
Stony Brook LIBRARIES



# GERAGHTY & MILLER, INC.

Consulting Ground-Water Geologists and Hydrologists

WATER RESEARCH BUILDING PORT WASHINGTON, NEW YORK 11050



Report to: Town of North Hempstead

#### EVALUATION OF GROUND-WATER CONDITIONS

#### LANDFILL L-4

#### TOWN OF NORTH HEMPSTEAD

February 1977

Geraghty & Miller, Inc. Consulting Ground-Water Geologists and Hydrologists 44 Sintsink Drive East Port Washington, New York 11050 Doc X TD 224 .N7; E92

¢.

--

. .

·

Geraghty & Miller, Inc.

10314038

02/2/2/83

#### EVALUATION OF GROUND-WATER CONDITIONS

LANDFILL L-4

#### TOWN OF NORTH HEMPSTEAD

Geraghty & Miller, Inc. has reviewed the report entitled "Effects of Town of North Hempstead Sanitary Landfill on Wells of the Port Washington Water District," prepared by Henderson and Casey, Consulting Engineers, and dated July 14, 1976. The purpose of this analysis is to comment upon a number of points raised in the report and to present our findings, conclusions and recommendations with regard to the situation. For simplicity, comments concerning the Henderson and Casey report will be made on a page by page basis.

On Page 2 it is stated that Well 2 can only be sampled by bailing and analytical "results should be viewed with suspicion," noting high iron concentrations. In fact, only one sample (5-74) was collected by bailing. Since then, samples have been taken by setting a pump in the screen zone and pumping the well dry (lowering the water level to the pump intake). The well is then allowed to recover before repeating the process. Evacuating the casing is carried out at least four times prior to sampling, in compliance with accepted techniques. 1) The samples are clearly representative of formation water rather than stagnant water standing in the casing, and there is absolutely no reason to question the results.

Careful reading of the Geraghty & Miller, Inc. June 1974 report would have revealed that at the site of Well 2, fill and rubble were found from land surface to a depth of 28 feet. The volume and nature of this material, dumped prior to commencement of the Town's landfill, is not known. However, leachate from that material has clearly affected shallow ground-water quality In July 1973 (again before the landfill operation in that area. had begun), water samples collected from four test borings 30 to 45 feet deep contained iron in concentrations of 100 to 132 mg/1 (milligrams per litre), indicating that the iron concentrations found in Well 2 are valid. Furthermore, the well has produced water with anomalously high levels of ammonia, total Kjeldahl nitrogen, TOC, and in March 1975, phenol (see Appendix). These levels cannot be attributed to any source other than leachate from waste material placed some time prior to any Town activity at the site.

Coliform bacteria are mentioned on Pages 2 and 3 of the Henderson and Casey report. These are not considered to be a valid monitoring parameter due to the relatively short distances that they are capable of traveling through soils. They are not included in the ground-water sampling program recommended for the landfill in a letter dated June 21, 1976 from Mr. William Bentley of the New York State DEC to the Town.

On Page 3 it is stated that "groundwater contamination mov-

ing laterally might not be evident in the monitoring wells at the site (1, 2, 3 and 4) for a very long period of time," ostensibly because the wells are too deep and clay lenses are found between the well screens and landfill surface. This may be true for Wells 3 and 4, located upgradient for background data, but not for Wells 1 and particularly 2. The latter are located downgradient from the landfill and are screened at shallow depths with the tops of the well screens only about 49 and 9 feet below the water table for Wells 1 and 2, respectively. In addition, there is hydraulic interconnection between the wells as evidenced by the fact that pumping from Well 1 lowers the water level in Well 2. It is most unlikely that leachate, if it were to reach the ground-water system, would not be intercepted by one or both of the wells.

On Page 6 of the Henderson and Casey report, a discussion of how water can enter the landfill is presented. The mechanisms are direct precipitation on the landfill and runoff and groundwater flow into it from surrounding banks. It should be considered desirable to minimize the amount of water reaching the waste so that lesser volumes of leachate are produced and disposed of. Runoff into the fill can be eliminated by means of drainage ditches around the perimeter of the site. Upon completion of each portion of the site, proper covering, grading and planting will greatly reduce infiltration of precipitation. In one study of simulated landfills, which received 46 inches of

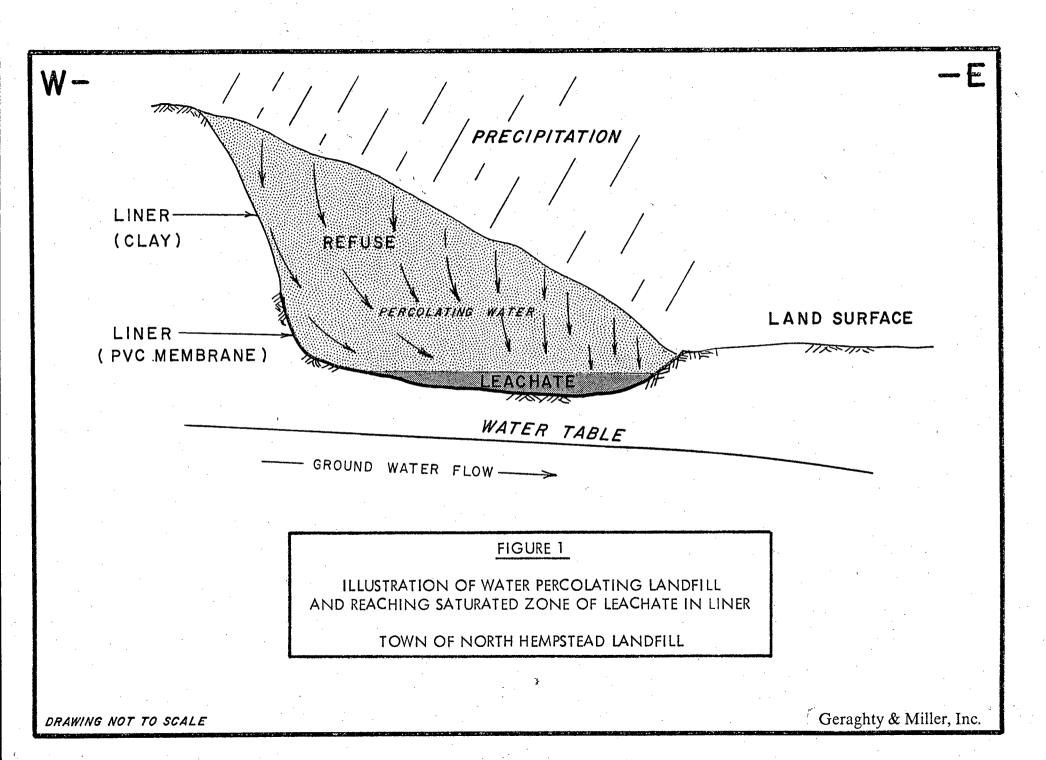
-3-

Geraghty & Miller, Inc.

water (about equal to the average yearly precipitation on Long Island) over an 8.5-month period, leachate produced at two units covered with vegetation totalled only 1.59 and 1.27 inches. <sup>2)</sup>

Ground-water flow into the refuse cannot take place at the North Hempstead landfill because the landfill is above the water table. A very small amount of percolating or perched water could enter it from the surrounding banks but would have no significant effect.

