and heuristic algorithm. In the first stage, only four different types of 

signals were created for testing. In every case the quality, time and energy specifications per signal 

were provided for each type. Then, the constraints were set. Finally, the objective of the algorithm 

is to find the optimal number of signals of each type that would result in the maximum total quality. 

Once all three solutions are running and providing the correct solution which is the same 

for all of them. The second stage is to test and compare the running time for all three solutions. 

The programs were tested twenty times and the solution time for all the trials can be found in Table 

3.2 below. All the results will be analyzed in the following section. 

The third and final stage is to test the running time for all three proposed solution and 

compare them using more signal types. Three more types of signals were created for this problem. 

All the parameters for signals types 5, 6 and 7 are provided in Table 3.1. The programs were tested 

to find the maximum quality utilizing seven types of signals. Once they were running correctly, 

they were tested for the running time. The programs were again tested twenty times and the 

solution time for all the trials can be found in Table 3.2 below. All the results will be analyzed in 

the following section. 
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3.3 Results and Analysis  

 

 

Linear programming was used in two approaches problem based and solver based. The 

problem-based solution was introduced in the previous chapter. Solver-based solution was 

implemented and tested for the case with four signal types. The test was done twenty times and 

the results show improvement in the performance. As shown in Table 3.2, the performance was 

enhanced from 0.64 to 0.238 seconds. Then, the heuristic algorithm was implemented and tested. 

The solution time was improved to 0.178 seconds as shown in Table 3.2.  

 To test the solutions on a larger problem, they were tested again using seven signal types. 

The running time for the problem-based, solver-based and the heuristic algorithm were 

respectively 0.667, 0.271 and 0.183 seconds. The running time for each solution was more than 

the result for the first case. This is because it takes more time to solve a larger computational 

problem. A comparison the results of twenty different trials for each solution utilizing four or seven 

signals types are represented in Table 3.2 and Figure 3.3. Finally, the average of all the solution 

time results is shown in Table 3.2 and Figure 3.4. 
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Trial 

L.P. 4 
types 

Problem 
based 

L.P. 4 
types 
Solver 
based 

H.A. 4 
types 

L.P.  7 
types 

Problem 
based 

L.P. 7 
types 
Solver 
based 

H.A. 7 
types 

1 0.548 0.111 0.100 0.668 0.197 0.193 
2 0.642 0.165 0.204 0.649 0.279 0.189 
3 0.601 0.130 0.156 0.564 0.438 0.178 
4 0.685 0.265 0.184 0.824 0.289 0.171 
5 0.617 0.232 0.189 0.624 0.236 0.182 
6 0.600 0.251 0.192 0.676 0.267 0.178 
7 0.675 0.243 0.170 0.713 0.296 0.172 
8 0.632 0.249 0.168 0.635 0.276 0.186 
9 0.649 0.229 0.189 0.648 0.265 0.178 

10 0.651 0.243 0.169 0.619 0.293 0.224 
11 0.659 0.254 0.189 0.667 0.283 0.186 
12 0.621 0.265 0.182 0.667 0.339 0.175 
13 0.661 0.270 0.188 0.658 0.259 0.192 
14 0.646 0.256 0.179 0.647 0.228 0.179 
15 0.629 0.264 0.183 0.661 0.258 0.182 
16 0.629 0.300 0.173 0.678 0.235 0.184 
17 0.658 0.261 0.192 0.762 0.253 0.186 
18 0.695 0.261 0.204 0.690 0.238 0.177 
19 0.661 0.257 0.175 0.644 0.242 0.165 
20 0.645 0.252 0.177 0.649 0.245 0.175 

 
Avg. 

 
0.640 

 
0.238 

 
0.178 

 
0.667 

 
0.271 

 
0.183 

Table 3.2. Comparison between I.L.P. solutions and heuristic algorithm solution time results 
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Figure 3.3. The solution time results  

 

 

Figure 3.4. The average solution time results  
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Chapter 4 

Cloud versus local processing in distributed networks 

4.1 Background 

 

 

Data processing is an important part of the fast-growing computer and communication 

technologies. The expanding multiple processor technologies requires effective and efficient data 

processing scheduling. There are two types of processing. The first one is serial processing, which 

cannot be divided and processed simultaneously. The second type and the focus of this thesis is 

parallel processing. Parallel processing means loads of data are divisible among processors, which 

allow efficient and effective parallel processing [19]. Divisible load scheduling also known as 

divisible load theory utilizes linear mathematical models. DLT has many advantages such as easy 

computation, a schematic language, equivalent network element modeling. DLT can be 

implemented in many applications such as intelligent sensors, image signal processing and large 

data bases. Given expanding sensor information collection abilities, there is a requirement for 

execution time prediction tools. DLT provides scalable and tractable models to be used as an 

accurate prediction tool [20].  

Divisible load scheduling consists of two steps: load distribution and load processing. The 

data is usually distributed from one or more processors to multiple processors and processed in 

parallel. An optimal scheduling provides the minimum finish time. In DLT, there are no 
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precedence relations between the data, which allow data to be divided among a number of 

processors and links. Also, network architectural issues related to parallel and distributed 

computing can be solved implementing DLT. Dividing the load equally among the processors does 

not take different computer and communication link speeds, the scheduling policy and the 

interconnection network into account and that leads to suboptimal solutions. However, an optimal 

solution can be found using divisible load scheduling theory, which provides the required 

mathematical tools. Furthermore, the solution can be improved by integrating Amdahl’s and other 

speedup laws.  

