Show simple item record

dc.identifier.urihttp://hdl.handle.net/1951/55613
dc.identifier.urihttp://hdl.handle.net/11401/72661
dc.description.sponsorshipThis work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.en_US
dc.formatMonograph
dc.format.mediumElectronic Resourceen_US
dc.language.isoen_US
dc.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dc.typeThesis
dcterms.abstractUltra-relativistic heavy ion collisions provide a unique opportunity for study of a new state of matter known as the Quark Gluon Plasma (QGP) under laboratory conditions. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is an accelerator designed to create and study such plasma. The azimuthal anisotropy of particle production in these collisions is a unique tool for studying the properties of the QGP. It is quantied by the second harmonic v<sub>2</sub> of the Fourier expansion of the azimuthal distribution of emitted particles. This elliptic flow is created by pressure gradients caused by the geometrical anisotropy of the initial collision zone, and transformed into momentum anisotropy of produced particles during the hydrodynamic expansion of the QGP medium. In this study, precision measurements of v<sub>2</sub> are presented for data collected by the PHENIX detector for Au+Au collisions at sqrt(sNN) = 200 GeV in Run 7. The measurements are performed for charged hadrons with transverse momentum of 0.4. 1.95 GeV/c, for the collision centrality range 0-50%. To study the influence of non-flow effects, measurements were also obtained with event planes separated from the PHENIX central arms by different pseudorapidity gaps. The v2 measurements indicate large values of v2 which are compatible with QGP formation in Au+Au collisions at sqrt(sNN) = 200 GeV. Measurements for various event planes show results which are consistent with each other, suggesting a negligible role for non-flow effects in the momentum and centrality range used in this analysis. Detailed comparisons of the v2 measurements obtained with different event planes, as well as comparisons to the results obtained by the STAR collaboration, indicate overall good agreement; relatively small differences in the most central collisions can be understood in terms of a systematic uncertainty in the centrality estimates by the PHENIX and STAR experiments.The precision measurements presented here provide an important experimental basis for reliable extraction of QGP transport coefficients such as viscosity from v<sub>2</sub> measurements.
dcterms.available2012-05-15T18:06:41Z
dcterms.available2015-04-24T14:53:04Z
dcterms.contributorJiangyong Jiaen_US
dcterms.contributorLacey, Royen_US
dcterms.contributorFernando Raineri.en_US
dcterms.creatorSalnikov, Stanislav
dcterms.dateAccepted2012-05-15T18:06:41Z
dcterms.dateAccepted2015-04-24T14:53:04Z
dcterms.dateSubmitted2012-05-15T18:06:41Z
dcterms.dateSubmitted2015-04-24T14:53:04Z
dcterms.descriptionDepartment of Chemistryen_US
dcterms.formatMonograph
dcterms.formatApplication/PDFen_US
dcterms.identifierSalnikov_grad.sunysb_0771M_10273.pdfen_US
dcterms.identifierhttp://hdl.handle.net/1951/55613
dcterms.identifierhttp://hdl.handle.net/11401/72661
dcterms.issued2010-08-01
dcterms.languageen_US
dcterms.provenanceMade available in DSpace on 2012-05-15T18:06:41Z (GMT). No. of bitstreams: 1 Salnikov_grad.sunysb_0771M_10273.pdf: 2259233 bytes, checksum: 7bd004d3ba434a36db88c8eacb3734c4 (MD5) Previous issue date: 1en
dcterms.provenanceMade available in DSpace on 2015-04-24T14:53:04Z (GMT). No. of bitstreams: 3 Salnikov_grad.sunysb_0771M_10273.pdf.jpg: 1894 bytes, checksum: a6009c46e6ec8251b348085684cba80d (MD5) Salnikov_grad.sunysb_0771M_10273.pdf.txt: 48802 bytes, checksum: c78b0141c5b295c436c6e7de7cc9dc02 (MD5) Salnikov_grad.sunysb_0771M_10273.pdf: 2259233 bytes, checksum: 7bd004d3ba434a36db88c8eacb3734c4 (MD5) Previous issue date: 1en
dcterms.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dcterms.subjectElliptic Flow, Heavy Ion Collisions, Nuclear Chemistry
dcterms.subjectChemistry, Nuclear
dcterms.titleSystematic Study of Elliptic Flow in Au+Au Collisions at sqrt(sNN)=200 GeV
dcterms.typeThesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record