A statement on Page 7 asserts: "Leachate will drain directly to the soil through the banks. The seepage through the higher elevations along the banks to the south, west and north constitute (sic) a major threat to the water supply of the entire peninsula. Contaminated leachate entering at upwards of 100 feet and more (up to elevation  $150^{\pm}$  msl) above the normal groundwater elevation ( $20^{\pm}$  msl) at the site will be capable of very lengthy lateral travel against and with the normal groundwater flow."


Water infiltrating the landfill will move as unsaturated flow only after the field capacity of the refuse has been reached. In other words, the refuse will absorb and retain water up to a point. Beyond that point, excess water moves downward under the influence of gravity, following the path of least resistance or highest permeability. Since the fill is probably more permeable than the bank surfaces, the percolating water

-4-

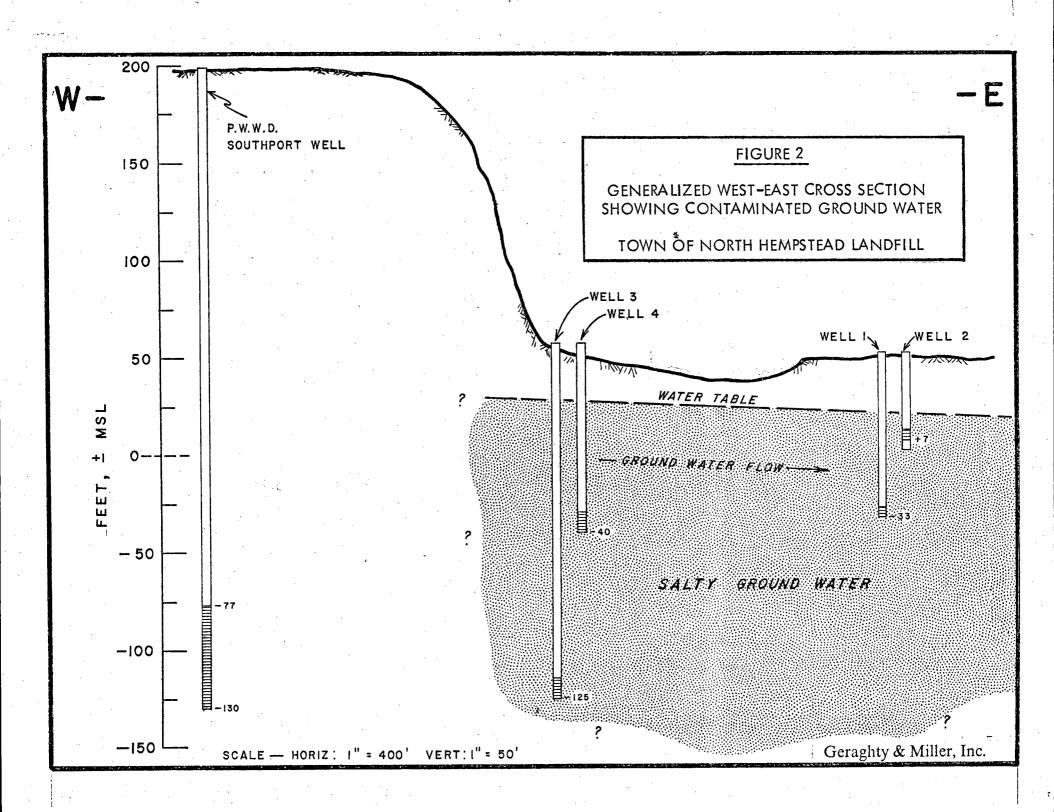
should move downward through the fill until it reaches a zone of saturation at a relatively low elevation - the surface of the leachate contained within the liner (Figure 1). Were it to reach the water table, its movement would then be to the east, the direction of shallow ground-water flow beneath the site. Seepage into the banks at higher elevations is simply not significant because of the unsaturated flow conditions. To state that the seepage (alleged) constitutes a threat to the water supply of the entire 10-square-mile peninsula is irresponsible and in no way based on scientific evidence or even accepted theory.

In addition, even though seepage into the banks under natural conditions cannot be considered significant, the Town reports that it is taking an added precaution directed toward reducing the potential for moisture from the landfill entering the bank slopes above the PVC liner. This is being accomplished by placement of a clay layer on the slopes. Laboratory permeability test results indicate that the clay material used by the Town should act as an effective barrier against moisture seepage to the soil beyond the banks.

The Henderson and Casey report discusses ground-water contamination in the sand pit area caused by using salt water for past sand and gravel washing and then notes on Page 9 that "it is quite possible that the zone of influence of the three nearby District wells reaches the landfill site." Rather than specu-



late, this possibility should have been investigated. Contamination of ground water from artificial ponds containing salt water pumped from the bay has been known for some time. For example, Swarzenski in his U. S. Geological Survey Water Supply Paper 1657, published in 1963, describes this problem and its impact on aquifers in the area in great detail. <sup>3)</sup> In the Geraghty & Miller, Inc. report of June 1974 to the Town on the results of constructing the four monitoring wells, the salt-water contamination problem was pointed out and the following paragraph was included:

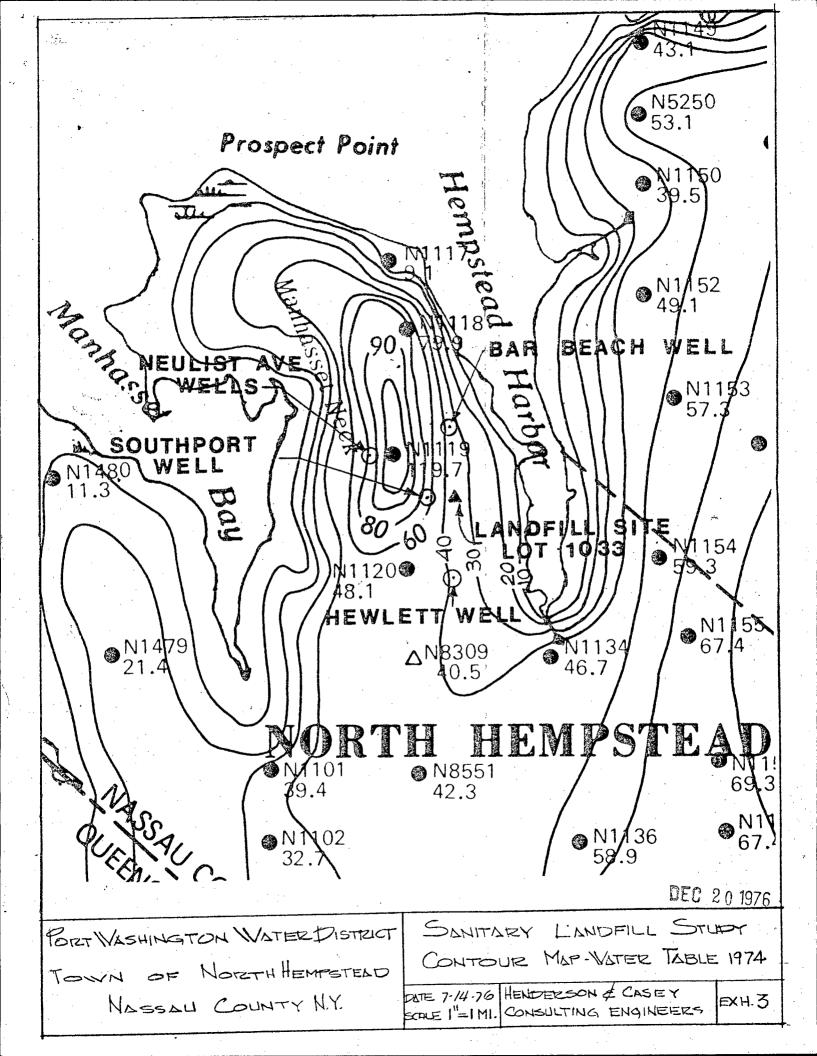

> "A public supply well (N 4223), located off Wakefield Avenue, is operated by the Port Washington Water District. It is possible that this well could be threatened by the contaminated body of water, depending of course, upon hydraulic gradients. It would be advisable to inform the Port Washington Water District of the existing situation. They may wish to conduct pumping tests, utilizing Wells 3 and 4 for observation purposes to determine the direction and rates of ground-water flow."

The District was so informed but to our knowledge never took any action. If no action were taken, a rather disconcerting lack of concern was exhibited, particularly in view of the fact that salt water already in the aquifer is a far more immediate and distinct threat to the District's wells than leachate.

On Page 11 of the Henderson and Casey report, it is stated that "contamination of the landfill operations will eliminate future options for full groundwater exploitation along Hempstead Harbor." This is simply not the case because any ground water that the leachate might reach is already contaminated with salt water (Figure 2). The monitoring wells were installed for the landfill and not to define the vertical and horizontal extent of existing salt-water contamination. However, Well 3 has its screen at a similar elevation to the one in the Southport Well, about 1,500 feet to the west (Figure 2). As noted in the preceding paragraph, the Port Washington Water District could have conducted pumping tests and used this well for observation purposes to determine rate and direction of ground-water flow. Apparently, this was not done.

It is claimed on Page 12 that "it is of particular importance to analyze the leachate at least weekly to get early warning of any toxic material that may be deposited." In fact, there is no justification for such frequent sampling. Any toxic substance deposited in the landfill could take many months or more to show up in the leachate. Furthermore, ground-water flow is laminar and measured in inches per day. Sampling and analysis every three months is quite sufficient for both the leachate and wells. It is important to note that no indication of leachate contamination has been confirmed in the water obtained from the monitoring wells in over two years of sampling.

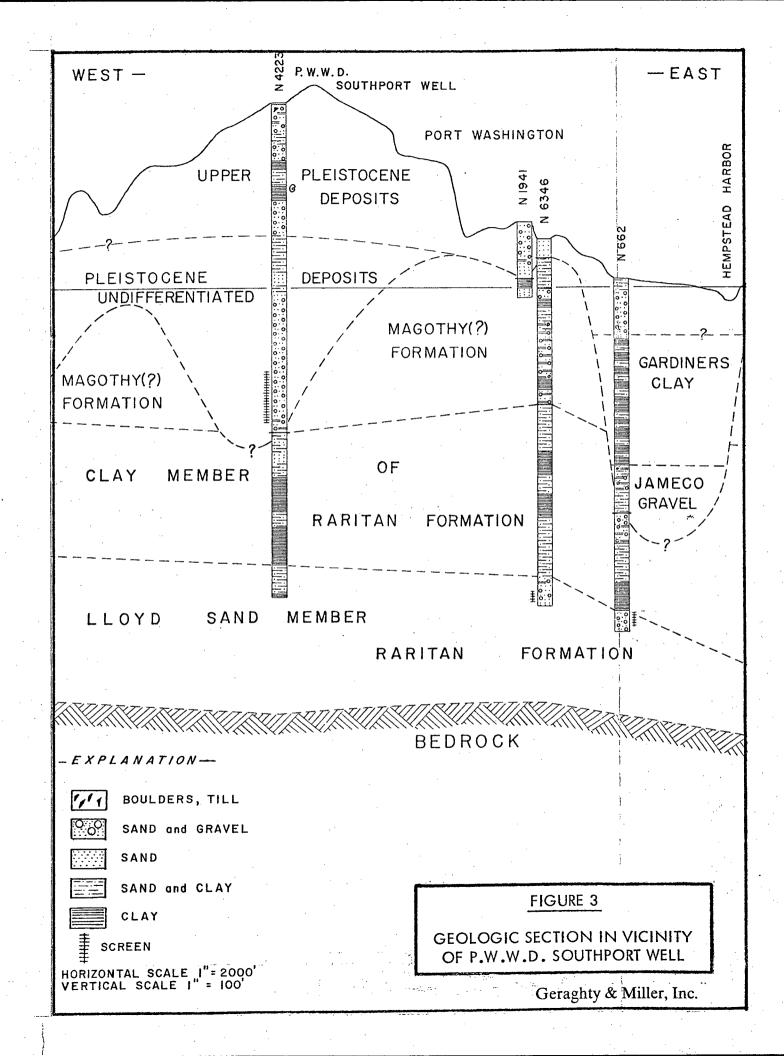
A number of additional points in the report can be questioned. However, it is felt that the above covers the major items of interest. The following discusses subjects that are




particularly relevant to the situation but which have not been given sufficient emphasis in the Henderson and Casey report. Of primary importance are the facts that the direction of shallow ground-water flow at the site is easterly, toward Hempstead Harbor; that ground water beneath the site and in the area is contaminated with salt water to a depth of at least 125 feet below sea level; and that the nature of the unconsolidated deposits varies significantly, both vertically and horizontally.

Shallow test borings installed at the landfill site in 1973 showed that the water table slopes toward Hempstead Harbor. The same is indicated by Exhibit 3 (copy attached), in the Henderson and Casey report, which is a contour map of the water table in 1974. Because ground water flows at right angles to the contour lines, the flow direction is clearly to the east. The only way the flow patterns could be affected is by pumping, and there are no wells in the vicinity of the landfill that pump significant quantities of water from the water table. Pumpage from greater depths could induce vertical leakage from the water table into underlying artesian zones, but there is no evidence that leakage is great enough to alter flow patterns in the water table. It ' is not envisioned that any changes will take place in the foreseeable future.