Amdahl's law is an accurate formula to calculate the speedup of the execution of a task 

with fixed data size [21,22]. For multiple processors networks, Amdahl's law can be used as a 

prediction tool for the theoretical speedup in parallel 

computing. For example, suppose a program finish time using a single processor is 10 hours. If 

the part of the program that cannot be parallelized takes one hour to execute and the part that can 

be parallelized takes the remaining 9 hours (p = 0.9) of execution, then the minimum execution 

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at most 

10 times  1
(1−𝑝)

 =10.  

A task can be split up into two parts: a part that cannot be parallelized (1-p) and a parallelized part 

p. If the execution time of the whole task including both parts of the system is denoted as T, then 

T can be calculated using the following formula 

T=(1-p) T + pT   (1) 
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The parallelized part execution time can be improved by the factor s which is the speedup of the 

parallelized part. Consequently, the theoretical execution time T(s) of the whole task after the 

improvement can be calculated using the following formula:  

T(s)=(1-p) T+𝑝
𝑠

𝑇  (2) 

Amdahl's law gives the theoretical speedup of the execution of the whole task at fixed workload 

W, which yields  

𝑆𝐴𝑚𝑑𝑎ℎ𝑙(s)= 𝑇𝑊
𝑇(𝑠)𝑊

= 𝑇
𝑇(𝑠)

= 1
(1−𝑝)+𝑝

𝑠
  (3) 

Gustafson's law is similar to Amdahl’s law and used to calculate the speedup of a task but 

with a fixed execution time [23]. As shown in Equation (4), the execution workload of the whole 

task before the improvement of the resources of the system “W” includes the execution workload 

of the part that cannot be parallelized and the execution workload of the parallelized part. In 

Equation (4), p is the fraction of the parallelized workload and 1-p is the fraction of the part that 

cannot be parallelized. 

W=(1-p) W +pW  (4) 

It is the execution of the parallelized part that is improved by a factor s after the improvement of 

the resources. Consequently, the execution of the part that cannot be parallelized remains the same. 

After the improvement of the resources of the system, the theoretical execution workload W(s) of 

the whole task can be calculated using the following equation: 

W(s)=(1-p) W + spW  (5) 
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The theoretical speedup of the execution of the whole task at fixed time T can be calculated using 

Gustafson's law as shown in the following equation: 

𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 (s)=𝑇𝑊(𝑠)
𝑇𝑊

= 𝑊(𝑠)
𝑊

= (1 − 𝑝) + 𝑠𝑝  (6) 

It is important to have a complete understanding to avoid economic waste, inaccurate future 

system designs and a lack of technological improvements. The motivation for this research is 

“intelligent” sensor networks doing measurements, communications, and computation to reach 

optimal signature searching. The following section of this chapter compares local and cloud 

computing as well as combining both methods. Local computing simply means all the computation 

occurs on a local network. However, cloud computing means all the data computation and storage 

happens in the cloud via internet [24].  

The problem formulation, solution and results are discussed in the following section of this 

chapter. The divisible load speedup expressions are included for three fundamental load 

distribution protocols in the single level tree network [19]. Heterogeneous and homogenous 

networks are included for each protocol. Moreover, the integrated speedup formulas will be used 

for the cases of local and cloud computing. A combination of local and cloud computing will be 

tested and compared to the results of using only one computing method. Finally, the finish time 

and the optimal load distribution will be calculated for each case.  
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4.2 Solution 

4.2.1 Divisible load speedup for local and cloud processing of single level tree networks 

 

 

Divisible load modeling and speedup expressions have been developed for a variety of 

multi-processor interconnection topologies such as buses, stars, multi-level tree networks, meshes, 

hypercubes and other networks. Also, they have been developed for different load distribution 

policies such as sequential load distribution and concurrent load distribution with simultaneous or 

staggered start. Amdahl's Law can be modified and used to calculate the entire network speedup 

including serial and parallel data. The speedup of a divisible load model is implemented as the 

parallel part of the system replacing the “s” in Amdahl’s law [20]. Other factors can now be 

included in Amdahl-like Laws such as interconnection topology, load distribution policy and the 

relative difference in computation and communication intensity and speeds. 

   
Figure 4.1. Single level tree network 
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Figure 4.1 shows a single level tree network [20]. The load is distributed from the root 

node to the children nodes. As shown in the figure above, 𝜔𝑖 is the 𝑖th processor’s inverse 

computing speed and 𝑧𝑖 is the 𝑖th link’s inverse link speed. Intuitively the processors with faster 

link speeds will receive load prior to the ones with slower link speeds to achieve the shortest 

finishing time. It is assumed that computation takes more time than communication which means 

the inverse link speed and the communication intensity constant is smaller than the inverse 

computing speed and computation intensity constant. All the values used in this section are 

included in Table 4.1. The problem formulation, solution and results are discussed in the following 

section of this chapter. Also, the divisible load speedup expressions are included for three different 

single level tree networks. Heterogeneous and homogenous networks are included for each 

protocol. Moreover, the integrated speedup formulas will be used for the cases of local and cloud 

computing. Finally, the finish time and the optimal load distribution will be calculated for each 

case.  

