Show simple item record

dc.identifier.urihttp://hdl.handle.net/11401/76303
dc.description.sponsorshipThis work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.en_US
dc.formatMonograph
dc.format.mediumElectronic Resourceen_US
dc.language.isoen_US
dc.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dc.typeDissertation
dcterms.abstractModern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. In order to adapt our device to soft x-ray applications, efforts are made to develop a thin diamond position monitor for lowering device absorption. In section 5 we have discussed the fabrication and testing of thin diamond x-ray monitors made from diamond plates with nominal thickness of 30µm, which is 1/10th of the thickness of the diamonds we previously used. Calibration results of this detector are presented and discussed in comparison with thicker diamond sensors. Section 6 introduces our effort on the investigation of carrier loss mechanism in diamond detectors. Near edge responsivity in diamond x-ray detectors has been used to confirm the carrier loss mechanism as recombination due to diffusion into the incident electrode. We present a detailed study of the bias dependence of the diamond responsivity across the carbon k-edge. The carrier loss is modelled by incorporating a characteristic recombination length into the absorption model and is shown to agree well with Monte Carlo simulated carrier losses. In addition, nitrogen doped ultrananocrystalline diamond (nUNCD) grown on the surface of a CVD single crystal diamond as an alternative contact to metal is tested in the similar measurements as the metal contact diamond. nUNCD has a much lower x-ray absorption than metal contacts and is designed to improve the performance of our device. This diamond is calibrated over a wide photon energy range from 0.2 keV to 28 keV, and compared with platinum coated diamond. Results of these studies will be presented and discussed in section 7. Future work has been proposed in the last section in improving the design and fabrication of diamond based electronics as well as in the investigation to enhance our understanding of its material and device physics.
dcterms.abstractModern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. In order to adapt our device to soft x-ray applications, efforts are made to develop a thin diamond position monitor for lowering device absorption. In section 5 we have discussed the fabrication and testing of thin diamond x-ray monitors made from diamond plates with nominal thickness of 30µm, which is 1/10th of the thickness of the diamonds we previously used. Calibration results of this detector are presented and discussed in comparison with thicker diamond sensors. Section 6 introduces our effort on the investigation of carrier loss mechanism in diamond detectors. Near edge responsivity in diamond x-ray detectors has been used to confirm the carrier loss mechanism as recombination due to diffusion into the incident electrode. We present a detailed study of the bias dependence of the diamond responsivity across the carbon k-edge. The carrier loss is modelled by incorporating a characteristic recombination length into the absorption model and is shown to agree well with Monte Carlo simulated carrier losses. In addition, nitrogen doped ultrananocrystalline diamond (nUNCD) grown on the surface of a CVD single crystal diamond as an alternative contact to metal is tested in the similar measurements as the metal contact diamond. nUNCD has a much lower x-ray absorption than metal contacts and is designed to improve the performance of our device. This diamond is calibrated over a wide photon energy range from 0.2 keV to 28 keV, and compared with platinum coated diamond. Results of these studies will be presented and discussed in section 7. Future work has been proposed in the last section in improving the design and fabrication of diamond based electronics as well as in the investigation to enhance our understanding of its material and device physics.
dcterms.available2017-09-20T16:49:59Z
dcterms.contributorSmedley, Johnen_US
dcterms.contributorRaghothamachar, Balajien_US
dcterms.contributorDudley, Michaelen_US
dcterms.contributorMuller, Erik.en_US
dcterms.creatorGaowei, Mengjia
dcterms.dateAccepted2017-09-20T16:49:59Z
dcterms.dateSubmitted2017-09-20T16:49:59Z
dcterms.descriptionDepartment of Materials Science and Engineering.en_US
dcterms.extent96 pg.en_US
dcterms.formatMonograph
dcterms.formatApplication/PDFen_US
dcterms.identifierhttp://hdl.handle.net/11401/76303
dcterms.issued2014-12-01
dcterms.languageen_US
dcterms.provenanceMade available in DSpace on 2017-09-20T16:49:59Z (GMT). No. of bitstreams: 1 Gaowei_grad.sunysb_0771E_11787.pdf: 6525694 bytes, checksum: bb6e953a69c0bcef2b24de19bb35d83a (MD5) Previous issue date: 1en
dcterms.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dcterms.subjectCVD Diamond, HAXPES, nUNCD, Responsivity, Schottky barrier, x-ray detection
dcterms.subjectMaterials Science
dcterms.titleDiamond detector--material science, design and application
dcterms.typeDissertation


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record