It has been confirmed that ground water beneath the site, to a depth of at least 125 feet below sea level, has been grossly


-8-



contaminated by past sand and gravel washing operations using salt water. Water samples collected from Wells 3 and 4 have had chloride concentrations as high as 4,100 and 6,600 mg/l, respectively. Such concentrations are from more than 16 to more than 26 times the drinking water limit of 250 mg/l. The Southport Well, located to the west (see Figure 2), reportedly pumps 700 gpm (gallons per minute). Were water with a chloride content of 5,000 mg/l to reach this well and constitute only five percent or 35 gpm of the total pumpage, the well could no longer be used to supply drinking water.

The geology in the sand pit is quite complex. As can be seen from Figure 3, the Southport Well (N 4223) is screened in what appears to be a north-south trending valley of more permeable deposits than are found to the east or west. Under such conditions, the pumping cone of depression created by the well would be elongated to the north and south and not extend a proportional distance to the east or west. This could account for the fact that chlorides in the well water have remained low even though salty water is less than 1,500 feet from the well.

Taking the preceding factors into account, there is no way that the leachate, if it escaped the liner, could reach the Southport Well. To do so, it would have to flow upgradient which is physically impossible. In the very unlikely event that hydraulic gradients were reversed, salt water would reach the



well long before any leachate did, in accordance with laws governing ground-water flow.

In conclusion, the leachate does not presently and is not anticipated to constitute a threat to the Southport Well or other District wells. Rather, the salt-water contamination problem poses the real threat. Mention has been made of installing additional wells to monitor possible contamination by leachate. Because salt-water encroachment is the only major potential problem, the supply wells themselves can be used for additional monitoring by noting changes in chloride content in the water pumped. A better approach would be for the Water District to install salt-water, outpost monitoring wells between its supply wells and the sand pit area. Additional monitoring wells for leachate, in the vicinity of the landfill, are not necessary.

To be consistent with good management practices, certain actions should be taken at the landfill to minimize leachate generation and to provide for its removal. After field capacity of the refuse is reached, the volume of leachate is proportional to the amount of water entering the refuse. The amount can be lessened by eliminating runoff into the site from surrounding areas by means of drainage ditches. Upon completion of filling operations in one area, the fill can be properly graded, covered and seeded to greatly reduce infiltrating precipitation (discussed previously). Removal of leachate from the site as it is collected would be desirable. Possibly local sewage treatment facilities would be amenable to accepting and treating it. Leachate levels should be monitored and maintained as low as possible. In no case should they exceed the height of the liner edges.

With one exception, no changes in the existing monitoring program are recommended. In order to obtain more data on trace organic chemical compounds, additional analyses should be made during the next round of sampling. These would be carried out on the leachate and water from Wells 1 and 2 and would entail gas chromatograph scans for polychlorinated biphenyls, halogenated pesticides and volatile organics.

> Respectfully submitted, GERAGHTY & MILLER, INC.

onglas R. max Callun

Douglas R. MacCallum Senior Hydrogeologist

David W. Miller, CPG Vice President

February 25, 1977

Geraghty & Miller, Inc.

#### References Cited

- Wehran Engineering Corp. and Geraghty & Miller, Inc., "Procedures Manual for Monitoring Solid Waste Disposal Sites," draft copy prepared for Office of Solid Waste Management Programs, U. S. EPA, 1976, 287 pp.
- Pohland, F. G., and R. S. Engelbrecht, "Impact of Sanitary Landfills - An Overview of Environmental Factors and Control Alternatives," prepared for American Paper Institute, Feb. 1976, 82 pp.
- Swarzenski, W. V., "Hydrogeology of Northwestern Nassau and Northeastern Queens Counties, Long Island, New York," U. S. Geological Survey Water-Supply Paper 1657, Washington, 1963, 88 pp.

#### APPENDIX

# Leachate and Monitoring Well Analyses

# NORTH HEMPSTEAD LANDFILL MONITORING PROGRAM

Source - WELL 1

| Date Sampled (mo./yr.  | )                                     | 5/74   | 3/75        | 9/75    | 5/76   | 10/76                                  | 2/77                                   |
|------------------------|---------------------------------------|--------|-------------|---------|--------|----------------------------------------|----------------------------------------|
| Constituent            | mg/1 as *                             |        |             | · · · · |        |                                        |                                        |
| Total Hardness         | CaCO3                                 | 2,760  | 2,740       | 2,300 . | 2,220  |                                        | -                                      |
| Alkalinity             | CaCO3                                 | 126    | <u>· 97</u> | 84      | 101    |                                        |                                        |
|                        |                                       |        |             |         |        |                                        | -                                      |
| Conductivity           |                                       | 24,000 | 10,800      | 1,450   | 14,750 | ********                               | ······································ |
| Total Dissolved Solids |                                       | 14,623 | 14,420      | 13,330  | 13,580 | 10,700                                 | 9,820                                  |
| Color                  | · · · · · · · · · · · · · · · · · · · |        | - 5         | - 5     | - 5    |                                        |                                        |
| Turbidity              |                                       |        | 3           | 3       | 6      |                                        |                                        |
| ·                      |                                       |        |             |         |        |                                        |                                        |
| Sodium                 | Ng                                    | 4,360  | 4,200       |         | 3,350  |                                        |                                        |
| Potassium              | K                                     |        | 165         |         | 130    |                                        |                                        |
| Calcium                | Ca                                    | _      | 228         |         | 200    |                                        |                                        |
| · Chloride             | CI                                    | 7,825  | 9,800       | 1,280   | 6,200  | 5,700                                  | 5,200                                  |
|                        |                                       |        |             |         |        |                                        |                                        |
| Nitrate                | N                                     | 2.63   | 2.40        | 2,60    | 3,58   |                                        |                                        |
| Nitrite                | N                                     | 0.231  | - 0.001     |         | 0.016  | ······································ |                                        |
| Ammonia                | N                                     |        | 0,05        |         | 0.05   | -0,01                                  | -0.01                                  |
| Kjeldahl Nitrogen      | N .                                   |        | 0.07        |         | 0,12   | 0.01                                   | 0.03                                   |
|                        |                                       |        |             |         |        | ······································ |                                        |
| Iron                   | Fe                                    | 0.25   | 0.44        | 0.75    | 0.82   | 1.62                                   | 1.79                                   |
| Manganese              | Mn                                    | 0.04   | 0.07        |         | 0.05   | 0.11                                   | 0.14                                   |
| Copper                 | Cu                                    | 0.024  | 0.08        |         | 0.05   |                                        | • • • • • • • • • • • • • • • • • • •  |
| Zinc                   | Zn                                    | 0.20   | 0.37        | 0.25    | 0.26   | 0.28                                   | 0.09                                   |