Network Type 𝑛 𝜔0 𝜔𝑐 𝜔1, 𝜔2, 𝜔3, 𝜔4 𝑧𝑐, 𝑧1, 𝑧2, 𝑧3, 𝑧4 𝑇𝑐𝑝 𝑇𝑐𝑚 

Heterogeneous 
system 4 2 0.3 4,5,6,7 0.1,1.5,2,2.5,3 2 1 

Homogeneous 
system 4 3 0.3 3,3,3,3 0.1,0.1,0.1,0.1,0.1 2 1 

Table 4.1. Values of parameters used in the calculation 
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4.2.1.1 Sequential Load Distribution model 

 

 

The timing diagram for a single level tree network with a sequential load distribution is 

shown in Figure 4.2 [20]. It explains the communication and computation parts of this protocol. 

Sequential load distribution means the source node distributes load to one child node at a time. 

The child node starts processing as soon as receiving the assigned load. In other words, the child 

node does not have to wait until the assigned load is completely received to start computing. To 

achieve the optimal speedup, all the nodes have to finish processing at the same time. 

 

Figure 4.2. Timing Diagram for a single level tree network with a sequential load distribution  
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  The speedup of a divisible load model of a single level tree network with a sequential load 

distribution parallel facility with 𝑛 processors is 𝑆𝐷𝐿𝑇  (𝑛). 𝑆𝐷𝐿𝑇  (𝑛) can be calculated using the 

following equation [19]: 

𝑆𝐷𝐿𝑇  (𝑛)=1+ 𝑘1 [1+∑ (∏ 𝑞𝑙
𝑛
𝑙=2 )𝑛

𝑖=2 ]  (7) 

where  q𝑖  = (ω𝑖−1  𝑇𝑐𝑝− 𝑧𝑖−1 𝑇𝑐𝑚 )/ω𝑖 𝑇𝑐𝑝 and  k1 = ω0/ω1 

For the system with homogeneous processors, the inverse processing speed and link speed of each 

processor is the same. In this case, 𝑆𝐷𝐿𝑇  (𝑛) in Equation (7) can be modified and simplified to 

calculate the homogeneous network speedup S𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (𝑛) using the following equation: 

S𝐷𝐿𝑇ℎ𝑜𝑚𝑜  (n)=1+𝛚𝟎
𝛚

 [𝟏−(𝟏−𝛔)𝐧

𝛔
]   (8) 

where: σ = z𝑇𝑐𝑚 /𝜔𝑇𝑐𝑝 

Amdahl's Law can be modified to calculate the speedup of the entire network including both serial 

and parallel facilities using the following equation [20]: 

𝑆𝐴𝑚𝑑𝑎ℎ𝑙  = 𝟏
(𝟏−𝒇)+ 𝒇

𝑺𝐷𝐿𝑇(𝑛)
   (9) 

To test and compare the speedup levels for different networks, Equations (7) and (8) were inserted 

into Equation (9). The values used are listed in Table 4.1. Heterogeneous processors are tested, 

and the results are shown in Table 4.2 and Figure 4.3. Also, homogeneous processors are tested, 

and the results are shown in Table 4.3 and Figure 4.4. 
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Heterogeneous Network 

f 1-f f/sp local f/sp cloud f/sp 
comb. Ss local Ss cloud Ss comb. 

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 

0.100 0.900 0.046 0.013 0.012 1.057 1.095 1.097 

0.200 0.800 0.092 0.026 0.023 1.121 1.211 1.215 

0.300 0.700 0.138 0.039 0.035 1.193 1.353 1.361 

0.400 0.600 0.184 0.052 0.046 1.275 1.533 1.547 

0.500 0.500 0.230 0.065 0.058 1.369 1.769 1.793 

0.600 0.400 0.276 0.078 0.069 1.479 2.091 2.130 

0.700 0.300 0.322 0.091 0.081 1.607 2.556 2.625 

0.800 0.200 0.368 0.104 0.093 1.760 3.286 3.418 

0.900 0.100 0.414 0.117 0.104 1.944 4.600 4.899 

1.000 0.000 0.460 0.130 0.116 2.172 7.667 8.643 

Table 4.2. Heterogeneous processors testing results for sequential load distribution 

 

Figure 4.3. Heterogeneous processors results for sequential load distribution 

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

0.000 0.500 1.000 1.500

Sp
ee

du
p

f

Sp local

Sp cloud

Sp comb.



 58 

Homogeneous Network 

f 1-f f/sp local f/sp 
cloud 

f/sp 
comb. Ss local Ss cloud Ss comb. 

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 

0.100 0.900 0.020 0.009 0.007 1.086 1.100 1.103 

0.200 0.800 0.041 0.018 0.014 1.189 1.222 1.228 

0.300 0.700 0.061 0.027 0.021 1.314 1.375 1.387 

0.400 0.600 0.082 0.036 0.028 1.467 1.571 1.592 

0.500 0.500 0.102 0.045 0.035 1.661 1.833 1.869 

0.600 0.400 0.122 0.055 0.042 1.914 2.200 2.262 

0.700 0.300 0.143 0.064 0.049 2.258 2.750 2.864 

0.800 0.200 0.163 0.073 0.056 2.753 3.667 3.904 

0.900 0.100 0.184 0.082 0.063 3.525 5.500 6.129 

1.000 0.000 0.204 0.091 0.070 4.900 11.000 14.248 
Table 4.3. Homogeneous processors results for sequential load distribution 

 

Figure 4.4. Homogeneous processors results for sequential load distribution 
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4.2.1.2 Simultaneous Distribution, Staggered Start model 

 

 

The timing diagram for a single level tree network with a simultaneous distribution, 

staggered start is shown in Figure 4.5 [20]. The communication and computation parts of this 

protocol are included in the figure.  The second model involves simultaneous distribution of load 

which means the source node distributes the divisible load to all children nodes simultaneously. In 

this model, a child node can start load processing only after receiving the entire assigned load from 

the source node. To achieve the optimal speedup, all the nodes have to finish processing at the 

same time. 

