Show simple item record

dc.identifier.urihttp://hdl.handle.net/1951/56143
dc.identifier.urihttp://hdl.handle.net/11401/71718
dc.description.sponsorshipThis work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.en_US
dc.formatMonograph
dc.format.mediumElectronic Resourceen_US
dc.language.isoen_US
dc.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dc.typeDissertation
dcterms.abstractIn cells, incorrectly folded proteins or compromised protein turnover induce cellular stress known as endoplasmic reticulum (ER) stress. Significantly, ER stress plays an important role in numerous physiological and pathological conditions, including degenerative diseases and cancer. In an attempt to resolve ER stress cells activate a response known as the unfolded protein response (UPR). While, initially a protective response, the UPR can induce cell death if ER stress is not overcome. As the precise molecular mechanisms that regulate ER homeostasis and UPR-related cell death remain elusive, I focused my initial studies on understanding these processes. In the course of this study it was discovered that autophagy, a process utilized by cells to degrade misfolded and/or damaged proteins, is important for restoring proper ER function. However, unabated autophagy can promote cell death. As autophagic protein degradation is ultimately carried out by lysosomal hydrolases, I also studied how perturbations within lysosomes affect ER function and cellular homeostasis. An endogenous inhibitor of lysosomal cathepsins known as squamous cell carcinoma antigen 1 (SCCA1), a member of the serine protease inhibitor (Serpin) family of proteins, was expressed in cells to modulate lysosomal function. Significantly these studies revealed that SCCA1 is able to protect cells against lysosomal injury resulting from DNA alkylating agents and hypoosmotic stress. This protection is due to SCCA1's ability to inhibit lysosomal rupture, thus preventing cytotoxic release of lysosomal hydrolases into the cytosol. Conversely, due to the inhibition of lysosomal protein degradation, SCCA1 promotes cell death in response to ER stress. This SCCA1-mediated cell death in response to ER stress is carried out by intracellular aggregation and subsequent activation of caspase-8. Hence, on one hand SCCA1 inhibits cell death induced by lysosomal damage, while on the other hand it sensitizes cells to ER stress by activating caspase-8. Our studies have thus uncovered a novel mechanism of cell death in response to ER stress. Given that SCCA1 expression is elevated in numerous cancers, these findings may offer insight into selective treatment strategies for SCCA1 expressing cancers.
dcterms.available2012-05-17T12:22:52Z
dcterms.available2015-04-24T14:48:52Z
dcterms.contributorWei-Xing Zong.en_US
dcterms.contributorWilliam Lennarzen_US
dcterms.contributorRichard Linen_US
dcterms.contributorPatrick Hearingen_US
dcterms.contributorHoward Crawford.en_US
dcterms.creatorUllman, Erica Marie
dcterms.dateAccepted2012-05-17T12:22:52Z
dcterms.dateAccepted2015-04-24T14:48:52Z
dcterms.dateSubmitted2012-05-17T12:22:52Z
dcterms.dateSubmitted2015-04-24T14:48:52Z
dcterms.descriptionDepartment of Molecular and Cellular Biologyen_US
dcterms.formatMonograph
dcterms.formatApplication/PDFen_US
dcterms.identifierUllman_grad.sunysb_0771E_10568.pdfen_US
dcterms.identifierhttp://hdl.handle.net/1951/56143
dcterms.identifierhttp://hdl.handle.net/11401/71718
dcterms.issued2011-05-01
dcterms.languageen_US
dcterms.provenanceMade available in DSpace on 2012-05-17T12:22:52Z (GMT). No. of bitstreams: 1 Ullman_grad.sunysb_0771E_10568.pdf: 8903391 bytes, checksum: 65ee612f688432aff2f677df6bd9c77f (MD5) Previous issue date: 1en
dcterms.provenanceMade available in DSpace on 2015-04-24T14:48:52Z (GMT). No. of bitstreams: 3 Ullman_grad.sunysb_0771E_10568.pdf.jpg: 1894 bytes, checksum: a6009c46e6ec8251b348085684cba80d (MD5) Ullman_grad.sunysb_0771E_10568.pdf: 8903391 bytes, checksum: 65ee612f688432aff2f677df6bd9c77f (MD5) Ullman_grad.sunysb_0771E_10568.pdf.txt: 227103 bytes, checksum: 32529b7c90c855f65521dc0d9dc943d8 (MD5) Previous issue date: 1en
dcterms.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dcterms.subjectApoptosis, Autophagy, Caspases, Endoplasmic Reticulum, Lysosome, Squamous Cell Carcinoma Antigen
dcterms.subjectMolecular biology -- Biology
dcterms.titleMechanisms of Endoplasmic Reticulum Stress-Induced Cell Death
dcterms.typeDissertation


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record