\* where applicable

- less than

#### NORTH HEMPSTEAD LANDFILL MONITORING PROGRAM

Source - WELL 1

|                                          | · · · ·                               | ····                                  |        | ······    | ······ |          | ······································ | ······                                |
|------------------------------------------|---------------------------------------|---------------------------------------|--------|-----------|--------|----------|----------------------------------------|---------------------------------------|
| Data_Sampled_(mo./y                      | )                                     | 5/74                                  | 3/75   | 9/75      | 5/76   | 10/76    | 2/77                                   |                                       |
| Constituent                              | mg/1 as *                             |                                       |        |           | •      |          |                                        |                                       |
| Chromium (Total)                         | Cr                                    |                                       | -0,01  |           | -0.05  |          |                                        |                                       |
| Chromium (Hex.)                          | Cr <sup>+6</sup>                      | -0.01                                 | -0.01  |           | -0.01  |          |                                        |                                       |
| <b>C</b>                                 |                                       |                                       |        |           |        |          |                                        |                                       |
| Lead                                     | РЪ                                    | -0.1                                  | -0.02  |           | -0.02  |          |                                        |                                       |
| Mercury                                  | Hg                                    |                                       | 0.042  |           | 0.0005 |          |                                        |                                       |
| Arsenic                                  | As                                    |                                       | -0,003 |           | -0.003 | -        |                                        |                                       |
| Beryllium                                | Be                                    |                                       | 0.004  |           | nid.   |          |                                        |                                       |
| an a |                                       |                                       | •<br>• |           |        |          |                                        |                                       |
| Selenium                                 | Se                                    | •                                     |        | · · · · · |        |          |                                        |                                       |
| Boron                                    | B                                     | . •                                   |        |           | 1.33   |          |                                        |                                       |
| Phenol                                   |                                       |                                       | -0,002 |           | -0.002 |          |                                        |                                       |
| рН                                       |                                       | 6.2                                   | 6.4    | 6.6       | 6.3    | 6.5      | 6.5                                    |                                       |
|                                          |                                       |                                       |        |           |        |          |                                        |                                       |
| Sulfate                                  | SOA                                   | 960                                   | 922    |           | 825    |          |                                        |                                       |
| Phosphate (Iotal)                        | P                                     |                                       | 0.02   |           | 0.03   |          |                                        |                                       |
| Phosphate (Ortho)                        | P                                     |                                       | -0.01  |           |        |          |                                        | · · · · · · · · · · · · · · · · · · · |
| MBAS                                     |                                       |                                       | 0.02   |           | 0.44   |          |                                        |                                       |
|                                          | ÷                                     |                                       |        | ·····     |        |          |                                        |                                       |
| COD                                      |                                       | -                                     | 107.5  | 98.8      | 127.2  | 115.1    | 122.0                                  |                                       |
| TOC                                      | •                                     | · · · · · · · · · · · · · · · · · · · |        |           | 14.3   |          | 5                                      |                                       |
| Total Coliform                           |                                       |                                       | -3.0   | 23.0      | -3.0   |          | -3.0                                   |                                       |
| Fecal Coliform                           | · · · · · · · · · · · · · · · · · · · |                                       | -3.0   | 3.6       | -3.0.  | <u>l</u> | -3.0                                   | <u> </u>                              |

\*where applicable - less than

n.d. - none detected

#### NORIA HEMISTEAU LANDFILL MUNITOKING PROGRAM

Source - WELL 2

|                                        |          |       |         | - (   |       |       | 0/77  | ,     |
|----------------------------------------|----------|-------|---------|-------|-------|-------|-------|-------|
| Date Sampled (mo./yr                   | •)       | 5/74  | 3/75    | 9/75  | 5/76  | 10/76 |       |       |
| Constituent                            | mg/1_as* |       |         |       | •     |       |       |       |
| Total Hardness                         | CaCO3    | 716   | 1,580   | 1,840 | 780   |       |       |       |
| Alkalinity                             | CaCO3    | 688   | • 1,540 | 1,280 | 505   |       |       |       |
|                                        |          |       |         |       |       |       |       |       |
| Conductivity                           |          | 3,400 | 2,850   | 3,350 |       |       |       |       |
| Total Dissolved Solids                 | 5        | 2,208 | 3,550   | 4,080 | 3,420 | 2,634 | 2,431 |       |
| Color                                  |          |       | 40      | -5    | -5    |       |       | :<br> |
| Turbidity                              |          |       | 375     | 240   | 79    |       |       |       |
|                                        |          | Heft  |         |       |       |       |       |       |
| Sodium                                 | Na       | 541   | 710     |       | 660   |       |       |       |
| Potassium                              | ĸ        |       | 150     |       | 100   |       |       |       |
| Calcium                                | Ca       |       | 184     |       | 128   |       | -     |       |
| · Chloride                             | Cl       | 750   | 1,050   | 1,760 | 1,380 | 1,160 | 980   |       |
| ************************************** |          |       |         |       |       |       |       |       |
| Nitrate                                | N        | 0.20  | 0.21    | 1.40  | 0.13  |       |       |       |
| Nitrite                                | N        | 0.002 | -0.001  |       | 0.008 |       |       |       |
| Ammonia                                | N        |       | 9.73    |       | 7.70  | 6.0   | 5.8   |       |
| Kjeldahl Nitrogen                      | N        |       | 9.99    |       | 7.78  |       | 9.7   |       |
|                                        |          |       |         |       |       |       |       |       |
| Iron                                   | Fe       | 34.8  | 31.3    | 73.25 | 36.70 | 31.1  | 27.0  |       |
| Manganese                              | Mn       | 3.6   | 7.3     |       |       |       | 2.3   |       |
| Copper                                 | Cu       | 0.020 | 0.04    |       | -0.05 |       |       |       |
| Zinc                                   | Zn       | 5.2 - | 13.0    | 0.30  | 0.22  | 0.45  | 0.16  |       |

