Show simple item record

dc.identifier.urihttp://hdl.handle.net/1951/59906
dc.identifier.urihttp://hdl.handle.net/11401/71435
dc.description.sponsorshipThis work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.en_US
dc.formatMonograph
dc.format.mediumElectronic Resourceen_US
dc.language.isoen_US
dc.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dc.typeDissertation
dcterms.abstractWe describe a unified computational framework for polynomial fitting method based on weighted least squares approximations. This framework is first motivated by computing normals and curvatures on discrete surface mesh, then it is extended to construct the continuous global surface and calculate high order surface integration. Finally, the idea of generalized finite difference method is extracted by inverting the Vandermonde matrix from local polynomial fitting, it will be used to solve various geometric geometric partial differential equations and an elastic membrane problem. Different applications require different techniques and impose different challenges including simplicity, accuracy, continuity, robustness and efficiency. Our research focus on high order accuracy, but also give considerations to other requirements. For normal and curvature calculations, surface reconstruction and integration, we demonstrate order of accuracy up to 6 . For numerical solution of geometric PDEs and the elastic membrane problem, we introduce an accurate spatial discretization over triangular surface mesh and our semi-implicit schemes can achieve at least quadratic convergence rate while being much more accurate and stable than using explicit schemes.
dcterms.available2013-05-22T17:35:45Z
dcterms.available2015-04-24T14:47:33Z
dcterms.contributorJiao, Xiangminen_US
dcterms.contributorLi, Xiaolinen_US
dcterms.contributorGlimm, Jamesen_US
dcterms.contributorGu, Xianfeng.en_US
dcterms.creatorWang, Duo
dcterms.dateAccepted2013-05-22T17:35:45Z
dcterms.dateAccepted2015-04-24T14:47:33Z
dcterms.dateSubmitted2013-05-22T17:35:45Z
dcterms.dateSubmitted2015-04-24T14:47:33Z
dcterms.descriptionDepartment of Applied Mathematics and Statisticsen_US
dcterms.extent123 pg.en_US
dcterms.formatApplication/PDFen_US
dcterms.formatMonograph
dcterms.identifierWang_grad.sunysb_0771E_10731en_US
dcterms.identifierhttp://hdl.handle.net/1951/59906
dcterms.identifierhttp://hdl.handle.net/11401/71435
dcterms.issued2012-08-01
dcterms.languageen_US
dcterms.provenanceMade available in DSpace on 2013-05-22T17:35:45Z (GMT). No. of bitstreams: 1 Wang_grad.sunysb_0771E_10731.pdf: 367256 bytes, checksum: 47ba44197127736d5dfedeb1da83bb31 (MD5) Previous issue date: 1en
dcterms.provenanceMade available in DSpace on 2015-04-24T14:47:33Z (GMT). No. of bitstreams: 3 Wang_grad.sunysb_0771E_11137.pdf.jpg: 1894 bytes, checksum: a6009c46e6ec8251b348085684cba80d (MD5) Wang_grad.sunysb_0771E_11137.pdf.txt: 225038 bytes, checksum: c6c5b875c825a3bbba08e44d3ffc4a1b (MD5) Wang_grad.sunysb_0771E_11137.pdf: 3484207 bytes, checksum: b269d09f222ed78f592f792a8fcb839a (MD5) Previous issue date: 1en
dcterms.publisherThe Graduate School, Stony Brook University: Stony Brook, NY.
dcterms.subjectApplied mathematics
dcterms.titleNumerical Differential Geometry and its Applications
dcterms.typeDissertation


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record