  

Figure 4.5. Timing Diagram for a single level tree network with a simultaneous load distribution 
and staggered start 



 60 

The speedup of a divisible load model of a single level tree network with a simultaneous 

load distribution and staggered start parallel facility with 𝑛 processors is 𝑆𝐷𝐿𝑇  (𝑛). 𝑆𝐷𝐿𝑇  (𝑛) can be 

calculated using the following equation [19]: 

𝑺𝐷𝐿𝑇(𝑛)=1+ω0𝑇𝑐𝑝 ∑ 1
(ω𝑖

 𝑇𝑐𝑝 +  𝑧𝑖 𝑇𝑐𝑚)𝑛
𝑖=1   (13) 

 For the system with homogeneous processors, the inverse processing speed and link speed 

of each processor is the same. In this case, 𝑆𝐷𝐿𝑇  (𝑛) in Equation (13) can be modified and simplified 

to calculate the homogeneous network speedup S𝐷𝐿𝑇ℎ𝑜𝑚𝑜(𝑛) using the following equation: 

𝑆𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (𝑛) = 1 + 𝑘 × 𝑛     (14) 

where:       𝑘=ω0𝑇𝑐𝑝 / (ω𝑇𝑐𝑝 +𝑧𝑇𝑐𝑚 ) 

 Amdahl's Law can be modified to calculate the speedup of the entire network including 

both serial and parallel facilities using Equation (9). To test and compare the speedup levels for 

different networks, Equations 13 and 14 were inserted into Equation (9). The values used are listed 

in Table 4.1. The testing results of heterogeneous networks are shown in Table 4.4 and Figure 4.6. 

Also, Homogeneous processors are tested, and the results are shown in Table 4.5 and Figure 4.7. 
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Heterogeneous Network 

f 1-f f/sp local f/sp 
cloud 

f/sp 
comb. Ss local Ss cloud Ss comb. 

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 

0.100 0.900 0.044 0.015 0.013 1.059 1.093 1.096 

0.200 0.800 0.088 0.030 0.025 1.126 1.205 1.212 

0.300 0.700 0.132 0.045 0.038 1.201 1.343 1.356 

0.400 0.600 0.177 0.060 0.050 1.288 1.516 1.538 

0.500 0.500 0.221 0.074 0.063 1.387 1.741 1.777 

0.600 0.400 0.265 0.089 0.075 1.504 2.043 2.104 

0.700 0.300 0.309 0.104 0.088 1.642 2.474 2.579 

0.800 0.200 0.353 0.119 0.100 1.808 3.133 3.330 

0.900 0.100 0.397 0.134 0.113 2.011 4.273 4.699 

1.000 0.000 0.442 0.149 0.125 2.265 6.714 7.979 
Table 4.4. Heterogeneous processors results for simultaneous load distribution and staggered 
start 

 

 

Figure 4.6. Heterogeneous processors results for simultaneous load distribution and staggered 
start 
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Homogeneous Network 

f 1-f f/sp local f/sp cloud f/sp 
comb. Ss local Ss cloud Ss comb. 

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 
0.100 0.900 0.020 0.010 0.007 1.087 1.098 1.102 
0.200 0.800 0.041 0.021 0.015 1.190 1.218 1.227 
0.300 0.700 0.061 0.031 0.022 1.314 1.367 1.385 
0.400 0.600 0.081 0.042 0.030 1.468 1.558 1.588 
0.500 0.500 0.101 0.052 0.037 1.663 1.811 1.862 
0.600 0.400 0.122 0.063 0.044 1.917 2.161 2.250 
0.700 0.300 0.142 0.073 0.052 2.263 2.680 2.842 
0.800 0.200 0.162 0.084 0.059 2.762 3.526 3.858 
0.900 0.100 0.182 0.094 0.067 3.542 5.154 6.001 
1.000 0.000 0.203 0.104 0.074 4.936 9.571 13.507 

Table 4.5. Homogeneous processors results for simultaneous load distribution and staggered start 

 

 

Figure 4.7. Homogeneous processors results for simultaneous load distribution and staggered 
start 
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4.2.1.3 Simultaneous Distribution, Simultaneous Start model 

 

 

The timing diagram for a single level tree network with a simultaneous distribution, 

simultaneous start is shown in Figure 4.8 [20]. The figure includes communication and 

computation parts of this protocol.  This model involves simultaneous distribution of load which 

means the source node distributes the divisible load to all children nodes simultaneously. In this 

model, a child node can start load processing as soon as it begins to receive its assigned load from 

the source node. In other words, the child node does not have to wait until the assigned load is 

completely received to start computing. All the nodes have to finish processing at the same time 

to achieve the optimal speedup. 