\*where applicable - les

- less than

#### NORTH HEMPSTEAD LANDFILL MONITORING PROGRAM

#### Source - WELL 2

|                                  |       |         |         |        |       | ······································ |     |
|----------------------------------|-------|---------|---------|--------|-------|----------------------------------------|-----|
| Date_Sampled_(mo./yr.)           | 5/74  | 3/75    | 9/75    | 5/76   | 10/76 | 2/77                                   |     |
| •                                |       |         |         |        |       |                                        |     |
| Constituent mg/l as *            |       |         |         |        |       |                                        |     |
| Chromium (Total) Cr              |       | -0.01   |         | -0.05  |       |                                        |     |
| Chromium (Hex.) Cr <sup>+6</sup> | -0.01 | · -0.01 |         |        |       |                                        |     |
|                                  |       |         | • · ·   |        |       |                                        |     |
| Lead Pb                          | -0.1  | 0.04    |         | -0.02  |       |                                        |     |
| Mercury Hg                       |       | 0.064   |         | 0.0006 |       |                                        |     |
| Arsenic As                       |       | -0.003  |         | -0.003 |       |                                        |     |
| Beryllium Be                     |       | 0.002   |         | n.d.   |       |                                        |     |
| <u>derymon</u>                   |       |         |         |        |       |                                        |     |
| Selenium Se                      | •     |         |         |        |       |                                        |     |
| <u>Selenium Se</u><br>Boron B    |       |         |         | 0.67   |       |                                        |     |
| Phenol                           |       | 0.157   |         | -0.002 |       |                                        | -   |
| pH                               | 6.9   | 7.1     | 7.1     | 6.9    | 7.0   | 7.3                                    |     |
|                                  |       |         |         |        |       |                                        |     |
| Sulfate SO <sub>4</sub>          | 130   | 53      |         | 220    |       |                                        |     |
| Phosphate (Iotal) P              |       | 0.02    |         | 0.075  |       |                                        |     |
| Phosphate (Ortho) P              |       | 0.02    |         |        |       |                                        |     |
| MBAS                             |       | 0,26    |         | 0.24   |       |                                        |     |
| 110/05                           |       |         |         |        |       |                                        |     |
| COD                              |       | 376.3   | . 256.9 | 112.2  | 79.4  | 102.0                                  |     |
| TOC                              |       |         | 3       | 21_4   |       | 33                                     |     |
| Total Coliform                   |       | -3.0    | 23.0    | -3.0   |       | -3.0                                   |     |
| Fecal Coliform                   | •     | -3.0    | 9.1     | -3.0   |       | -3.0                                   | · . |

\*where applicable \_\_\_\_\_ less than \_\_\_\_\_ n.d. - none

n.d. - none detected

#### NORTH HEMPSTEAD LANDFILL MONITORING PROGRAM

Source - WELL3

| Date Sampled (mo./vr.  | .)       | 5/74   | 3/75        | 9/75    | 5/76  | 10/76 | 2/77  | and a state of the |
|------------------------|----------|--------|-------------|---------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constituent            | mg/1 as* |        |             |         |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Hardness         | CaCO3    | 584    | 1,180       | 1,720 . | 1,440 |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alkalinity             | CaCOz    | 32     | <u>· 26</u> | 27      | 31    |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | · .      |        |             |         |       |       |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conductivity           |          | 3,100  | 4,100       | 5,130   | 8,610 |       |       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Dissolved Solids |          | 1,718  | 5,000       | 12,856  | 8,320 | 6,928 | 7,120 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Color                  |          |        | -5          | -5      | -5    |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turbidity              | • •      |        | 15          | 2       | 8     |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |          |        |             |         |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Sodium               | Na       | 456    | 1,200       |         | 1,768 |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potassium              | K        |        | 13.8        | -       | 25.0  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calcium                | Са       |        | 192         | u.      | 196   |       | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · Chloride             | CL       | 940    | 2,800       | 4,100   | 3,350 | 3,600 | 3,600 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 <b>8 </b>            |          |        |             |         |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nitrate                | N        | 2,63   | 3.40        | 2.70    | 4.79  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nitrite                | N        | 0.231  | -0.001      |         | 0.012 | 0.03  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ammonia                | N        |        | 0.13        |         | 0.02  |       | 0.04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kjeldahl Nitrogen      | N        |        | 0.26        |         | 0.08  | 0.03  | 0.15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |          |        |             |         |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iron                   | Fe       | 0.24   | 2.46        | 1.19    | 3.16  | 3.40  | 3.10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese              | Mn       | 0,07   | 0.11        |         |       | 0.13  | 0.09  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copper                 | Cu       | 0.015  | -0.05       |         | 0.13  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zinc                   | Zn       | 0.19 ~ | 0.19        | 0.27    | 0.84  | 0.26  | 0.16  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\*where applicable

- less than

#### NURTH HEMPSTEAD LANDFILL MONITORING PROGRAM

### Source - WELL 3

|         | · · · · · · · · · · · · · · · · · · · |                                                        |                                                        |                                                       |                                                       | •                                                      |
|---------|---------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| E /7 /  | 0./75                                 | 0 Hzr                                                  | F /7/                                                  | 10/7/                                                 |                                                       |                                                        |
| 5/74    | 3/75                                  | 9/75                                                   | 5//6                                                   | 10/76                                                 | 2/77                                                  |                                                        |
|         |                                       |                                                        | •                                                      |                                                       |                                                       |                                                        |
|         | -0.01                                 |                                                        | -0.05                                                  |                                                       |                                                       | _                                                      |
| -0.01   | -0.01                                 |                                                        | -0.01                                                  |                                                       |                                                       |                                                        |
|         | •                                     |                                                        |                                                        |                                                       |                                                       |                                                        |
| -0.1    | 0.04                                  |                                                        | -0.02                                                  |                                                       |                                                       |                                                        |
|         | 0.015                                 |                                                        | -0.0005                                                |                                                       |                                                       |                                                        |
|         | -0.003                                |                                                        | -0.003                                                 |                                                       | -                                                     | ·                                                      |
|         | 0.004                                 |                                                        | n.d.                                                   |                                                       |                                                       |                                                        |
|         | 4                                     |                                                        |                                                        |                                                       |                                                       |                                                        |
| •       |                                       |                                                        |                                                        | -                                                     |                                                       |                                                        |
| •       |                                       |                                                        | 0.17                                                   |                                                       |                                                       |                                                        |
|         | -0.002                                |                                                        | -0.002                                                 |                                                       |                                                       |                                                        |
| 6.0     | 6.2                                   | 6.4                                                    | 6.2                                                    | 6.4                                                   | 6.3                                                   |                                                        |
|         |                                       |                                                        |                                                        |                                                       |                                                       |                                                        |
| 80      | 320                                   |                                                        | 430                                                    |                                                       |                                                       |                                                        |
|         | 0.04                                  |                                                        | 0.020                                                  |                                                       |                                                       |                                                        |
|         | 0.01                                  |                                                        |                                                        |                                                       |                                                       | • • • • • • • • • • • • • • • • • • •                  |
|         | 0.03                                  |                                                        | 0.22                                                   |                                                       |                                                       |                                                        |
|         |                                       |                                                        |                                                        |                                                       |                                                       |                                                        |
| • ••••• | 107.5                                 |                                                        | 108.5                                                  | 91.3                                                  |                                                       |                                                        |
|         |                                       |                                                        |                                                        |                                                       |                                                       |                                                        |
|         | -3.0                                  | 3.6                                                    | -3.0                                                   |                                                       | 9.1                                                   |                                                        |
|         | -3.0                                  | -3.0                                                   | -3.0                                                   |                                                       | -3.0                                                  | · .                                                    |
|         | -0.1<br>-0.1<br>6.0<br>80             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

