Show simple item record

dc.identifier.urihttp://hdl.handle.net/1951/59938
dc.identifier.urihttp://hdl.handle.net/11401/71476
dc.description.sponsorshipThis work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.en_US
dc.formatMonograph
dc.format.mediumElectronic Resourceen_US
dc.language.isoen_US
dc.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dc.typeDissertation
dcterms.abstractCone-beam CT (Computed Tomography) has become a major imaging technique thanks to its image-fidelity and scanning time. Scientists and practitioners frequently utilize volume visualization tools for diagnosis and decision-making. The thesis work presented here seeks to improve on the volume visualization pipeline for CT generated data. We summarize our contributions into three categories. Cone-beam CT scanners typically use analytical algorithms to reconstruct volumetric data. We studied the interpolation error of visualization tools and built a verifiable visualization tool and efficient data structure to enable users to enjoy interactive rendering speed to freely examine the high resolution data at minimal error. For the recently developed low-dose CT which suffers from either noisy or an insufficient number of X-ray projections, we proposed an optimization framework to determine effective parameters for the data denoising and volume reconstruction stage. We have devised an efficient method to optimize various parameters for iterative CT reconstruction using an ant colony optimization algorithm. We also developed an interactive user interface to visually explore various acquisition settings. Our preliminary results show that the learned parameters can be readily applied to similar scans with promising results. Lastly, we provide visual guidance which can boost user efficiency when exploring the data. For guided visualization, we propose a view suggestion framework rooted in high-dimensional feature space which does not rely on particular transfer functions or volume segmentations as an initial input.
dcterms.available2013-05-22T17:35:55Z
dcterms.available2015-04-24T14:47:42Z
dcterms.contributorMueller, Klaus , Gu, Xianfengen_US
dcterms.contributorMueller, Klausen_US
dcterms.contributorGu, Xianfengen_US
dcterms.contributorKaufman, Arieen_US
dcterms.contributorHelm, Patricken_US
dcterms.creatorZheng, Ziyi
dcterms.dateAccepted2013-05-22T17:35:55Z
dcterms.dateAccepted2015-04-24T14:47:42Z
dcterms.dateSubmitted2013-05-22T17:35:55Z
dcterms.dateSubmitted2015-04-24T14:47:42Z
dcterms.descriptionDepartment of Computer Scienceen_US
dcterms.extent112 pg.en_US
dcterms.formatApplication/PDFen_US
dcterms.formatMonograph
dcterms.identifierZheng_grad.sunysb_0771E_11190en_US
dcterms.identifierhttp://hdl.handle.net/1951/59938
dcterms.identifierhttp://hdl.handle.net/11401/71476
dcterms.issued2012-12-01
dcterms.languageen_US
dcterms.provenanceMade available in DSpace on 2013-05-22T17:35:55Z (GMT). No. of bitstreams: 1 Zheng_grad.sunysb_0771E_11190.pdf: 4638594 bytes, checksum: 2f44ff2e1355915d2a308d3a6ed5f40f (MD5) Previous issue date: 1en
dcterms.provenanceMade available in DSpace on 2015-04-24T14:47:42Z (GMT). No. of bitstreams: 3 Zheng_grad.sunysb_0771E_11190.pdf.jpg: 1894 bytes, checksum: a6009c46e6ec8251b348085684cba80d (MD5) Zheng_grad.sunysb_0771E_11190.pdf.txt: 210516 bytes, checksum: 03aec357411dd0142eb5089f539b9c52 (MD5) Zheng_grad.sunysb_0771E_11190.pdf: 4638594 bytes, checksum: 2f44ff2e1355915d2a308d3a6ed5f40f (MD5) Previous issue date: 1en
dcterms.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dcterms.subjectComputer science--Medical imaging and radiology
dcterms.subjectant colony optimization, Computed Tomography, GPU, verification, view suggestion, volume visualization
dcterms.titleEfficient Reconstruction and Visualization of CT Data
dcterms.typeDissertation


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record