  

Figure 4.8. Timing diagram of a single level tree network with a simultaneous distribution, 
simultaneous start 
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The speedup of a divisible load model of a single level tree network with a simultaneous 

distribution, simultaneous start parallel facility with 𝑛 processors is 𝑆𝐷𝐿𝑇  (𝑛). 𝑆𝐷𝐿𝑇  (𝑛) can be 

calculated using the following equation [19]: 

𝑆𝐷𝐿𝑇  (𝑛)=1+𝜔0 ∑ ( 1
𝜔𝑖

)𝑛
𝑖=1    (15) 

 For the system with homogeneous processors, the inverse processing speed and link speed 

of each processor is the same. In this case, 𝑆𝐷𝐿𝑇  (𝑛) in Equation 15 can be modified and simplified 

to calculate the homogeneous network speedup S𝐷𝐿𝑇ℎ𝑜𝑚𝑜(𝑛) using the following equation:  

𝑆𝐷𝐿𝑇ℎ𝑜𝑚𝑜 (𝑛) = 1 + 𝑘 × 𝑛   (16) 

where 𝑘 = 𝜔0/𝜔 

 Amdahl's Law can be modified to calculate the speedup of the entire network including 

both serial and parallel facilities using Equation (9). To test and compare the speedup levels for 

different networks, Equations (15) and (16) were inserted into Equation (9). The values used are 

listed in Table 4.1. The testing results of heterogeneous networks are shown in Table 4.6 and 

Figure 4.9. Also, Homogeneous processors are tested, and the results are shown in Table 4.7 and 

Figure 4.10. 
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Heterogeneous Network 

f 1-f f/sp local f/sp cloud f/sp 
comb. Ss local Ss cloud Ss comb. 

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 

0.100 0.900 0.040 0.013 0.011 1.064 1.095 1.097 

0.200 0.800 0.079 0.026 0.023 1.137 1.211 1.216 

0.300 0.700 0.119 0.039 0.034 1.221 1.353 1.362 

0.400 0.600 0.159 0.052 0.045 1.318 1.533 1.550 

0.500 0.500 0.198 0.065 0.057 1.432 1.769 1.796 

0.600 0.400 0.238 0.078 0.068 1.567 2.091 2.137 

0.700 0.300 0.278 0.091 0.079 1.730 2.556 2.636 

0.800 0.200 0.318 0.104 0.091 1.932 3.286 3.441 

0.900 0.100 0.357 0.117 0.102 2.187 4.600 4.951 

1.000 0.000 0.397 0.130 0.113 2.519 7.667 8.826 
Table 4.6. Heterogeneous processors results for simultaneous load distribution and simultaneous 
start 

 

 

Figure 4.9. Heterogeneous processors results for simultaneous load distribution and simultaneous 
start 
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Homogeneous Network  

f 1-f f/sp local f/sp 
cloud 

f/sp 
comb. Ss local Ss cloud Ss comb. 

0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 
0.100 0.900 0.020 0.009 0.007 1.087 1.100 1.103 
0.200 0.800 0.040 0.018 0.013 1.190 1.222 1.230 
0.300 0.700 0.060 0.027 0.020 1.316 1.375 1.389 
0.400 0.600 0.080 0.036 0.027 1.471 1.571 1.596 
0.500 0.500 0.100 0.045 0.033 1.667 1.833 1.875 
0.600 0.400 0.120 0.055 0.040 1.923 2.200 2.273 
0.700 0.300 0.140 0.064 0.047 2.273 2.750 2.885 
0.800 0.200 0.160 0.073 0.053 2.778 3.667 3.947 
0.900 0.100 0.180 0.082 0.060 3.571 5.500 6.250 
1.000 0.000 0.200 0.091 0.067 5.000 11.000 15.000 

Table 4.7. Homogeneous processors results for simultaneous load distribution and simultaneous 
start 

 

 

Figure 4.10. Homogeneous processors results for simultaneous load distribution and 
simultaneous start 
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Heterogeneous Network Comparison  

 

 

The previous models will be used to compare local and cloud processing. Also, a 

combination of both processing methods will be compared to find the best processing method.  

Heterogeneous systems comparison will be shown in Figure 4.11, 4.12 and 4.13. Homogeneous 

systems comparison will be shown in Figure 4.14, 4.15 and 4.16.  

 

Figure 4.11. Local Processing results for all single level tree models 

 

Figure 4.12 and 4.15. compares the results of cloud processing for all single level tree 

models. In Figure 4.12, 4.15 the speedup values for the sequential load distribution model and the 

simultaneous distribution simultaneous start model are slightly higher than the simultaneous 

distribution staggered start model. This is because the processor in the simultaneous distribution 

staggered start model cannot start processing until it receives the entire assigned load. All the 
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following Figures show very close results for all three single level tree models because of the same 

processing method being used. In other words, every figure compares all three models using one 

processing method. 

 

 

Figure 4.12. Cloud Processing results for all single level tree models 

 

 

Figure 4.13. Combination of Local and Cloud Processing results for all single level tree models 
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Homogeneous Network Comparison  

 

 

Figure 4.14. Local Processing results for all single level tree models 

 

 

Figure 4.15. Cloud Processing results for all single level tree models 
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Figure 4.16. Combination of Local and Cloud Processing results for all single level tree models 
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4.2.2 Optimal finish time for local and cloud processing of single level tree networks 

 

 

Optimal load distribution is a key to calculate an accurate finish time 𝑇𝑓,𝑚. 𝑇𝑓,𝑚 indicates 

the time it takes for a single level tree consisted of the source node and m nodes to finish processing 

the entire load. The finish time in this section will be used as a measurement tool to compare local 

and cloud processing. Also, a combination of both processing methods will be tested and 

compared. The calculation will be done on the single level tree models used previously. All the 

results are included in Table 4.8, 4.9 and 4.10.     
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4.2.2.1 Sequential Load Distribution  

 

 

𝛼0𝜔0𝑇𝑐𝑝 = 𝛼1𝜔1𝑇𝑐𝑝         (17) 