----\*where applicable - less than

n.d. - none detected

# 

Source - WELL4

|                       |          | ·      |        |       |       | ····· |       |  |
|-----------------------|----------|--------|--------|-------|-------|-------|-------|--|
| Date Sampled (mo,/y   | r.)      | 5/74   | 3/75   | 9/75  | 5/76  | 10/76 | 2/77  |  |
| Constituent           | mg/1 as* |        |        |       | •     |       |       |  |
| Total Hardness        | CaCO3    | 2,420  | 1.700  | 960 . | 700   |       |       |  |
| Alkalinity            | CaCO3    | 52     | . 23   | 23    | 20    |       |       |  |
| C                     |          | 19,500 | 5,900  | 6,070 | 4,930 |       |       |  |
| Conductivity          | 1.       | 9,957  | 5,248  | 5,060 | 4,340 | 2,350 | 2,200 |  |
| Total Dissolved Solic | 15       |        | -5     | -5    | -5    |       |       |  |
| Color<br>Turbidity    |          |        | 26     | 9     | 5     |       |       |  |
|                       |          |        |        |       |       |       |       |  |
| Sadium                | No       | 3,008  | 2,000  |       | 891   | -     |       |  |
| Potassium             | K        |        | 31.5   |       | 18.0  | -     |       |  |
| Calcium               | Са       |        | 248    |       | 112   | -     |       |  |
| · Chloride            | Cl       | 5,350  | 3,300  | 6,600 | 1,740 | 1,260 | 1,060 |  |
|                       |          | 3.64   | 3.75   | 9.40  | 4.92  |       |       |  |
| Nitrate               | <u>N</u> | 0.264  | -0.001 |       | 0.082 |       |       |  |
| Nitrite               | <u>N</u> |        | 0.13   |       | 0.04  | 0.05  | 0.02  |  |
| Ammonia               | N<br>N   |        | 0.26   |       | 0.10  | 0.05  | 0.11  |  |
| Kjeldahl Nitroger     | 1 11     |        |        |       |       |       |       |  |
|                       | Fe       | 0.35   | 1.90   | 3.71  | 0.57  | 2.01  | 1.84  |  |
| Iron<br>Manganese     | · Mn     | 0.32   | 0.20   |       |       | 0.10  | 0.06  |  |
| Copper                | Cu       | 0.018  | -0.05  |       | 0.08  | t     |       |  |
| Zinc                  | 7.n      | 0.19   | 1.3    | 0.18  | 0.16  | 0.21  | 0.06  |  |

\*where applicable - less than

#### NURTH DEMESTEAD LANDFILL MONHORING PRUGRAM

Source - Well 4

|                       |                                                                                                                | 5/74  | 3/75    | 9/75  | 5/76                                  | 10/76 | 2/77        | · |
|-----------------------|----------------------------------------------------------------------------------------------------------------|-------|---------|-------|---------------------------------------|-------|-------------|---|
| Date_Sampled_(mo./yr  |                                                                                                                |       |         |       |                                       |       |             |   |
| Constituent           | mg/1 as *                                                                                                      |       |         |       | . •                                   |       |             |   |
| Chromium (Total)      | Cr                                                                                                             |       | -0.01   |       | -0.05                                 |       |             |   |
| Chromium (Hex.)       | Cr <sup>+6</sup>                                                                                               | -0.01 | · -0.01 |       | -0.01                                 |       |             |   |
|                       |                                                                                                                |       |         |       |                                       |       |             |   |
| Lead                  | Pb                                                                                                             | -0.1  | -0.02   |       | -0.02                                 |       |             |   |
| Mercury               | Hg                                                                                                             |       | 0.030   |       | -0.0005                               |       |             |   |
| Arsenic               | As                                                                                                             |       | -0.003  |       | -0.003                                | -     |             | } |
| Beryllium             | Be                                                                                                             |       | 0.004   |       | n.d.                                  |       |             |   |
|                       |                                                                                                                |       |         |       |                                       |       |             | - |
| Selenium              | Se                                                                                                             | •     |         |       |                                       |       | -           |   |
| Boron                 | В                                                                                                              |       |         |       | 0.33                                  |       |             |   |
| Phenol                | ,                                                                                                              |       | -0.002  |       | 0.003                                 |       |             |   |
| рН                    |                                                                                                                | 5.8   | 6.0     | 6.5   | 6.3                                   | 6.4   | 6.4         |   |
|                       |                                                                                                                |       |         |       |                                       |       |             |   |
| Sulfate               | SO <sub>A</sub>                                                                                                | 650   | 465     | we    | 260                                   |       |             |   |
| Phosphate (Total)     | p                                                                                                              |       | 0.08    |       | 0.015                                 |       |             |   |
| Phosphate (Ortho)     | Р                                                                                                              |       | 0.02    |       |                                       |       |             |   |
| MBAS                  |                                                                                                                |       | -0.02   |       | 0.11                                  |       |             |   |
|                       |                                                                                                                | ,     |         |       | · · · · · · · · · · · · · · · · · · · |       |             |   |
| COD                   |                                                                                                                |       | 130.6   | 39.5  | 123.4                                 | 59.5  | 55.0        |   |
| TOC                   | •                                                                                                              |       |         |       | 8.8                                   |       | 2           |   |
| <u>Total Coliform</u> |                                                                                                                |       | 3.6     | 2,400 | -3.0                                  |       | -3.0        |   |
| Fecal Coliform        | arts and a second s |       | -3.0    | -3.0  | -3.0                                  |       | <b>3.</b> 0 |   |

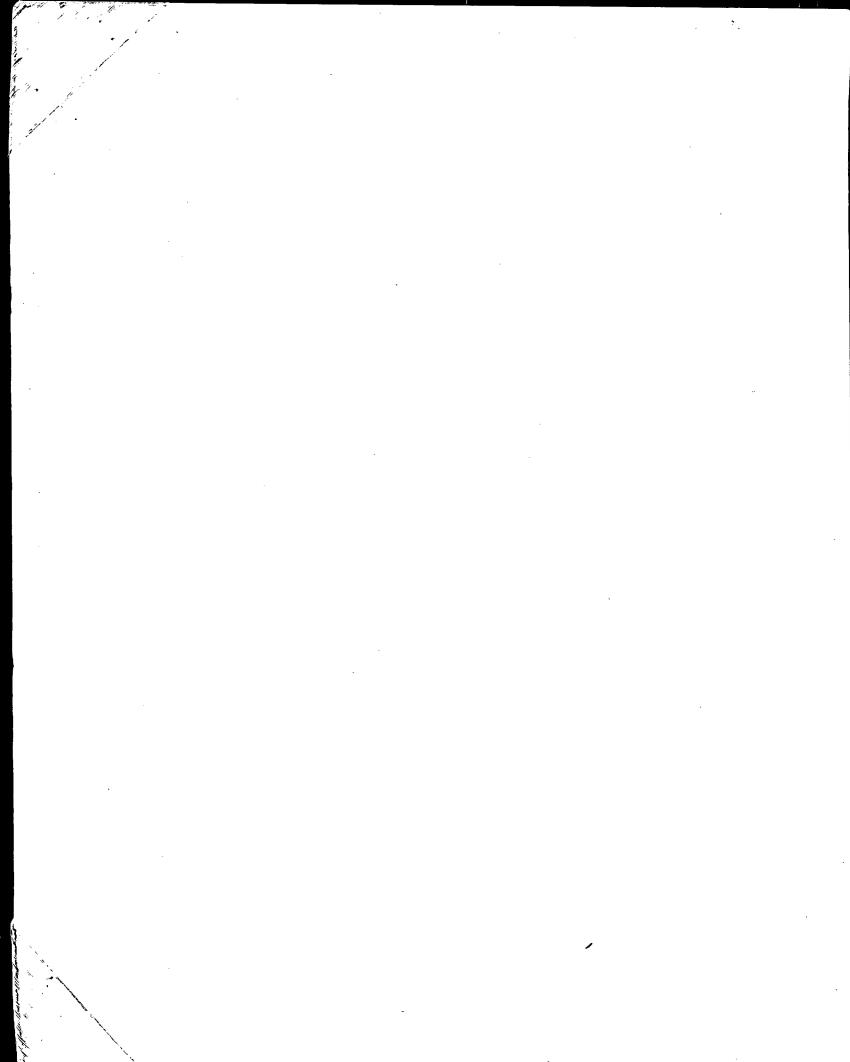
\*where applicable - less than n.d. - none detected

