Show simple item record

dc.identifier.urihttp://hdl.handle.net/11401/76311
dc.description.sponsorshipThis work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.en_US
dc.formatMonograph
dc.format.mediumElectronic Resourceen_US
dc.language.isoen_US
dc.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dc.typeThesis
dcterms.abstractA series of experiments were performed in order to observe certain process-property trends in thermally sprayed MCrAlY bond coatings for thermal barrier coating (TBC) applications in gas-turbine engines. Firstly, the basis of gas-turbine operation and design is discussed with a focus on the Brayton cycle and basic thermodynamic properties with respect to both the thermal and fuel efficiency of the turbine. The high-temperature environment inside the gas-turbine engine creates an extremely corrosive medium in which the engineering components must operate with sufficient operating life times. These engineering constraints, both thermal/fuel efficiency and operating life, pose a serious problem during long operation as well as thermal cycling of a civil aerospace engine. The concept of a thermal barrier coating is introduced along with how these coatings protect the internal engineering components, mostly in the hot-section of the turbine, and increase both the efficiency as well as the operating life of the components. The method used to create TBC's is then introduced being thermal spray processing along with standard operating procedures (SOP) used during coating deposition. The main focus of the experiments was to quantify the process-property trends seen during thermal spray processing of TBC's with respect to the adhesion and thermally grown oxide (TGO) layer, as well as how sensitive these properties are to changing variables during coating deposition. The design of experiment (DOE) method was used in order to have sufficient statistical process control over the output as well as a standard method for quantifying the results. A total of three DOE's were performed using two main types of thermal spray processes being high-velocity oxygen fuel (HVOF) and atmospheric plasma spray (APS), with a total of five different types of torches which are categorized by liquid-fuel, gas-fuel, and single cathode plasma. The variables used in the proceeding experiments were mainly spray distance, air/fuel ratio, raster speed, powder feed rate, combustion pressure, current, primary and secondary gas flow, as well as three different powder chemistries. The results of the experiments showed very clear process-property trends with respect to mean bond strength of the coatings as well as TGO growth on the as-sprayed coating surface. The effect of either increasing/decreasing the melting index of the powder as well as increasing/decreasing the kinetic energy of the particles is shown with corresponding cross-sectional microstructures of the coating interfaces. The temperature and velocity of the particles were measured with spray diagnostic sensors as well as using an in-situ curvature property sensor (ICP) to monitor the stress-states of the coatings both during deposition as well as residual stresses, and how these might affect the bond strength. An SOP referred to as furnace cycling was used to quantify the TGO growth of the bond coatings by measuring the thickness via a scanning electron microscope (SEM) as well as performing energy dispersive x-ray spectroscopy (EDX) on the coatings to measure chemical changes.
dcterms.available2017-09-20T16:50:00Z
dcterms.contributorSampath, Sanjayen_US
dcterms.contributorHalada, Garyen_US
dcterms.contributorTrelewicz, Jason.en_US
dcterms.creatorInglima, Michael William
dcterms.dateAccepted2017-09-20T16:50:00Z
dcterms.dateSubmitted2017-09-20T16:50:00Z
dcterms.descriptionDepartment of Materials Science and Engineering.en_US
dcterms.extent119 pg.en_US
dcterms.formatApplication/PDFen_US
dcterms.formatMonograph
dcterms.identifierhttp://hdl.handle.net/11401/76311
dcterms.issued2014-12-01
dcterms.languageen_US
dcterms.provenanceMade available in DSpace on 2017-09-20T16:50:00Z (GMT). No. of bitstreams: 1 Inglima_grad.sunysb_0771M_12014.pdf: 5528622 bytes, checksum: ed22022a9953399bebc8acb6985f9f2b (MD5) Previous issue date: 1en
dcterms.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dcterms.subjectMaterials Science
dcterms.subjectBond Coating, MCrAlY, Thermal Spray
dcterms.titleComparative Study of Microstructure and Properties of Thermal Sprayed MCrAlY Bond Coatings
dcterms.typeThesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record