𝛼0 = 𝜔1
𝜔0

𝛼1 = 1
𝑘1

𝛼1     where, 𝑘1 = 𝜔0
𝜔1

      

𝛼𝑖−1𝜔𝑖−1𝑇𝑐𝑝 = 𝛼𝑖−1𝑧𝑖−1𝑇𝑐𝑚 + 𝛼𝑖𝜔𝑖𝑇𝑐𝑝    (18) 

𝛼𝑖 = 𝜔𝑖−1𝑇𝑐𝑝− 𝑧𝑖−1𝑇𝑐𝑚
𝜔𝑖𝑇𝑐𝑝

 𝛼𝑖−1 = 𝑞𝑖𝛼𝑖−1 = (∏ 𝑞𝑙
𝑖
𝑙=2 ) × 𝛼1 where, 𝑞𝑖 = 𝜔𝑖−1𝑇𝑐𝑝− 𝑧𝑖−1𝑇𝑐𝑚

𝜔𝑖𝑇𝑐𝑝
  

     

𝛼0 + 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚=1      (19) 

Using Equations (17, 18) and (19) provides the following equation: 

[ 1
𝑘1

+ 1 + ∑ (∏ 𝑞𝑙
𝑖
𝑙=2 )𝑚

2 ]𝛼1 = 1      

 

𝛼1 = 1
[ 1
𝑘1

+1+∑ (∏ 𝑞𝑙
𝑖
𝑙=2 )𝑚

2 ]
      (20) 

Using Equation (20) and the values in table 4.1 to find the finish time using the following 

equation: 

𝑇𝑓,𝑚= 𝛼0𝜔0𝑇𝑐𝑝 = 1
𝑘1

𝛼1𝜔0𝑇𝑐𝑝= 1
1+𝑘1[1+∑ (∏ 𝑞𝑙

𝑖
𝑙=2 )𝑚

2 ]
 𝜔0𝑇𝑐𝑝  (21) 
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All the results for the Sequential Load Distribution model are shown in table 4.8 

Sequential Load 
Distribution 

Local 
Processing 

Cloud 
Processing 

Combination of 
Local and Cloud 

Processing 

Heterogeneous 
Network 1.84 0.522 0.463 

Homogeneous 
Network 1.2 0.546 0.42 

Table 4.8. The finish time results for the Sequential Load Distribution model 
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4.2.2.2 Simultaneous Distribution, Staggered Start  

 

 

𝛼0𝜔0𝑇𝑐𝑝 = 𝛼1𝜔1𝑇𝑐𝑝  + 𝛼1𝑧1𝑇𝑐𝑚       (22) 

𝛼0 = 𝜔1𝑇𝑐𝑝+ 𝑧1𝑇𝑐𝑚
𝜔0𝑇𝑐𝑝 

 𝛼1 = 1
𝑘1

𝛼1  where, 𝑘1 = 𝜔0𝑇𝑐𝑝
𝜔1𝑇𝑐𝑝+ 𝑧1𝑇𝑐𝑚

     

𝛼𝑖−1𝜔𝑖−1𝑇𝑐𝑝 + 𝛼𝑖−1𝑧𝑖−1𝑇𝑐𝑚 = 𝛼𝑖𝜔𝑖𝑇𝑐𝑝 + 𝛼𝑖𝑧𝑖𝑇𝑐𝑚   (23)  

𝛼𝑖 = 𝜔𝑖−1𝑇𝑐𝑝+ 𝑧𝑖−1𝑇𝑐𝑚
𝜔𝑖𝑇𝑐𝑝 + 𝑧𝑖𝑇𝑐𝑚

 𝛼𝑖−1 = 𝑞𝑖𝛼𝑖−1 = (∏ 𝑞𝑙
𝑖
𝑙=2 ) × 𝛼1 where, 𝑞𝑖 = 𝜔𝑖−1𝑇𝑐𝑝+ 𝑧𝑖−1𝑇𝑐𝑚

𝜔𝑖𝑇𝑐𝑝+ 𝑧𝑖𝑇𝑐𝑚
 

𝛼0 + 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚=1      (24) 

Using Equations (22, 23) and (24) provides the following equation: 

[ 1
𝑘1

+ 1 + ∑ (∏ 𝑞𝑙
𝑖
𝑙=2 )𝑚

2 ]𝛼1 = 1      

𝛼1 = 1
[ 1
𝑘1

+1+∑ (∏ 𝑞𝑙
𝑖
𝑙=2 )𝑚

2 ]
      (25) 

Using Equation (25) and the values in table 4.1 to find the finish time using the following 

equation: 

𝑇𝑓,𝑚= 𝛼0𝜔0𝑇𝑐𝑝 = 1
𝑘1

𝛼1𝜔0𝑇𝑐𝑝= 1
1+𝑘1[1+∑ (∏ 𝑞𝑙

𝑖
𝑙=2 )𝑚

2 ]
 𝜔0𝑇𝑐𝑝  (26) 

All the results for the Simultaneous Distribution, staggered start model are shown in table 4.9 

below. 
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Simultaneous 
Distribution, 

Staggered Start 
Local Processing Cloud 

Processing 

Combination of 
Local and Cloud 

Processing 

Heterogeneous 
Network 1.767 0.596 0.501 

Homogeneous 
Network 1.213 0.628 0.445 

Table 4.9. The finish time results for the Simultaneous Distribution, Staggered Start model 
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4.2.2.3 Simultaneous Distribution, Simultaneous Start  