# NORTH HEMPSTEAD LANDFILL MONTORING PROGRAM

Source - Leachate

| Date Sampled (mo./  | yr.)     | 3/75      | 3/75   | 9/75                                  | 5/76   | 10/76     | 10/76  | 2/77      |
|---------------------|----------|-----------|--------|---------------------------------------|--------|-----------|--------|-----------|
| Constituent         | mg/1 as* | (manhole) | (pond) |                                       | •      | (manhole) | (pond) | (manhole) |
| Total Hardness      | CaCOg    | 1,260     | 1,640  | 14,400 .                              | 5,200  |           |        |           |
| Alkalinity          | CaCOg    | 580       | • 740  | 3,100                                 | 4,400  |           |        |           |
|                     |          |           |        |                                       |        |           |        |           |
| Conductivity        |          |           |        |                                       |        |           |        |           |
| Total Dissolved Sol | ids      | 54        | 5,329  | 16,600                                | 17,800 | 10,388    | 9,804  | 10,988    |
| Color               | ·        | 35        | 50     | 300                                   | 400    |           | -      |           |
| Turbidity           |          | 525       | 680    | 940                                   | 96     |           |        |           |
| TODACTY             |          |           |        |                                       |        |           |        |           |
| Sodium              | Na       | 440       | 560    |                                       | 1,400  | -         |        |           |
| Potassium           | ĸ        | 210       | 275    |                                       | 810    |           |        | -         |
| Calcium             | Ca       | 300       | 336    |                                       | 992    |           |        |           |
| Chloride            | Cl       | 680       | 750    | 5,000                                 | 2,120  | 2,150     | 2,200  | 1,960     |
|                     |          |           |        |                                       |        |           |        |           |
| Nitrate             | N        | 1.13      | 0,35   | 2,90                                  | -0.02  |           |        |           |
| Nitrite             | N.L      | -0.005    | -0.005 |                                       | 0.26   |           |        | (10.0     |
| Ammonia             | N        | 174.2     | 128.8  |                                       | 536.0  | 460.0     | 460.0  | 610.0     |
| Kjeldahl Nitroge    | en N     |           | 137.5  |                                       | 599.8  |           | 520.0  | 700.0     |
|                     |          |           |        |                                       | ·      |           |        | 300.0     |
| Iron                | Fe       | 130.0     | 88.0   | 430.0                                 | 595.0  | 1,108.0   | 112.0  |           |
| Manganese           | • Mn     | 9.4       | 15.0   |                                       |        |           |        |           |
| Copper              | Cu       | 0.24      | 0.07   | · · · · · · · · · · · · · · · · · · · | 0.12   |           |        | 3.2       |
| Zinc                | Zn       | 16.0      | 4.9    | 8.75                                  | 17.0   | 6.4       | 2.4    |           |

\*where applicable - less than


#### NORTH HEMPSTEAD LANDFILL MONITORING PROGRAM

| Source | · •• 1 | Leachate |  |
|--------|--------|----------|--|
| 000.00 |        | Leachare |  |

| Date Sampled (ma./y | <u>.)</u>                             | 3/75      | 3/75   | 9/75   | 5/76    | 10/76     | 10/76    | 2/77      |
|---------------------|---------------------------------------|-----------|--------|--------|---------|-----------|----------|-----------|
| Constituent         | mg/1 as *                             | (manhole) | (pond) |        | •       | (manhole) | (lagoon) | (manhole) |
| Chromium (Total)    | Cr                                    | -0.01     | 0.03   |        | 0.16    | -0.05     | -0.05    |           |
| Chromium (Hex.)     | Cr <sup>+6</sup>                      | -0.01     | -0.01  |        | 0.148   |           |          |           |
|                     |                                       |           |        |        | · .     |           |          |           |
| Lead                | Pb                                    | 0.04      | -0.02  |        | -0.02   | -0.08     | -0.08    |           |
| Mercury             | Hg                                    | 0.001     | 0.029  |        | -0,0005 | 0.0009    | -0,0005  |           |
| Arsenic             | As                                    | -0.003    | -0.003 |        | 0,020   |           |          |           |
| Beryllium           | Be                                    | 0,003     | 0.003  |        | n.d.    |           |          |           |
|                     |                                       | <u></u>   |        | -      |         |           |          |           |
| Selenium            | Se                                    | •         |        |        | 0.55    |           |          |           |
| Boron               | В                                     |           |        |        | 9.0     |           |          |           |
| Phenol              | · · · · · · · · · · · · · · · · · · · | Ne a      | ,      |        | 1.2     |           |          |           |
| рН                  |                                       | 5.8       | 6.2    | 6.7    | 6.4     | 6.9       | 7.9      | 6.9       |
|                     |                                       |           |        |        |         |           |          |           |
| Sulfate             | SOA                                   | 382       | 336    |        | 347     |           | ·        |           |
| Phosphate (Total)   | P                                     | 0.13      | 0,10   |        | 0.075   |           |          |           |
| Phosphate (Ortho)   | Р                                     | 0.13      | 0.10   |        |         |           |          |           |
| MBAS                |                                       | 0.33      | 0.45   |        | 0.07    |           |          |           |
|                     |                                       |           |        |        |         |           |          |           |
| COD                 |                                       | 5,837     | 6,144  | 18,574 | 19,100  | 8,928     | 9,920    | 11,400    |
| TOC                 | • • • • • • • • • • • • • • • • • • • |           |        |        | 5,700   |           |          | 10,000    |
| Total Coliform      |                                       | 430       | 2,400  | -3.0   | 240.0   |           |          | 2,400.0   |
| Fecal Coliform      |                                       | -3.0 -    | -3.0   |        | -3.0    |           |          | · 150.    |

\*where applicable - less than n.d. - none detected

# MAY NOT & REMOVED FROM THE LIDRARY