 

 

𝛼0𝜔0𝑇𝑐𝑝 = 𝛼1𝜔1𝑇𝑐𝑝         (27) 

𝛼0 = 𝜔1
𝜔0

𝛼1 = 1
𝑘1

𝛼1      where, 𝑘1 = 𝜔0
𝜔1

      

𝛼𝑖−1𝜔𝑖−1𝑇𝑐𝑝 = 𝛼𝑖𝜔𝑖𝑇𝑐𝑝      (28) 

𝛼𝑖 = 𝜔𝑖−1𝑇𝑐𝑝
𝜔𝑖𝑇𝑐𝑝

 𝛼𝑖−1 = 𝑞𝑖𝛼𝑖−1 = (∏ 𝑞𝑙
𝑖
𝑙=2 ) × 𝛼1  where, 𝑞𝑖 = 𝜔𝑖−1

𝜔𝑖
   

𝛼0 + 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚=1      (29) 

Using Equations (27, 28) and (29) provides the following equation: 

[ 1
𝑘1

+ 1 + ∑ (∏ 𝑞𝑙
𝑖
𝑙=2 )𝑚

2 ]𝛼1 = 1      

𝛼1 = 1
[ 1
𝑘1

+1+∑ (∏ 𝑞𝑙
𝑖
𝑙=2 )𝑚

2 ]
      (30) 

Using Equation (30) and the values in table 4.1 to find the finish time using the following 

equation: 

𝑇𝑓,𝑚= 𝛼0𝜔0𝑇𝑐𝑝 = 1
𝑘1

𝛼1𝜔0𝑇𝑐𝑝= 1
1+𝑘1[1+∑ (∏ 𝑞𝑙

𝑖
𝑙=2 )𝑚

2 ]
 𝜔0𝑇𝑐𝑝  (31) 

All the results for the Simultaneous Distribution, simultaneous start model are shown in table 

4.10. 
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Simultaneous 
Distribution, 

Simultaneous Start 

Local 
Processing 

Cloud 
Processing 

Combination of 
Local and Cloud 

Processing 

Heterogeneous 
Network 1.584 0.522 0.436 

Homogeneous 
Network 1.2 0.546 0.4 

Table 4.10. The finish time results for the Simultaneous Distribution, Simultaneous Start model 
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4.3 Analysis  

 

 

After finishing all the calculation, all the results were analytically reviewed. Throughout 

working on this chapter, it became clear that the results depend on the parameters used. In other 

words, a certain set of parameters will provide a specific answer that a different set of parameters 

wouldn’t provide. Based on the previous statement all the following analysis are based on the work 

and results mentioned in the previous section of this chapter. 

The results of the first model sequential load distribution in table 4.2 and table 4.3 shows 

clearly that the speedup values for the system with homogeneous processors are higher than the 

values of the system with heterogeneous processors for the set of parameters in table 4.1. The 

reason is the processing speed for the homogeneous processors equals the highest processing speed 

among the heterogenous processors in the specified parameters. In other words, the homogenous 

system has higher computation power than the heterogeneous system. The results of the second 

model Simultaneous Distribution, Staggered Start and the third model Simultaneous Distribution, 

Simultaneous Start proved this statement. Moreover, the results of the second part of the solution 

which was about the optimal load distribution and the finish time support this statement. The finish 

time results for all three models are in Table 4.8, 4.9 and 4.10. For all three models, systems with 

homogeneous processors have a smaller finish time results than system with heterogeneous 

processors.  
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Analyzing the results of local processing speedup for different network topologies shows 

clearly that simultaneous distribution models have higher speedup values than the sequential 

distribution model. This is because the source node in the sequential distribution model send the 

assigned divisible loads to the children nodes one at a time. In other words, the children nodes 

ranked lower in the sequence must wait for a considerable length of time. However, the children 

nodes can all start receiving load near the starting time in the simultaneous distribution model. The 

local processing speedup results in Table 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 support this analysis.  

After comparing sequential load distribution with the simultaneous distribution topologies, 

the next step is to compare the simultaneous distribution topologies. The simultaneous distribution 

topologies are simultaneous distribution, staggered start model and simultaneous distribution, 

simultaneous start model. The simultaneous start model results in Table 4.6 and 4.7 shows higher 

speedup values than the staggered start model. The reason is all the nodes can start processing as 

soon as they begin receiving their assigned load. Unlike the staggered start model, children nodes 

do not have to wait for the assigned load to be completely received to start processing. 

All the results in the first part of the solution section shows the influence of the size of the 

parallelizable load (𝑓) on the speedup values of different network topologies used in this chapter. 

Overall, the model has a higher speedup values when the value of (f) increases. That can be seen 

clearly in Figures 4.3, 4.4, 4.6, 4.7, 4.9 and 4.10. 

Finally, the results were analyzed to find the best processing method. Local, cloud and a 

combination of both processing methods were compared in this chapter. Based on the results and 

implementing the parameters in Table 4.1, the best processing method is combining Local and 
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cloud processing. Incorporating both Local and cloud processing provides higher computation 

power and minimize communication delays. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

 

 

Integer linear programming was used in this paper to optimize active sensing. Active 

sensors emit signals to detect information about an object. Integer linear programming is a 

mathematical method to achieve the best outcome and it was used to select the best signals to be 

emitted. Optimal sensing means acquiring more information with least energy and time costs 

which leads to processing more data. Intuitively, optimal sensing results in optimal signature 

searching. A signature is a pattern of interest and signature searching is a process to find that 

pattern in a data file.  

The second chapter presented an algorithm to reach the optimal sensing by selecting the 

best possible number of signals of a type or a combination of multiple types to ensure the best 

sensing quality possible considering all given constraints. There were three types of constraints, 

which are energy, computation time and the number of signals per type. Also, we assumed three 

types of signals with different energy, quality and computation time specifications.  

The performance evaluation was done in three stages.  The first stage is studying basic 

cases of constraints. Four different cases were created for testing.  The objective of the algorithm 

is to find the optimal number of signals of each type that would result in the maximum total quality. 

The second stage is studying complex cases of linear and quadratic relationship between 

energy/computation time and quality per signal. This stage consists of two parts. The first part is 
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combinations of five cases to study the relationship between the energy and quality per signal with 

constant computation time specifications. The results in Table 2.2 and 2.4 and Figure 2.14 and 

2.16 show that increasing the energy cost leads to a drop in the maximum total quality. Secondly, 

studying combinations of five cases to find the relationship between the computation time and 

quality per signal with constant energy specifications. The results in Table 2.6 and 2.8 and Figure 

2.16 and 2.20 show that increasing the computation time results in a drop in the maximum total 

quality.  The third stage is studying the effect of restricting the number of signals per type. 

Restricting the number of signals per type affect the maximum total quality. The results show 

improvements using integer linear programming. Integer linear programming ability to optimize 

any set of parameters and constraints makes it a very useful tool. The technique proposed is 

promising in its ability to automate signal selection for remote sensing.  

New approaches were presented in the third chapter to optimize the solution in the second 

chapter using linear programming and heuristic algorithm. Instead of using problem based linear 

programming such as in the second chapter, a solver-based program is used to optimize the 

solution. Then, a solution based on heuristic algorithm is implemented which shows improvements 

in the performance. The results show improvements using solver-based linear programming and a 

heuristic algorithm. The performance evaluation portion of this solution was done in three stages. 

The first stage is studying basic cases of parameters and constraints to find the maximum quality 

using the problem based, solver based and heuristic algorithm. The first stage purpose is to verify 

that all programs run properly. The second stage is to test and compare the running time for all 

three solutions using four signal types. the performance was enhanced from 0.64 to 0.238 seconds 

using solver-based linear programming. Then, the heuristic algorithm was implemented and tested. 

The average running time was improved to 0.178. The third and final stage is to test the running 
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time for all three proposed solution and compare them using seven signal types. The average 

running time for the problem-based, solver-based and the heuristic algorithm were respectively 

0.667, 0.271 and 0.183 seconds. Linear programming and heuristic algorithm ability to optimize 

any set of parameters with specific constraints make them very useful tools for optimization 

problem.  

Amdahl's law is an effective tool to evaluate the performance of parallel systems by 

calculating the speedup. The speedup value can be utilized to compare the performances of 

different system topologies. In the fourth chapter, Amdahl's law and divisible load modeling were 

integrated to evaluate different single level tree topologies. divisible load modeling was used 

because it provides tractable and realistic models. Also, it allows precise mathematical analysis. 

The fourth chapter compared local and cloud computing for different single level tree 

topologies. Also, it evaluated the performance of combining both methods. The performance 

evaluation was done in two parts. The first part was using Amdahl's law and divisible load 

modeling to calculate the speedup for three single level tree models. The models are sequential 

load distribution, simultaneous distribution with staggered start and simultaneous distribution with 

simultaneous start. Homogeneous and heterogeneous systems were analyzed for each model. The 

second part was done to find the finish time “makespan”. The finish time was calculated and used 

to compare the performance of all the previous models. 

The results of the analysis show clearly that simultaneous distribution models have higher 

speedup values than the sequential distribution model. This is because the children nodes can all 

start receiving load near the starting time in the simultaneous distribution model. However, the 

children nodes ranked lower in the sequence must wait for a considerable length of time in the 

sequential distribution model. The simultaneous start model results show higher speedup values 
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than the staggered start model. The reason is all the nodes can start processing as soon as they 

begin receiving their assigned load unlike the staggered start model. Moreover, the speedup values 

increase when the value of (f) increases. Finally, the best processing method is combining Local 

and cloud processing because it provides higher computation power and minimizes 

communication delays. 
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5.2 Future Work 

 

 

For future work, the algorithm presented in the second chapter could be applied to actual 

applications. The collected results can be compared to previous results. A comparison will show 

the improvement of optimization of signature searching. Finally, modifications should be applied 

if results show a need for this.  

The proposed algorithms in the third chapter could be applied to actual applications too. 

Also, new approaches could be implemented and tested. The results can be compared to presented 

results. A comparison may show improvement of optimization of signature searching. Finally, 

modifications should be applied if results show a need for this.  

Efficient scheduling is highly required in sensors network applications and multiprocessors 

systems. This requirement drives consistent improvement and development. For future work, 

divisible load scheduling theory can be incorporated with Gustafson’s law, a variant of Amdahl’s 

law. Also, a different set of parameters for computing and computation speed can be utilized. 

moreover, the results can be tested and compared with a larger number of processors. 

Modifications should be applied if results show a need for that. Finally, other types of network 

topologies can be studied.  

Other aspects of signature searching optimization problem can be studied such as different 

network topology, memory inclusion, multi installments scheduling, and queueing. The optimal 

solution could be using a certain method or a combination of multiple methods.  
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